
Nature Medicine | Volume 31 | February 2025 | 599–608 599

nature medicine

https://doi.org/10.1038/s41591-024-03302-1Article

Collaboration between clinicians and 
vision–language models in radiology report 
generation

Ryutaro Tanno    1,6  , David G. T. Barrett    1,6  , Andrew Sellergren2, 
Sumedh Ghaisas1, Sumanth Dathathri    1, Abigail See    1, Johannes Welbl1, 
Charles Lau    2, Tao Tu    1, Shekoofeh Azizi    1, Karan Singhal    2,4, 
Mike Schaekermann    2, Rhys May1, Roy Lee2, SiWai Man    2, Sara Mahdavi1, 
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Automated radiology report generation has the potential to improve patient 
care and reduce the workload of radiologists. However, the path toward 
real-world adoption has been stymied by the challenge of evaluating the 
clinical quality of artificial intelligence (AI)-generated reports. We build 
a state-of-the-art report generation system for chest radiographs, called 
Flamingo-CXR, and perform an expert evaluation of AI-generated reports 
by engaging a panel of board-certified radiologists. We observe a wide 
distribution of preferences across the panel and across clinical settings, with 
56.1% of Flamingo-CXR intensive care reports evaluated to be preferable or 
equivalent to clinician reports, by half or more of the panel, rising to 77.7% for 
in/outpatient X-rays overall and to 94% for the subset of cases with no pertinent 
abnormal findings. Errors were observed in human-written reports and 
Flamingo-CXR reports, with 24.8% of in/outpatient cases containing clinically 
significant errors in both report types, 22.8% in Flamingo-CXR reports only 
and 14.0% in human reports only. For reports that contain errors we develop an 
assistive setting, a demonstration of clinician–AI collaboration for radiology 
report composition, indicating new possibilities for potential clinical utility.

Radiology plays an integral and increasingly important role in mod-
ern medicine, by informing diagnosis, treatment and management 
of patients through medical imaging. However, the current global 
shortage of radiologists restricts access to expert care and causes 
heavy workloads for radiologists, resulting in undesirable delays and 
errors in clinical decisions1,2. In the past decade, we have witnessed 
the remarkable promise of AI algorithms as assistive technology for 
improving the access, efficiency and quality of radiological care, with 

more than 200 US Food and Drug Administration approved commercial 
products developed by companies based in more than 20 countries3 
and approximately one in every three radiologists in the United States 
already benefiting from AI as part of their clinical workflow4.

The vast majority of these approved AI applications, however, 
focus only on the classification and quantification of very specific 
pathologies5. In practice, clinical radiology is much more than an accu-
mulation of such narrow interpretive tasks, because findings must be 
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beyond automated metrics to a detailed human evaluation of the 
reports generated with a pool of 27 radiologists, including a direct 
comparison of clinicians’ preferences for AI reports versus human 
reports. Furthermore, we evaluate the system in an autonomous as 
well as assistive context. Figure 1 shows an overview of the proposed 
evaluation framework.

Our contributions richly characterize the wide spectrum of agree-
ment and disagreement that exists between clinical experts, among 
themselves and with Flamingo-CXR and where there has been dispar-
ity, we have taken this as an opportunity to develop a collaborative 
assistive setting, with Flamingo-CXR and clinicians working together 
to improve clinical accuracy.

Results
The Flamingo-CXR report generation model is developed by fine-tuning 
the Flamingo vision–language foundation model8 on the task of gener-
ating a radiology report for a chest X-ray (CXR), using training data from 
two large deidentified datasets of CXR images and the corresponding 
radiology reports: (1) the MIMIC-CXR dataset27, which is the largest 
public CXR dataset, acquired from a US emergency department, and 
(2) the IND1 dataset28, obtained from in/outpatient settings across India 
(see Methods and Extended Data Table 1 for further details of model 
training). To measure the quality of reports generated by our model, 
we conduct an expert radiologist evaluation of the generated reports, 
and we also use a set of report generation metrics, including two widely 
used clinical metrics: (1) the CheXpert F1 score and (2) the RadGraph 
F1 score, which measure the similarity between generated reports and 
original reports; we also use a set of widely adopted natural language 
generation (NLG) metrics (see Methods and Extended Data Table 1 for 
further details of model training).

Automated report generation metrics
We find that Flamingo-CXR achieves a CheXpert F1 score of 0.519 and a 
RadGraph F1 score of 0.205 on the MIMIC-CXR dataset (Table 1). Among 
the methods capable of generating both the ‘findings’ and ‘impression’ 
section, Flamingo-CXR has outperformed the current state-of-the-art 
(SoTA) method by a large margin, attaining a 33% improvement rela-
tive to 0.389 as measured by the CheXpert F1 score (R2GenGPT29) and 
a 33% improvement from 0.154 as measured by the RadGraph F1 score 
(CvT-21DistillGPT2 (ref. 13)) (see Methods for further details). For the 
sake of completeness, we also list CheXpert F1 scores and RadGraph F1 
scores for models that only generate the ‘findings’ sections of reports. 
Even though our model is evaluated across a longer portion of text, 
the overall F1 scores are still competitive, with a CheXpert F1 score 
that is 1% greater than the current SoTA method even though this 
was evaluated on the Findings section alone (Med-PaLM-M22, 12B). In 
terms of the NLG metrics (CIDEr, BLEU4 and Rouge), the results are 
mixed; we achieve competitive BLEU4 and Rouge scores while attain-
ing a compromised CIDEr score (Extended Data Table 2). This is also 
consistent with the established observation that NLG metrics do not 
reflect the clinical accuracy of the generated reports18,21,30, for which 
our model, in particular, confers an improvement over the relevant  
previous methods.

Disease classification in comparison with human radiologists
For the IND1 dataset, Fig. 2a shows that the generated reports of our 
model are overall as accurate (in terms of the microaveraged F1 score) 
as one of the two radiologists in describing six clinical conditions in 
chest radiographs (namely, cardiomegaly, pleural effusion, lung opac-
ity, edema, enlarged cardiomediastinum and fracture). For conditions 
that are frequent in the training dataset such as cardiomegaly and 
pleural effusion, we attain comparable or even superior agreement 
with the experts labels (as measured in the Kendall’s tau coefficients) 
with respect to the two held-out radiologists (Fig. 2b). On the other 
hand, for under-represented conditions such as edema and enlarged 

communicated with appropriate nuance, synthesized in a broader 
clinical context and combined with overall impressions and recom-
mendations that are useful for patient care. Radiologist experts use 
natural language to communicate this synthesis of the imaging findings 
alongside their overall impression and recommendations in the form 
of written reports. The recent progress in AI for modeling vision and 
language data simultaneously6–9, coupled with the growing availability 
of digitized multimodal radiology data, has enabled the possibility of 
developing an automatic report generation system that is capable of 
producing a complete free-text description of the medical image10–14. 
Framing report generation as the north star for a useful radiology AI 
system is more closely aligned to current radiologist practice and 
patient care, and allows for a more fine-grained and diverse descrip-
tion of the relevant findings that can be tailored to the needs of a given 
clinical scenario, including aspects such as location, size and severity, 
ambiguity, relation to clinical context of specific pathologies or their 
impact on onward care and more15.

Despite the increasing number of publications on AI-based report 
generation and its potential in improving the radiology workflow, 
automated report generation has not yet been widely adopted in 
real practice5. Several unmet needs represent key barriers to auto-
mated reporting achieving real-world impact. One notable obsta-
cle is the difficulty of meaningfully evaluating the clinical quality of 
generated reports. The high degree of freedom in free-form reports 
introduces a wide range of possible errors to measure and classify. 
Exacerbating this, the desirable contents of a report differ between 
clinical settings (for example, an emergency setting versus a medi-
cal check-up), geographic regions16 and preferred approaches to 
standardization17. Previous works have approached this challenge by 
proposing automated metrics for evaluating the clinical quality of 
generated reports18–21 but many limitations remain. First, there has 
been a paucity of comprehensive evaluation of automated reports 
against reports produced by human experts (certified radiologists), 
which are known themselves to have variable style and quality. Despite 
impressive progress in automated metrics for report quality, only 
one study22 has directly assessed whether AI-generated reports were 
considered preferable to those by human experts, whereas others23 
have evaluated their utility in practice in a specific clinical setting 
only. Furthermore, the reasons given for preference choices have 
not been explored sufficiently. Second, previous work has only eval-
uated AI-generated reports as stand-alone artifacts, meaning the 
utility of these systems as assistive tools remains unknown. Evalua-
tion in clinician–AI collaboration scenarios is arguably more realis-
tic, given that most AI tools approved for clinical decision-making 
have been developed for an assistive rather than autonomous role in  
care delivery24,25.

