The WHO genomics program of work for equitable implementation of human genomics for global health

Check for updates

he publication of the first draft of the human genome sequence in 20011 was followed by the advent of high-throughput methodologies, which together have driven the expansion of genomic tools and technologies. These efforts have enabled the sequencing of millions of genomes and expedited the functional and clinical annotation of the human genome. The resulting discovery of thousands of gene-disease associations² and the characterization of human genetic variation at scale³ has extended the application of genomics to enable diagnosis, prognosis and clinical management of disease, as well as risk prediction and implementation of preventive measures.

Despite the health benefits from these innovations and the potential to improve sectors related to agriculture, livestock and the economy (with indirect effects on health), the availability of genomic technologies remains inconsistent and often limited, particularly in low- and middle-income countries^{4,5}, in part because of resource shortages and low adoption capabilities within health systems. The lack of representation of genetic data from many underserved communities exacerbates this disparity, resulting in a predominant focus of human genomic studies on European ancestry populations^{6,7}.

The World Health Organization (WHO) Science Council recognized the potential of genomics alongside global disparities in the adoption and sharing of its benefits, and produced a report⁸ outlining a roadmap to accelerate access to genomic technologies and applications across all continents. The report focused on four overarching themes: promotion; implementation; collaboration; and ethical, legal and social issues.

Subsequently, WHO launched a program of work that acknowledges the many efforts in the realm of human genomics⁹, and is strategically designed to advocate for investments in the field, promote collaboration, overcome obstacles to implementation, and address inequitable access to genomic services.

Table 1 | The WHO genomics program of work

Topic	Details
Challenges	Poor awareness of the benefits of human genomics for individual and public health
	Lack of alignment and collaboration between human genomic stakeholders
	Limited financial and technological resources, and trained workforce
	Inconsistent equity, ethics and governance frameworks in human genomics
	Limited tools and frameworks to evaluate impact of interventions globally
	Missing guidance to implement human genomics in research and clinical practice
Actions	Communicate benefits and potential of genomics to different audiences
	Advocate for investing in genomics
	Map gaps, opportunities and priorities
	Guide genomic implementation based on good practices and local priorities
	Engage stakeholders across sectors and regions
	Promote a community of practice in genomics
	Support workforce education and training in genomics
	Guide human genome data access, use and sharing
	Guide equitable genomics research and practice
Outcomes	Genomics stakeholders and expertise centers aligned and collaborating to accelerate the implementation of human genomics in research and clinical practice
	Available guidance and technical support to increase human genomic implementation for individual and public health
	Expanded availability of human genomic knowledge, technologies and expertise in research and clinical practice
Impact	Equitable access and use of human genomic knowledge and technologies in research and practice
	Enhanced human genome research and knowledge of the role of genetic variation in health and disease across diverse countries and populations
	Accessible genome-based technologies and interventions for health prevention, promotion, diagnosis and management of diseases in various settings
	Improvement of individual and population health globally

To provide ongoing guidance to the program's actions and to monitor its progress, the WHO Technical Advisory Group on Genomics (TAG-G)¹⁰ was established, consisting of experts from diverse disciplines, practice contexts and regions. Strategic actions prioritized by the WHO TAG-G are expected to advance the utilization of genomic technologies in clinical practice and research, ultimately contributing to the improvement of individual and population health globally (Table 1).

The WHO genomics program advocates for genomics through tailored communication efforts aimed at various audiences, such as governments, decision-makers, funders, the public and other pertinent stakeholders. These endeavors might include explainer videos, posters, leaflets and infographics designed in consultation with the WHO TAG-G to construct a persuasive narrative that highlights the medical, scientific and economic benefits of human genomic applications.

Correspondence

In addition, this communication material seeks to cultivate trust in genomics by determining its potential and outlining key considerations relevant to both individual and public health.

To build evidence of the economic value of adopting human genomic applications into healthcare across regions, several investment scenarios will be developed by WHO with input from the WHO TAG-G, taking into consideration population-specific diseases and genetic diversity, as well as available financial, technological and health systems resources. Depending on context, selected cases might include targeted prenatal or newborn screening for actionable diseases such as thalassemia and other hemoglobinopathies, reproductive or preconception carrier screening for recessive and/or X-linked diseases, testing for inherited cancer risk or pharmacogenomic testing to foster best use of therapeutics and reduce adverse events.

WHO is connecting with other relevant organizations and stakeholders in the field to strengthen collaborative initiatives in human genomics. This will map international and national expertise and ongoing efforts and emphasize alignment to prevent duplication and encourage a synergistic approach. This collaborative approach could encompass joint efforts in convening professionals, developing and implementing training programs, fostering pedagogical research, and advocating for integrating genomic and genetic counselling into the training of undergraduates and graduate health professionals. Progress has been made in genomic education and training, in which WHO is forging connections with initiatives operating in the field.

Another challenge that hinders implementation in many countries is the lack of direct access to materials, services and support from major providers of genomic equipment, reagents and analytical tools, which are primarily situated in high-income regions. Genomic entities in low- and middle-income countries rely on indirect access to these products through local distributors, resulting in higher costs and suboptimal support. To tackle such practical implementation challenges, particularly in the provision of equipment, reagents and computational infrastructure, efforts will be explored to engage with the private sector and execute plans to enhance the equitable accessibility and affordability of genomic technologies and solutions globally.