In addition to the above evaluation challenges, there remains 
considerable headroom for improvement in the clinical accuracy 
of existing AI report generation models21. Recent breakthroughs in 
multimodal foundation models9,21 have demonstrated that AI systems 
trained on a vast quantity of unlabeled data can be adapted and achieve 
state-of-the-art accuracy in a wide range of downstream specialized 
tasks, including biomedical problems26. However, most existing report 
generation models10–13 are built from scratch, neglecting the likely use-
ful transfer of knowledge from such pretrained models. By leveraging 
advances accrued through large-scale pretraining of vision–language 
models and tailoring them to a specific medical task, there is an oppor-
tunity to build an even more powerful report generation system.

In this work, we directly address these key unmet needs for AI 
report generation. We present Flamingo-CXR, a system for AI report 
generation predicated on a recent vision–language foundation model 
that achieves state-of-art performance in multiple automated metrics8. 
We evaluate Flamingo-CXR on historic, deidentified datasets across a 
diversity of clinical and geographic settings—both intensive care in 
the United States and in/outpatient care delivery in India—and move 
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cardiomediastinum with extremely low prevalence rates (0.19% and 
0.15%, respectively), the agreement scores of our model are lower than 
the two radiologists. The receiver operating characteristic (ROC) curves 
for the individual conditions (Extended Data Fig. 2) exhibit patterns 
consistent with such variation in the accuracy across conditions of 
different prevalence (see Methods for further details).

Expert evaluation of AI-generated and human-written reports
To achieve a more fine-grained and realistic assessment of the clinical 
quality of radiology reports generated by our model, we conduct an 
expert evaluation for reports in both the MIMIC-CXR and IND1 datasets. 
We recruit a group of 11 radiologists in the United States and 16 in India 
with board certification to perform two complementary evaluation 

a    Comparison with human experts 

b    Clinician + AI collaboration
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[     ]  Report 1 
[     ]  Report 2 
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Fig. 1 | Schematic overview of our human evaluation framework. a, To 
compare radiology reports generated by our AI model with reports written by 
human experts, we devise two evaluation schemes: (1) a pairwise preference test 
in which a certified expert is given two reports without knowing the source of the 
report (one report from our model and the original report from a radiologist) and 
they are asked to choose which report should be ‘used downstream for the care 
of this patient’; and (2) an error correction task in which a single report (either 
AI-generated or the original one) is evaluated carefully and edited if required. 
The expert is also asked to give the reason for each correction and to indicate 

whether the error is clinically significant or not. b, We measure the utility of the 
AI-based report generation system in an assistive scenario in which the AI model 
first generates a report and the human expert revises as needed. For this task, 
we repeat the same pairwise preference test as before but this time the expert is 
asked to compare an AI-generated report corrected with human edits against a 
report written by human alone. We perform this evaluation on two datasets, one 
acquired in outpatient care delivery in India and another from intensive care in 
the United States. Board-certified radiologists are recruited in both countries to 
study the regional inter-rater variation.

Table 1 | Comparison of automatic report generation metrics on the MIMIC-CXR dataset

Model Sections Clinical metrics

CheXpert F1 (all) CheXpert F1 (top 5) Radiograph F1

CXR-RePaiR11 Findings only 0.281 – 0.091

M2 Transformer12 Findings only – 0.567 0.220

RGRG39 Findings only 0.447 0.547 –

Med-PaLM-M22, 12B Findings only 0.514 0.565 0.252

R2Gen10 Findings + Impressions 0.228 0.346 0.134

WCT14 Findings + Impressions 0.294 – 0.143

CvT-21DistillGPT2 (ref. 13) Findings + Impressions 0.384 – 0.154

BioVil-T15 Findings + Impressions 0.317 – –

R2GenGPT29 Findings + Impressions 0.389 – –

Flamingo-CXR (Ours) Findings + Impressions 0.519 0.580 0.205

The clinical metrics for models that generate the ‘Findings’ sections (top) and the ‘Findings’ and ‘Impressions’ sections (bottom) for MIMIC-CXR radiographs are listed. Flamingo-CXR is trained 
to generate both ‘Findings’ and ‘Impressions’, and we observe that it outperforms the current SoTA method by 33%, when compared with other models that also generate ‘Findings’ and 
‘Impressions’ sections. CheXpert F1 (all) denotes the microaveraged F1 score across all 14 categories of findings, whereas CheXpert F1 (top 5) shows the same metric but over the most prevalent 
five categories from the MIMIC-CXR dataset (atelectasis, cardiomegaly, edema, consolidation and pleural effusion). All metrics are reported on the preprocessed test set (n = 1,931). For all 
metrics, the higher the better, and the best results are shown in bold. An extended version of this table with NLG metrics is provided in Extended Data Table 2.
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tasks, namely (1) a pairwise preference test and (2) an error correction 
task (Fig. 1a and Extended Data Fig. 1; see Methods for further details).

Pairwise preference test. In this evaluation task, radiologists are pro-
vided with (1) a frontal view of a CXR image, (2) a radiology report gener-
ated by our AI system and (3) the original report written by a radiologist. 
They are asked to describe their preference from three options: report 
A, report B or equivalence between the two (that is, ‘neither is better 
than the other’). Furthermore, they are asked to provide a justification 
for their preference, in free-form text, to better understand strengths 
and limitations of both reports (Extended Data Fig. 1a).

Across both datasets, generated reports from Flamingo-CXR were 
often considered preferable or equivalent to the ground truth (GT) 
report (Fig. 3 and Extended Data Fig. 3). For instance, in 77.7% of IND1 
cases (and 56.1% of MIMIC-CXR cases), Flamingo-CXR reports were 
rated as equivalent or preferred relative to the original clinician report 
by at least half of the radiologists in our panel (Fig. 3a). Furthermore, in 
94% of normal IND1 cases, Flamingo-CXR reports were rated as equiva-
lent or preferred relative to the original clinician report by at least half 
of the radiologists in our panel (Fig. 3c). For this normal in/outpatient 
setting, more raters gave an equivalence rating rather than a prefer-
ence rating for Flamingo-CXR reports (Extended Data Fig. 3), which 
is expected, given that normal in/outpatient reports have a relatively 
stereotypical structure that makes it difficult to discern differences 
between high-quality reports. In other settings, the majority of raters 
indicate a preference for Flamingo-CXR reports ahead of equivalence 
with original reports. Although these are strong results, it is clear 
that MIMIC-CXR reports are more challenging to model, which is not 
entirely surprising given that the MIMIC-CXR training dataset size is 
smaller and also contains a greater diversity of reports compared with 
the in/outpatient IND1 setting. To better understand the inter-rater 
diversity, we grouped all of our preference results according to the 
level of agreement between raters, from unanimity and majority to 
minority. This analysis reveals substantial disagreement among raters, 
who only reach unanimity (for Flamingo reports or GT reports) in 

their preferences in 27.4% of MIMIC-CXR cases and 44% of IND1 cases. 
Across rater locations (India and the United States), the distribution 
of inter-rater variability is reasonably consistent (Fig. 3b). The strong-
est agreement is observed for normal IND1 cases, where 76% of cases 
reach agreement (with only 1% agreement for GT reports). By reporting 
progressive degrees of agreement and disagreement, our results can be 
interpreted relative to the desiderata of specific application scenarios, 
which may require greater or lesser degrees of agreement.

Last, in Fig. 3d, we provide a comparison of representative exam-
ples of AI-generated and human-written reports with varying degrees 
of inter-rater preference agreement. We also share the corresponding 
preference reasons from the respective raters. The top example shows 
a case for which the Flamingo-CXR report was preferred or rated as 
equivalent to the original clinician’s report by all four radiologists on 
the panel. In this example, the raters explained that the Flamingo-CXR 
report correctly ruled out the ‘retrocardiac opacity’ originally noted, 
and also expressed caution against potential over-diagnosing in the 
original report of ‘left lower lobe pneumonia/aspiration’, recommend-
ing a repeat radiograph if clinically warranted (which is consistent with 
the conditional request for a repeat radiograph in the Flamingo-CXR 
report). We also give an example of a report in which all four radiolo-
gists prefer the clinician report and another where the panel is split 
50:50.

Error correction. In the error correction evaluation, the expert raters 
are provided with (1) the CXR image (a frontal view), and (2) a radiol-
ogy report for this image, consisting of the findings and impression 
sections. Their task is to assess the accuracy of the given radiology 
report by identifying errors in the report and providing suggested 
replacements (Extended Data Fig. 1b).

Our results show that a non-negligible percentage (>10%) of 
the GT reports contain clinically significant disagreements for both 
MIMIC-CXR and IND1 datasets (upper row in Fig. 4a). The frequency of 
disagreement is also considerably different between the two locations 
of raters; Fig. 4b shows that the US-based radiologists disagree with the 
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Fig. 2 | Comparison of detection accuracy with expert labels on the IND1 
dataset. a, The ROC curve of the Flamingo-CXR report generation model with 
stochastic generation method (Nucleus) and corresponding area under the curve 
(AUC), shown along with the sensitivity and 1 − specificity pairs for two certified 
radiologists. The operating point of our model with the default deterministic 
inference scheme (Beam 3) is also shown. Details of the two inference algorithms 
are available in the Methods. The curve and the metrics are microaveraged 
across six conditions (cardiomegaly, pleural effusion, lung opacity, edema, 
enlarged cardiomediastinum and fracture) for which the labels were collected 
(n = 7,995 is the total number of IND1 test set reports). The GT labels are defined 
as the majority vote among the 5 labels obtained from the pool of 18 certified 

radiologists. Error bars represent 95% confidence intervals (calculated using 
bootstrapping with 1,000 repetitions). b, Kendall’s tau coefficients with respect 
to the expert labels are shown for the two held-out radiologists as well as for two 
inference schemes of our Flamingo-CXR model. We use the ‘soft’ labels derived 
by averaging over the available annotations instead of the majority vote labels 
as the target for computing the metric. On the vertical axis, the prevalence rates 
(PRs) of the respective conditions in the training set and their sample size in the 
test set are also shown. The target labels are the probabilities over the presence 
of the respective conditions calculated by averaging the binary condition labels 
from the expert pool.
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GT reports more often than the India-based radiologists. Last, we also 
observe from Fig. 4c that the GT reports for abnormal cases contain 
errors more often than the normal cases, likely caused by the higher 
variability and complexity of report contents.

The relative frequency of errors between the AI system and the 
human experts varies across the two datasets. Figure 4a (lower row) 
shows that, for the IND1 dataset, the model makes fewer errors (0.31) 
on average than the human experts (0.39), although the frequency of 
clinically significant errors is marginally higher (0.23 versus 0.20). 

By contrast, for the MIMIC-CXR dataset, more (clinically significant) 
disagreements on average were reported in the AI-generated reports 
than in the original reports with a larger gap from 0.49 (0.28) to 0.27 
(0.14) in terms of the average number of errors per report. Further 
decomposing this comparison into the distinct locations of raters in 
Fig. 4b reveals that the above patterns are largely preserved between 
the radiologists in the United States and those in India, but there remain 
a couple of noteworthy differences. The US-based raters reported con-
siderably more disagreements on average than the India-based raters 
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Preferences for Flamingo-CXR reports relative to original clinician reports. 
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Clinician preferences for Flamingo-CXR reports depending on the location of 
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that there are two reviews from each location cohort, so in this case, unanimity 
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four radiologists unanimously preferred the AI report or the clinician’s report, 
whereas for the remaining one, the preferences were divided equally. AP, 
anterior–posterior; CABG, coronary artery bypass graft; IJ, internal jugular; PA-C, 
physician assistant - certified; SVC, superior vena cava.

http://www.nature.com/naturemedicine


Nature Medicine | Volume 31 | February 2025 | 599–608 604

Article https://doi.org/10.1038/s41591-024-03302-1

across the board, particularly with more pronounced differences for 
IND1 dataset (acquired in India). It is known that there is a wide variety 
of radiology reporting styles, ranging from semi-structured free-form 
reports (for example, the MIMIC-CXR reports) through to a more 
structured style (for example, the IND1 reports) and these stylistic 
differences reflect the preferences of the clinicians who write those 
reports, the stylistic preferences taught by their radiology trainers 
along with their hospital and regional guidelines16,17. These regional 
variations in reporting style are likely to account in part for observed 
regional variation in rater preferences. We also highlight that the raters 
in two locations are incongruent on the relative frequency of clinically 
significant errors for the IND1 dataset; the India-based raters flagged 
fewer errors in AI-generated reports than in the GT reports, whereas 
the reverse trend was observed for the US-based raters. Finally, Fig. 4c 
compares the amount of disagreement between the abnormal and 

the normal cases. For the abnormal cases of IND1, marginally more 
clinically significant errors were reported in the human-written GT 
reports than in the AI-generated reports on average and vice versa for 
the MIMIC-CXR dataset.

To compare the distributions of error types across datasets, 
we explore the disagreement reasons for the edits made in reports 
(Extended Data Figs. 4a and 5). For both the model-generated reports 
and the original ones, the most dominant category of errors across the 
two datasets is the ‘incorrect finding’ category. The ‘incorrect finding’ 
category is less specific than the other two categories (‘incorrect sever-
ity’ and ‘incorrect location’). For the abnormal cases in the MIMIC-CXR 
dataset, statements with incorrect severity are much more common 
than those with incorrect locations in the original reports, whereas 
both are comparably frequent in the AI-generated reports. For the 
AI-generated reports (or human-written GT), 0.32 (0.14) errors on 
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average correspond to incorrect findings, 0.11 (0.03) are due to incor-
rect location of the finding and 0.09 (0.08) to incorrect severity. For the 
IND1 abnormal cases, however, the second most common error type is 
related to incorrect severity for both the GTs and AI reports. Overall, 
errors due to incorrect location of findings in the report (for example, 
opacity in left versus right lung) are more prevalent for the MIMIC-CXR 
abnormal cases than for the abnormal cases in IND1.

Lastly, in Extended Data Fig. 4b we show the differences and inter-
section of cases with errors between the original reports and the 
ones generated by our model. It is worth noting that for this analysis 
we consider (clinically) significant errors to be present in a case if at 
least one of the four raters identified an error in the corresponding 
report. Large proportions of the clinically significant errors are nono-
verlapping (72.7% for MIMIC-CXR and 59.7% for IND1 of total cases 
with at least one clinically significant error, respectively), suggesting 
frequent inconsistency in detected issues between the AI-generated 
reports and the original ones. Notably, in 27.3% and 22.7% of such 
cases in the MIMIC-CXR and IND1 datasets, clinically significant errors 
were identified only in the human reports, but not in the correspond-
ing AI-generated reports. Some examples are provided in Extended 
Data Table 3 illustrating the nuanced nature of these differences. 
By contrast, there are also a considerable number of instances in 
which the AI-generated reports contain clinically significant errors, 
but the original reports do not. Examples of such instances are pro-
vided in Extended Data Table 4; some of these errors pertain to the 
limited spatial reasoning and counting capabilities of visual–lan-
guage models. The presence of such disparities suggests that there 
may be potential complementarity between the AI system and the 
human experts in composing accurate radiology reports, which moti-
vates us to investigate the utility of CXR-Flamingo in a clinician–AI  
collaboration setting.