The program will foster collaboration at all WHO regions and sub-regions, by organizing consultations on human genomics

involving WHO member states, local experts from healthcare and research sectors, and WHO TAG-G members. Consultations will be thoughtfully tailored to regional priorities and respond to the unique needs of each region, being firmly rooted in local expertise. Beyond nurturing collaboration within regions, consultations will serve as a cornerstone for future endeavors.

Efforts are underway to develop WHO principles for human genome data access, use and sharing in consultation with the WHO TAG-G and other experts. These principles aim to establish comprehensive global guidance to promote ethical, legal and equitable use and responsible sharing of genomic data along the data life cycle and among diverse stakeholders, fostering trust, public value, and upholding integrity and stewardship. They are intended to complement local regulations and guidelines and to be relevant across different health and research sectors.

The WHO TAG-G strongly advocates for prioritizing equity and developing an equity roadmap to implement genomic applications for global health. This should include equitable partnerships in research, fostering diversity within the genomic research workforce, ensuring representation across diverse groups in genomic studies, and facilitating the accessibility and appropriateness of genomic applications to all.

Advancing the generation of human genomic knowledge among underrepresented populations and enhancing access to genomic applications for global health requires action at the international, national and local levels. These efforts must align with the unique needs and priorities of each country and region. Without the commitment of local political leaders, advocates and communities, along with financial backing and support from governments, meaningful progress is unlikely. Failure to address disparities in access to human genomic applications will exacerbate health inequalities, leaving the most underserved communities behind. Ultimately, it is through the collective effort of all stakeholders and regions worldwide that the potential of human genomics for global health can be fully harnessed.

Elena Ambrosino 📵 ¹ ⋈,
Ahmad N. Abou Tayoun Ѿ ²,³,
Marc Abramowicz⁴, Bin Alwi Zilfalil⁵,
Tiffany Boughtwood Ѿ ⁶,७, Yosr Hamdi³,
Tim Hubbard ⁰,0, Kazuto Kato Ѿ ¹¹,
Iscia Lopes-Cendes Ѿ ¹²,
Partha Pratim Majumder ¹³,¹⁴,

Deborah Mascalzoni^{15,16}, Rokhaya Ndiaye¹⁷, Michèle Ramsay ¹⁰ ¹⁸, Gabriela M. Repetto¹⁹, Vorasuk Shotelersuk ¹⁰ ²⁰, Sherry Taylor²¹, John C. Reeder ¹ & Anna Laura Ross ¹

¹Science Division, World Health Organization, Geneva, Switzerland, 2Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates. 3Center for Genomic Discovery, Mohammed Bin Rashid University, Dubai Health, Dubai, United Arab Emirates. ⁴Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland. 5Human Genome Centre. School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia. ⁶Australian Genomics, Melbourne, Victoria, Australia. 7Murdoch Children's Research Institute, Melbourne, Victoria, Australia. 8Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, University of Tunis El Manar, Tunis, Tunisia. ⁹ELIXIR, Wellcome Genome Campus, Hinxton, UK. 10 Department of Medical & Molecular Genetics, King's College London, London, UK. 11 Department of Biomedical Ethics and Public Policy, graduate School of Medicine, Osaka University, Suita, Japan. 12 Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil. 13 John C. Martin Center for Liver Research and Innovations. Kolkata, India, 14 Indian Statistical Institute, Kolkata, India. 15 Department of Public Health and Caring Science, Uppsala University, Uppsala, Switzerland, 16 Institute for Biomedicine, Eurac Research, Bolzano, Italy. 17 Division of Human Genetics. Faculty of Medicine. Pharmacy and Odonto-Stomatology, University Cheikh Anta DIOP, Dakar, Senegal. 18 Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. 19 Center for Genetics and Genomics, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile. ²⁰Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. 21 Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada. ⊠e-mail: ambrosinoe@who.int

Published online: 3 September 2024

References

- I. Lander, E. et al. Nature 409, 860-921 (2001).
- Bamshad, M. Am. J. Hum. Genet. 105, 448–455 (2019).

Correspondence

- 3. Chen, S. et al. Nature 625, 92-100 (2024).
- 4. Abou Tayoun, A. Nat. Rev. Genet. 24, 801-802 (2023).
- Abou Tayoun, A. & Alsheikh-Ali, A. Nat. Med. 29, 2979–2980 (2023).
- 6. Fatumo, S. et al. Nat. Med. 28, 243-250 (2022).
- 7. Pereira, L. et al. Nat, Rev, Genet. 22, 284-306 (2021).
- WHO Science Council. https://go.nature.com/3WQ3rM3 (12 July 2022).
- 9. Manolio, T. A. et al. Sci. Transl. Med. 7, 290ps13 (2015).
- 10. WHO. https://go.nature.com/4cz9ESD (accessed 22 April 2024).

Acknowledgements

Work reported in this commentary was supported by the National Institutes of Health (NIH) under award number 5U01Al139547-05. Disclaimer: The authors alone are

responsible for the views expressed in this article and they do not necessarily represent the views, decisions or policies of the institutions with which they are affiliated.

Competing interests

E.A. works as consultant for WHO, and J.C.R. and A.L.R. are employed by WHO. All other authors declare no competing interests.