Clinician–AI collaboration
In this section we explore collaboration between clinicians and 
Flamingo-CXR. For this collaboration, Flamingo-CXR produces a first 
draft report, and then a radiologist edits the report if necessary, by 
replacing sentences from the first draft with alternative sentences or 
by adding additional sentences to the report (Fig. 1b). The radiologists 
can make as many changes to the first draft report as they wish. We use 
the replacement sentences collected from the error correction task to 
produce these collaborative reports. To evaluate the quality of these 
clinician–AI reports, we ask our expert raters to indicate their prefer-
ence for clinician–AI reports relative to the corresponding original 
clinician reports (Methods).

In Fig. 5d, we see an example of a clinician–AI report, in which a 
radiologist decided to replace sentences in the AI report that men-
tioned ‘pneumothorax’ with new sentences that mention hydropneu-
mothorax instead. All four radiologists in our panel indicated that 
the clinician–AI report was preferable (or equivalent) to the original 
MIMIC-CXR clinician report, because the clinician–AI report was ‘more 
succinct’ and ‘covey’s the clinical findings better’ [sic] and because 
of the statements concerning ‘Right side pleural effusion and hydro-
pneumothorax’. By contrast, for the AI report without edits, all four 
radiologists indicated a preference for the original clinician report 
because there was ‘no residual pneumothorax’ and because of the 
‘More accurate lung findings’.

For 53.6% of the MIMIC-CXR cases, we find that clinician–AI reports 
were rated as equivalent or preferred relative to the original clini-
cian report, by at least half of the radiologists in our panel (Fig. 5a). In 
comparison, for reports generated by Flamingo-CXR alone without 
collaboration, 44.4% of reports were rated as equivalent or preferred 
relative to the original clinician report, by at least half or more of the 
radiologists in our panel. We observe similar findings for IND1, where 
the reports from the clinician–AI collaboration were rated as prefer-
able or equivalent by half or more of the radiologists in 71.2% of cases,  

in comparison with 51.2% for reports generated by Flamingo-CXR alone. 
We also observe variation in the preference results between normal 
and abnormal reports, and between different cohorts of collaborat-
ing clinicians, most likely reflecting variations in stylistic preferences 
across regions (Fig. 5b and Extended Data Fig. 6).

Discussion
In this work, we present Flamingo-CXR, a state-of-the-art AI radiology 
report generation system for chest radiographs built by specializing 
a recent vision–language foundation model8 on this challenging task. 
Our model achieves competitive performance in multiple automated 
metrics in two clinical contexts and geographical locations, namely 
intensive care in the United States and in/outpatient care delivery in 
India. To gauge the clinical quality and potential real-world utility of 
our report generation system we perform the most comprehensive 
expert evaluation of AI-generated reports published to date, and com-
pare these with human-written GT reports with a group of certified 
radiologists. This evaluation is performed both in an autonomous 
and an assistive AI context. In addition, nuanced feedback from cli-
nicians provides insight into disparities and defines areas for future  
enhancement.

Previous work has repeatedly reported the shortcomings of auto-
mated ‘natural language generation’ metrics for assessing reports of 
radiology images21. However, the majority of published works on the 
development of AI systems for this task, including recent approaches 
with acclaimed state-of-the-art performance, solely report automated 
metrics, while the direct proximity to expert accuracy and potential 
clinical utility remains unknown. Only a handful of previous works 
have attempted to evaluate AI systems with human experts. We go 
further in this work, in our fine-grained exploration of diversity and 
granularity of expert radiologist evaluations. For example, a similar 
evaluation schema for the same US dataset (MIMIC-CXR) was previ-
ously explored22, but assumed that the GT report is correct, without 
evaluating the inter-rater variability inherent in chest radiograph inter-
pretation31. In another recent study, AI-generated reports for in-house 
emergency chest radiographs were compared against experts, reveal-
ing that the quality, on average, was only marginally inferior to that 
of on-site radiologists and surpassed that of teleradiology reports23. 
However, both studies only evaluated the AI report generation model 
as a stand-alone system on a dataset acquired in an emergency depart-
ment in the United States, whereas our study considers a more diverse 
setup that encompasses both autonomous and assistive scenarios for 
datasets from intensive care in the United States as well as in/outpatient 
care delivery in India, using evaluations from two distinct groups of 
clinicians, working in India and in the United States. Furthermore, 
our study enriches this evaluation by collecting granular information 
on error types (for example, distinction between incorrect findings, 
location and severity), and provides fine-grained insights into how 
the AI system differs from human experts, which was absent in the 
previous works.

Human evaluation results shed more light on the aspects of our 
model’s report quality that might inform and enable applications of the 
technology in future clinical workflows. Notably, for the normal IND1 
cases, the raters unanimously viewed the AI-generated reports to be at 
least equivalent to the human reports in 75% of the cases. This strong 
performance on normal cases suggests potential clinical applicability 
in using the report generation model in the subset of such in/outpatient 
cases (for instance, taken alongside previous works that show AI sys-
tems to have strong accuracy in predicting whether CXRs are normal or 
abnormal28), allowing radiologist attention to be allocated to patients 
with abnormalities. However, we notice there is considerable room for 
improvement for MIMIC-CXR whose original reports are in general 
more detailed and less templated than IND1.

This inter-dataset discrepancy in report quality highlights the 
importance of evaluation in different clinical contexts and geographic 
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regions, which was previously not considered. The desired contents 
of a report are ultimately contingent on the given clinical context, 
and assuming access to large quantities of training data from every 
plausible scenario is not realistic. Future work will consider reinforc-
ing our system with the capability to follow user instructions28,32 so the 
users can control the outputs more flexibly through natural language 
and the capability to learn efficiently from a small quantity of data 
through techniques such as in-context learning33 or parameter-efficient 
optimization32.

The complexity in evaluating the quality of radiology reports is 
underscored by the observed high inter-rater variability, as evidenced 
by: (1) identified (clinically significant) errors in the GT reports as 
part of the error correction task, and (2) the variability in both human 
evaluation tasks in terms of preferences and disagreements with report 
statements. For instance, there is unanimous agreement among our 
panel of raters in only 27.4% of MIMIC-CXR cases and 44% IND1 cases, 
respectively. This indicates the importance of our approach to obtain-
ing multiple readings per case, unlike previous works that have only 
evaluated each case once22.

In-depth analysis shows that both human and AI systems can make 
errors in different ways, hinting at potential complementary proper-
ties between the two. Manual inspection unveils some examples in 
which nuanced clinical errors were detected in the human reports, but 
not in the corresponding AI-generated reports and vice versa (Meth-
ods and Extended Data Tables 3 and 4). Finally, another difference 

between clinicians and our AI system is the input information at dis-
posal when writing the reports. Integrating such extra information 
into our AI system will likely enhance the reporting accuracy15 but 
requires further study.

Moving beyond the autonomous setting, this work evaluates CXR 
report generation in an assistive setting. Our results indicate that 
AI-generated reports with expert revisions were reported to be pref-
erable or equivalent to original clinician reports in 71.2% of INDI cases 
in comparison with 51.2% of cases without expert revisions, and simi-
larly, in 53.6% of MIMIC-CXR cases in comparison with 44.4% of cases 
without expert revisions, according to half or more of our raters. Our 
proof-of-concept evaluation exhibits the initial promise of AI report 
generation as an assistive system that augments the report writing 
process of radiologists.

These results are not without limitations. We have demonstrated 
the ability of Flamingo-CXR to generalize to previously unseen 
X-ray images from an intensive care setting (given by the standard 
MIMIC-CXR test set) and to an in/outpatient setting in India (given 
by the IND1 test set), but for other clinical settings that involve dif-
ferent types of data, such as CXRs with lateral views or other non-
frontal views, CXRs from multiple time points and CXRs containing 
out-of-distribution conditions that do not appear in the training data, 
we expect that additional training data will be required for further 
fine-tuning our model. We also observe that the AI reports with human 
edits do not reach perfect preference or equivalence compared with 

19.5 28.4 23.3 21.4 7.4

20.015.8 15.3 29.3 19.5

No. of reports = 349            * = changes with statistical significance

7.7 18.1 27.8 30.4 16.0

4.9 17.2 22.3 24.9 30.7

* **

* ** ***

***

a    Autonomous versus assistive

d    Example 

b    Rater locations

No. of reports = 215            * = changes with statistical significance

IN
D

1

Lo
ca

tio
n

Ty
pe

Ty
pe

Lo
ca

tio
n

M
IM

IC
-C

XR

AI
versus

Clinician
+       Clinician + AI

versus
Clinician

AI
versus

Clinician
+       Clinician + AI

versus
Clinician

0 25 50 75 100

0 25 50 75 100

c    Report type

Distribution of inter-rater agreement (%)  

0 25 50 75 100

0 25 50 75 100

Distribution of inter-rater agreement (%)  

Distribution of inter-rater agreement (%)  

United
States

India
No. of reports = 51

Clinician report  AI report  No. of votes for   Reasons

Reasons

FINDINGS:
Single frontal image of the chest was
obtained. Again seen is a partially 
collapsed right lung with increased 
density at the inferior border of the lung, 
consistent with pleural e�usion versus 
pleural thickening. Below the inferior 
border of the right lung is again seen a
hydropneumothorax with an air-fluid 
level. There again appear to be some 
small opacities within the partially 
collapsed right lung. The left lung is seen
again to be clear. Cardiomediastinal 
silhouette is unchanged.

IMPRESSION: Unchanged chest 
radiograph from previous imaging.  

FINDINGS: There has been interval removal of a
right-sided chest tube with a small apical pneumothorax
identified. There is a large right-sided pleural e�usion
with associated atelectasis. The left lung is clear.
The size of the cardiomediastinal silhouette is within
normal limits. IMPRESSION: Interval removal of a
right-sided chest tube with a small apical pneumothorax
identified.

- No residual pneumothorax.
- More accurate lung findings.
- [Report] B correctly located 

pneuotharax and gives changes
to last crx in report.

- Report B is more elaborate 
  covering all the aspects of 
  the study.

- Right side pleural e�usion and
hydropneumothorax.

- Report A covey's the clinical findings
  better than report B.
- Report A is more succinct.
- Report A is more succinct, and 
  describes the same findings.

0/4

4/4

Right lower lobe hydropneumothorax. There is 
a large right-sided pleural e�usion with associated
atelectasis. The left lung is clear. The size of the
cardiomediastinal silhouette is within normal limits.
Right lower lobe hydropneumothorax status post
removal of right chest tube.

  No. of raters who prefer 
AI report or are neutral

0

1

2

3

4

Clinician + AI report         +  No. of votes for      +  

25.8 41.9 25.8 6.5

22.818.5 26.1 23.9 8.7

0 25 50 75 100

0 25 50 75 100

30.48.7 21.7

7.7 17.8 27.6

8.7

30.4

30.4

16.6

No. of reports = 184

No. of reports = 31

No. of reports = 326

No. of reports = 23

Normal

Abnormal

Normal

Abnormal

United
States

India

21.3 28.7 25.6

15.7

18.3 6.1

13.7 27.5 31.4 11.8

30.8 31.3 8.19.1 20.7

6.0 14.6 23.8 29.1 26.5

No. of reports = 164

No. of reports = 151

No. of reports = 198

MIMIC-CXR (Clinician + AI     +      versus Clinician    )

MIMIC-CXR (Clinician + AI     +      versus Clinician    )

IND1 (Clinician + AI     +      versus Clinician    )

IND1 (Clinician + AI     +      versus Clinician    )

Fig. 5 | Results of pairwise preference test for clinician–AI collaboration. a, 
Preferences for reports produced from the clinician–AI collaboration relative to 
the original clinicians’ reports are shown here. The corresponding preference 
scores for reports produced by Flamingo-CXR without human collaboration are 
also given. Reports are grouped by the level of agreement between reviewers, 
and in all cases, we show results for the subset of reports that required editing 
during the error correction task. Data for all panels are presented as mean values 
and error bars show 95% confidence intervals for the cumulative preference 
scores. Significant differences (P < 0.05) between clinician–AI results and AI-only 
results calculated using a one-sided chi-squared test are indicated by an asterisk 
(with MIMIC-CXR P values given by *P = 1.3 × 10−2, **P = 5.7 × 10−4, ***P = 3.2 × 10−9; 

and IND1 P values given by *P = 1.2 × 10−7, **P = 4.4 × 10−9, ***P = 7.7 × 10−6). b, 
Preferences for reports produced from a collaboration between Flamingo-CXR 
and radiologists from our US-based cohort and separately, from our India-based 
cohort. c, Preferences for normal reports and separately, for abnormal reports. d, 
An example of a pairwise preference test for a clinician–AI report and an AI report, 
relative to the original clinician’s MIMIC-CXR report. All four radiologists initially 
indicated a preference for the original clinician’s report to the AI report. Another 
radiologist revised two sentences in the AI report (indicated in red), resulting in a 
complete flip in preference in which all four radiologists unanimously expressed 
the superiority (or equivalence) of the clinician–AI report.
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the original reports. There are several possible reasons for this. First, 
there is a baseline level of inter-rater variability both in the prefer-
ence decision and the error correction process. Second, the location 
of the clinician making edits in the assistive setting has an impact on 
the preference decisions. This may reflect a difference in stylistic 
preferences across regions. We also observed some variability in the 
quality of edits (a whole sentence replaced with a single word; for 
example, ‘cardiomegaly’), which render the resultant reports quite 
unnatural despite being clinically correct. Third, it is possible that a 
clinician working in collaboration with AI may produce a report that is 
less accurate than a clinician working alone. Indeed, this is a common 
phenomenon observed in multiple lines of work in CXR classification 
tasks, where collaboration often result in less accurate predictions3. 
Clinician–AI collaboration typically becomes unhelpful when the 
experts overly rely on the AI predictions34,35 or are unduly critical of 
them36. Development of strategies for identifying when to provide 
AI-generated reports is likely to be helpful for maximizing the ben-
efits of AI assistance37. Fourth, although it is plausible that revising an 
AI-generated report may require less time than composing a report 
from scratch, this work does not assess this explicitly and it is beyond 
the scope of the current work. Quantifying the time-saving aspect, 
however, warrants another carefully designed human study focused 
on measuring the reporting time of human experts, which commonly 
varies between individuals and is influenced by a plethora of factors 
such as the clinical context, reporting style, expertise and complexity 
of cases. Finally, clinician–AI collaborations can take more complex 
forms than our design and ideally should ultimately be bidirectional 
and interactive, much like an experienced colleague that answers the 
radiologist’s questions and provides high-quality feedback on their 
reports (for example, flagging potential errors and missing findings). 
Although we have witnessed initial signs of such possibilities in the 
recent work on interactive, multimodal medical AI26,33,38, there remains 
a considerable amount of progress to be made toward building a clini-
cally useful writing assistant for radiology.

Overall, our observation of a positive effect from clinician–AI 
teamwork is very encouraging, especially given the limitations outlined 
above, the possibilities for future developments and the clinical rel-
evance of this setting, where most AI tools that are approved for clinical 
decision-making are deployed in an assistive rather than autonomous 
setting24,25. Furthermore, our observation of strong baseline preference 
ratings for Flamingo-CXR reports without clinician assistance, espe-
cially for normal in/outpatient reports, is intriguing, and may already 
raise the possibility for potential clinical applicability. Finally, by mov-
ing beyond automatic evaluation metrics, by engaging expert clinicians 
for evaluations and error correction, across a diversity of regions, 
clinical settings and data types, we have been able to richly character-
ize the wide spectrum of agreement and disagreement that exists 
between clinical experts, among themselves and with Flamingo-CXR, 
and where there has been prevailing disparity, we have embraced this as 
an opportunity for collaboration between Flamingo-CXR and clinicians 
working together in an assistive setting. Although there are immedi-
ate possibilities for enhancements and applications, Flamingo-CXR is 
intended as an experimental research-only model, and not as a tool for 
clinical deployment. However, we hope that this work will encourage 
and support the wider research community to further explore the full 
nuance, complexity and variability of the socio-technical landscape 
induced by the application of visual–language models in radiology 
report generation and beyond.
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Methods
Ethical approval
The use of deidentified retrospective datasets was reviewed by Advarra 
IRB (Columbia, MD), which determined that it was exempt from further 
review under 45 CFR 46. The involvement of clinicians in this study, 
using the same deidentified retrospective data is also covered in this 
waiver.

Model
Our report generation model is built by fine-tuning a state-of-the-art 
vision–language foundation model, Flamingo8, which has attained 
impressive performance on data-efficient adaptation to new 
tasks. We fine-tune this model on the radiology report generation 
task, with an effective combination of regularization and adapta-
tion techniques. Flamingo has a flexible transformer-based mul-
timodal sequence-to-sequence architecture that can learn to 
integrate a mixture of medical images and reports with no model  
modifications.

Task
Our model is trained to generate both the ‘findings’ and ‘impression’ 
sections of the report for a frontal view (anterior–posterior or pos-
terior–anterior) of the chest radiograph, which typically captures 
all the relevant observations the radiologist makes in a study. The 
model is not provided with additional projections, such as lateral 
views or prior views, other clinical history data or indication data. 
Flamingo-CXR only had access to the current radiograph at a lower 
resolution of 1 megapixel (in contrast with the original resolution 
of approximately 4 megapixels), whereas the original radiologists 
additionally had access to contextual information, patient history 
and previous scans. In the clinical setting, additional data, such as 
lateral views and prior views are often required, and we expect that 
fine-tuning our model with this data would enhance the capabilities 
of our model. However, recent studies do not use this additional data, 
so in our task formulation, we have also adopted this convention, 
which allows us to make a fair comparison with previously published  
benchmarks10,15,29,40.

Architecture. Flamingo is a general-purpose family of transformer- 
based visual–language models that take visual data as input (for exam-
ple, images), interleaved with text and produce free-form text as out-
put. The key architectural components are (1) the language model that 
operates on the input text and generates the output text, (2) the vision 
encoder that maps visual data into the same representation space as 
text input and (3) the connective module that integrates both modali-
ties. The combination of the perceiver resampler41 and cross-attention 
layers in this connective component offer an expressive way for the 
language model to incorporate visual information for the next-token 
prediction task. There are multiple versions of Flamingo at different 
scales, and our report generation model, Flamingo-CXR is built using 
a parsimonious 400 million parameter version. Flamingo models the 
likelihood of the radiology report y conditioned on the input image x 
in an auto-regressive fashion:

p( y|x) =
L
∏
ℓ=1

p( yℓ| y<ℓ, x≤ℓ),

where yℓ is the ℓ-th language token of the input report, y<ℓ is the set of 
preceding tokens and p is parameterized by the model.

Optimization. We take a version of Flamingo, pretrained on a large 
set of interleaved text-image data, and fine-tune it on the specific task 
of radiology report generation by minimizing a weighted sum of the 
expected negative log-likelihoods of report given the chest radiograph 
over both MIMIC-CXR (United States) and IND1 (India) datasets:

λUS𝔼𝔼(x,y)∼𝒟𝒟US [−
L
∑
ℓ=1

w(x, y) logp( yℓ| y<ℓ, x≤ℓ)]

+λIndia𝔼𝔼(x,y)∼𝒟𝒟India [−
L
∑
ℓ=1

w(x, y) logp( yℓ| y<ℓ, x≤ℓ)] ,

where 𝒟𝒟US and 𝒟𝒟India denote the MIMIC-CXR and IND1 datasets respec-
tively, λUS and λIndia are the data-specific coefficients that are tuned to 
maximize the benefits of jointly training on both datasets, and lastly 
w (x, y) is a reweighting function that changes the amount of penalty 
depending on whether the example (x, y) contains any thoracic abnor-
malities. Specifically, we use importance weighting here41 and define 
w (x, y) to output the inverse of the proportion of healthy cases in the 
corresponding dataset (if the given example is normal) or otherwise 
that of abnormal cases. This ensures that the model is equally penalized 
to compose inaccurate reports across the healthy and the abnormal 
cases; this is particularly important for the IND1 dataset in which the 
healthy cases account for more than 90% of the training data. We set 
the weighting coefficients λUS = 1.0 and λIndia = 0.5.

To further enhance the reporting accuracy on abnormal cases, we 
augment the above training objective with an auxiliary classification 
loss for abnormality classification. To this end, we applied a published 
labeling software, CheXpert42 to extract the presence of multiple tho-
racic conditions from the training reports, derived binary abnormality 
labels (1 if any of the conditions is present or else 0), and used them to 
compute this auxiliary classification loss. We found the addition of this 
abnormality classification task to be helpful in improving the sensitivity 
of the generated reports across these conditions.

We optimize parameters using AdamW43 with initial learning rate 
of 10−3 and β = [0.9, 0.999] with batch size of 16 examples and we train 
for 150,000 steps. The above hyper-parameters are selected based on 
the overall microaveraged F1 score for detection of CheXpert conditions 
on the validation set. The best checkpoint was selected based on the 
overall CIDEr-d score on the validation set. We freeze the language 
component and only update the parameters in the vision encoder and 
the connective component (perceiver resampler and cross-attention 
layers) because our initial experiments showed updating the language 
part resulted in overfitting and fine-tuning the rest of the architecture 
was important for adapting to the unfamiliar medical domain not 
represented in the pretraining datasets.

Inference. Once Flamingo is trained, we use it to generate the radiology 
reports on the test chest radiographs with two decoding strategies: 
beam search with the width size set to 3 and nucleus sampling44 with 
P = 0.9. We used the former deterministic decoding method by default, 
and the generated reports are used in calculating of reported NLG and 
clinical metrics in Table 1 and Extended Data Table 2 as well as in the 
subsequent expert evaluation. However, we also used the latter stochas-
tic decoding method when we needed to generate multiple reports. 
For example, to plot the ROC curves in Fig. 2 and Extended Data Fig. 2 
for measuring the disease classification accuracy of reports, we used 
the nucleus sampling to generate 250 candidate reports, derived the 
condition labels from each with the CheXpert labeler and aggregated 
them to compute the per-condition probability.

Datasets and preprocessing
We developed and evaluated our automatic report generation model 
using two large deidentified datasets of CXR images and corresponding 
radiology reports from the United States and India. Chest radiography 
offers a valuable testbed for automatic report generation systems 
because it is the most widely used thoracic imaging modality in the 
world28. Even for such a specific domain, the contents of radiology 
reports differ widely between geographic regions and clinical con-
texts. To account for these variations, we used the combination of the 
MIMIC-CXR dataset27, acquired in the emergency department of the 
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Beth Israel Deaconess Medical Center in the United States, and another 
private research dataset of a similar scale, which we refer to as IND1  
(ref. 28), obtained from a large hospital group in India. These datasets 
do not contain sex or gender information.

IND1. This is a deidentified dataset45 of 263,021 frontal chest radio-
graphs (digital and scanned) with reports obtained from five regional 
centers across a large hospital group in India (Bangalore, Bhubane-
swar, Chennai, Hyderabad and New Delhi) between November 2010 
and January 2018. We use the same training, validation and test split 
as in previous studies28. Thus, a total of 250,066 samples are used for 
training, 4,960 samples for validation and 7,995 samples for testing of 
Flamingo-CXR. Furthermore, a small subset of 2,306 cases are anno-
tated with varying numbers of binary labels (0, absent; 1, present) for 
six thoracic conditions (cardiomegaly, pleural effusion, lung opacity, 
edema, enlarged cardiomediastinum and fracture) obtained from a 
pool of 18 certified radiologists in the United States. The agreement 
labels are derived by calculating the majority vote, and used as the 
reference labels for evaluation of report quality in classification accu-
racy (for example, ROC curves in Extended Data Fig. 2 and F1 scores in 
Extended Data Table 2).

MIMIC-CXR. As the largest public dataset to date, MIMIC-CXR27 con-
tains 377,110 images and 227,835 reports. In our experiments, we use 
the official split provided by the dataset resulting in 222,758 training 
examples, 1,808 validation examples and 3,269 test examples. For the 
reports, we remove redundant whitespaces (line breaks and so on). We 
only use frontal view scans (anterior–posterior and posterior–anterior 
views) and discard samples where only lateral views are provided. We 
only keep the FINDINGS and IMPRESSION sections of reports and 
filter out cases that do not contain an IMPRESSION section, following 
previous studies15.

Lastly, more than 50% of the examples in MIMIC-CXR contain previ-
ous scans15 and the corresponding reports often describe findings in 
reference to these measurements (see the highlighted sentence in the 
left column of Extended Data Table 1 for an example). Consequently, 
as also reported in recent work46, naively training on the entirety of 
the MIMIC-CXR data leads to a model that generates reports with hal-
lucinated references to nonexistent previous reports (see the right 
column; note that the model only has access to the current radiograph). 
To ameliorate this issue, we remove all the training examples with refer-
ences to previous studies (see the middle column for an example of the 
improved prediction as a result). However, we still report the evaluation 
metrics on all the test examples for a fair comparison with the previous 
studies. The combination of all the above preprocessing and filtering 
steps result in 90,968 training, 688 validation and 1,931 test examples.

Image processing. All images in both datasets are resized to 320 × 320 
while preserving the original aspect ratio, padded if needed, and nor-
malized to zero mean and unit standard deviation. Color jitter and 
resize/crop transformations are applied as data-augmentation during 
the training of Flamingo-CXR.

Icons in Figs. 1, 3, 4 and 5 and Extended Data Figs. 4 and 6 were 
sourced from Font Awesome (https://fontawesome.com) under the 
CC BY 4.0 License (https://creativecommons.org/licenses/by/4.0/).

Automated report generation metrics
We report performance on established automated metrics to facilitate 
comparison with previous studies, using two different categories of 
metrics. The first category are the NLG metrics that include the CIDEr 
score47, BLEU score48 and Rouge-L47,49, which are widely used measures 
of report quality. However, multiple studies18,30,50,51 have recently high-
lighted the inadequacy of these NLG metrics for assessing factual cor-
rectness and consistency, key properties for determining the clinical 
utility and quality of radiology reports.

We also compute another category of metrics that are specifi-
cally designed to measure the accuracy of descriptions for relevant 
clinical findings, and we refer to them as clinical metrics. Specifically, 
following previous work10,12,15,18, we report the microaverage F1 score 
across 14 distinct categories related to thoracic diseases and support 
devices (atelectasis, cardiomegaly, consolidation, edema, enlarged 
cardiomediastinum, fracture, lung lesion, lung opacity, no finding, 
pleural effusion, pleural other, pneumonia, pneumothorax and sup-
port devices). To ensure a fair comparison with previous publications 
on the MIMIC-CXR dataset, we use the CheXpert labeling software42, 
to extract from the reports the binary labels that indicate the presence 
of these radiological findings. We refer to this metric as CheXpert F1. 
For the IND1 dataset, published results on classification performance 
are unavailable, so we use labels for these findings that were collected 
in a separate study45 from a group of 18 board-certified radiologists 
(American Board of Radiology) in the United States, and we use the 
corresponding consensus labels as GTs. In this way, we aim to mitigate 
the known inaccuracy of the CheXpert labeler software and have a test 
set with a more reliable metric of clinical factual correctness. Finally, 
to align with more recent studies21,22, we also report the RadGraph 
score19,20, which not only accounts for the presence of these findings but 
also accounts for the relationships between them and other image fea-
tures (for example, anatomical locations). All these results are reported 
on held-out test data that was not used to train or tune the model.

Disease classification in comparison with human radiologists
In Fig. 2 and Extended Data Fig. 2, the GT labels are derived from the 
majority votes of five annotations per example acquired by a separate 
group of 18 experts and, thus, should provide more reliable labels than 
the ones extracted from the CheXpert labeler42 (which was used for the 
MIMIC-CXR dataset). To generate the binary labels from the generated 
reports from Flamingo-CXR, the CheXpert labeler is used as before.

Expert evaluation of AI-generated and human-written reports
An accumulation of evidence has shown that automatic report genera-
tion metrics fail to appropriately evaluate many nuanced issues in radi-
ology reports21. Here we describe how we evaluate AI-generated reports 
by conducting radiologist evaluation tasks. To document human errors 
in report writing and to characterize differences in quality with our AI 
system, we also evaluate the original reports (that we have treated as 
GTs) by obtaining additional readings from different radiologists than 
the ones who provided the original reports.

Annotators. We recruited a group of 16 radiologists in India and 11  
radiologists in the United States with board certifications (Diplomate of 
National Board and American Board of Radiology, respectively). All raters 
performed the required Collaborative Institutional Training Initiative 
(CITI) training before performing the evaluation tasks on the MIMIC-CXR 
dataset. None of the raters were coauthors of this work and the raters 
were not given any information about the origin of the reports, including 
the possibility that the reports may be generated by an AI model. We ask 
four radiologists to evaluate each report, two from the US cohort and two 
from the India cohort. This allows us to represent inter-rater preference 
variability and regional preference variability. We highlight that radiolo-
gists that provided annotations for the first phase of error correction or 
preference test tasks were excluded from the human–AI collaboration 
evaluation to avoid annotation bias. Before the large-scale evaluation, we 
validated the labeling interface with an expert to ensure that instructions 
were clear and opt-out options were available where essential.

Sample selection. We randomly select a fixed number of normal and 
abnormal cases from the IND1 and MIMIC-CXR datasets. To ensure 
good coverage of different abnormalities the set of abnormal cases 
reviewed by radiologists was larger than the one for normal cases. In 
total, 606 cases were evaluated by expert radiologists in the two tasks: 
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34 normal and 272 abnormal cases from the MIMIC-CXR dataset, and 
100 normal and 200 abnormal cases from the IND1 dataset. We ensure 
coverage of multiple abnormal cases for both datasets, because we 
found classification quality to vary significantly across conditions. It 
is also worth noting that the same set of cases was annotated in both 
the error correction and pairwise preference tasks. For the MIMIC-CXR 
dataset, we include cases annotated in the human evaluation of the 
previous work22 that survived the filtering stage described below.

Annotation interface. We use an internal platform for data collection 
to perform our expert evaluation. Extended Data Fig. 1 illustrates the 
labeling interfaces used by our raters to perform the pairwise prefer-
ence and error correction tasks. The annotators were provided with the 
following descriptions of the respective tasks along with screenshots 
of examples:

	(1)	 Instructions for Pairwise Preference Task 
You are provided with:

•	 The CXR image
•	 Two radiology reports for this image, each consisting of the 

findings and impression sections.

Your task is to help us assess the relative usefulness of the radiol-
ogy reports. An example with detailed instructions is shown in 
Extended Data Fig. 1a.

	(2)	 Instructions for Error Correction Task 
You are provided with:

•	 The CXR image
•	 A radiology report for this image, consisting of the findings 

and impression sections.

Your task is to help us assess the accuracy of the radiology report in 
detail. You will be asked if there is any part of the report that you do 
not agree with and, if so, you will then be asked to (a) select the pas-
sage that they disagree with, (b) select the reason for disagreement 
(‘finding I do not agree with is present’; ‘incorrect location of find-
ing’; ‘incorrect severity of finding’), (c) specify whether the error is 
clinically significant or not, and (d) provide a replacement for the 
selected passage. An error should be labeled as clinically significant 
if it is potentially harmful and could change treatment/outcome 
for a patient. An example is shown in Extended Data Fig. 1b.

In addition, we addressed their questions on an as-needed basis 
through emails.

All data were stored in the Digital Imaging and Communications 
in Medicine (DICOM) format and deidentified before transfer to the 
external radiologists for annotation. Experts were asked to confirm 
whether the image provided to them for each task was of sufficient 
quality for them to complete the task. In three MIMIC-CXR cases, one of 
the four raters nominated not to complete the task. In those instances, 
the entire case was discarded. After these exclusions, the MIMIC-CXR 
evaluation set consisted of 32 normal cases and 271 abnormal cases, 
with abnormal conditions occurring at the following frequencies (in 
parentheses): lung opacity (132), cardiomegaly (123), support devices 
(134), pleural effusion (100), atelectasis (95), edema (75), enlarged car-
diomediastinum (68), pneumonia (46), consolidation (25), lung lesion 
(17), pneumothorax (13), fracture (10), pleural other (8), with many 
abnormal cases containing more than one condition. Evaluators were 
given full resolution X-ray images but were not given Indication data 
or clinical history data, or any other data about the possible origin of 
a report, consistent with the model task formulation in our study and 
with previous studies10,15,29,40.

Pairwise preference test. Clinicians were then asked, ‘If you had to 
choose one of these two reports to go into the Picture Archiving and 
Communication System (PACS) system and be used downstream for 

the care of this patient, which would be best for the patient?’. For each 
case, the raters are unaware of which report is the original and they are 
not aware that one of the reports was generated by our AI system. We 
note that the assignment of the original and the generated reports to 
option A and B is completely random for each case.

Error correction. Before each annotation task, clinicians are asked 
whether the presented image is of sufficient quality for them to com-
plete the task. They are then asked whether there is any part of the 
report that they do not agree with and, if so, are asked to (1) select the 
passage that they disagree with, (2) select the reason for disagreement 
(‘finding I do not agree with is present’; ‘incorrect location of finding’; 
‘incorrect severity of finding’), (3) specify whether the error is clini-
cally significant or not, and (4) provide a replacement for the selected 
passage. We instruct the raters beforehand that a clinically significant 
error is one that is potentially harmful or influences the downstream 
clinical decision (for example, treatment) for the patient. We note 
that the raters evaluate both the GT reports written by an expert and 
the ones generated by our model, but without the knowledge of their 
sources. As the raters performing this task are different from the ones 
that wrote the original reports, this would also allow us to measure the 
degree of human errors in report writing. Importantly, our evaluation 
differs from the previous work22 where the original report was addition-
ally provided as a reference and, hence, was assumed to be accurate.

Clinician–AI collaboration. We use the pairwise preference interface 
described above and we ensure that the clinician that produces a clini-
cian–AI report is excluded from the group that performs the prefer-
ence test for that report. We exclude reports where the raters did not 
provide replacement sentences as instructed in the error correction 
task (seven MIMIC-CXR instances and four IND1 instances). We evalu-
ate expert preferences for the IND1 and MIMIC-CXR datasets, and for 
each report, we collect preferences from four radiologists (two from 
our India cohort and two from our US cohort). Identical to the previous 
setup, the raters do not know which report corresponds to the original 
GT and which was initially generated by the AI model. In all these cases, 
we report rater preferences for reports that were subject to editing by 
clinicians, so that comparisons shed light on the effect of clinician–AI 
collaboration.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
‘MIMIC-CXR’27, one of the real-world datasets used in the development 
of Flamingo-CXR is accessible by researchers and can be downloaded 
from https://physionet.org/content/mimic-cxr upon completion of the 
required training. IND1, the other deidentified chest X-ray dataset used 
in this study cannot be made publicly available because the authors 
do not have the rights to do so. Interested researchers should contact 
info@apollohospitals.com to inquire about access to the IND1 dataset; 
requests will be subject to Apollo’s consideration and applicable ethical 
and legal requirements. The radiologist ratings and generated reports 
are not publicly available because these are inextricably linked to the 
IND1 dataset and MIMIC-CXR dataset as described in the Methods. 
Further inquiries about our benchmarking procedures and data analy-
sis may be addressed to the corresponding authors with a maximum 
response time of two weeks.

Code availability
For reproducibility, we have documented the technical details of the 
implementation while keeping the paper accessible to a clinical and 
general scientific audience. Several major components of our work 
are available in open source repositories, such as the Haiku library  

http://www.nature.com/naturemedicine
https://physionet.org/content/mimic-cxr


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03302-1

(https://github.com/google-deepmind/dm-haiku). Our work builds 
upon Flamingo, for which implementational details have been 
described extensively in the corresponding publication8 and an open 
source implementation of the base model; for instance, the Open-
Flamingo project available at https://github.com/mlfoundations/
open_flamingo. Other components used in our work cannot be shared 
publicly because of their proprietary nature.
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a. Labelling interface for pairwise preference test 

b. Labelling interface for error correction

Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Labelling interface. (a) In the labelling interface for the 
pairwise preference test, raters are provided with (i) a frontal view (PA or AP) 
in the original resolution, (ii) a radiology report generated by our AI system 
and (iii) the original report written by a radiologist, and are asked to provide 
their preference. For each case, the raters are unaware of which report is the 
ground-truth and which one is generated by our model, and are requested to 
describe their preference out of three options; report A, report B, or equivalence 
between the two (that is, ‘neither is better than the other’). The interface allows 
the raters to zoom in and out on the image as needed. They are additionally asked 
to provide an explanation for their choice. (b) In the labelling interface for the 
error correction task, raters are provided with (i) the chest X-ray image (a frontal 

view) and (ii) a radiology report for this image, consisting of the findings and 
impression sections. Their task is to assess the accuracy of the given radiology 
report by identifying errors in the report and correcting them. Before each 
annotation task, clinicians are asked whether the presented image is of sufficient 
quality for them to complete the task. They are then asked whether there is any 
part of the report that they do not agree with and, if so, are asked to (a) select the 
passage that they disagree with, (b) select the reason for disagreement (finding 
I do not agree with is present; incorrect location of finding; incorrect severity 
of finding), (c) specify whether the error is clinically significant or not, and (d) 
provide a replacement for the selected passage.
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Extended Data Fig. 2 | Detection accuracy per condition on the IND1 dataset. 
The receiver operating characteristic (ROC) curve of the Flamingo-CXR report 
generation model, shown along with the true positive rate (TPR) and false 
positive rate (FPR) pairs for two certified radiologists are shown for 6 conditions 

for which the expert labels were collected. The operating point of our model with 
the default inference scheme (Beam 3) is also shown. Error bars represent 95% 
confidence intervals (calculated using bootstrapping with 1000 repetitions).
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Extended Data Fig. 3 | Subgroup analysis of preferences for MIMIC-CXR and 
IND1. Here the expert preference data presented in Fig. 3 is analysed further, with 
preferences shown separately for Flamingo-CXR reports, ground truth reports 
and neutral preference between reports, for (a) MIMIC-CXR reports and (b) IND1 

reports. As before, reports are grouped according to the level of agreement 
between reviewers who rate Flamingo-CXR reports as equivalent or better than 
ground truth reports. Preferences are further grouped into normal and abnormal 
subsets.
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Extended Data Fig. 4 | Types of errors found in the original reports and 
the AI-generated reports. (a) During the error correction evaluation, we ask 
expert raters to explain the identified issues in reports based on the following 
taxonomy: (i) incorrect findings, (ii) incorrect severity (for example, mild vs. 
severe pulmonary edema), (iii) incorrect location of finding (for example, left- vs. 
right-sided pleural effusion). The figure shows the distributions of these error 
types for the normal and abnormal cases separately in the IND1 and MIMIC-CXR 
datasets. Data is presented as mean values and 95% confidence intervals across 

cases are also shown. In total, there are 34 normal and 272 abnormal cases from 
the MIMIC-CXR dataset, and 100 normal and 200 abnormal cases from the IND1 
dataset. (b) Venn diagrams of error counts for reports that contain at least one 
error, for the MIMIC-CXR dataset and the IND1 dataset. The intersection between 
the blue and the green segments indicates the number of cases where both the 
AI-generated report and the ground truth contained errors. The red segment 
indicates the cases where at least one clinically significant error is detected.
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Extended Data Fig. 5 | Average number of clinically significant errors and 
percentage of reports with at least one error reported by experts in human-
written and AI-generated reports across conditions for the MIMIC-CXR and 
IND1 datasets. (a) For MIMIC-CXR, the average number of clinically significant 
errors in reports that are capturing cases with pheumothorax is almost double 
the number of those with edema, but for most other conditions the occurrence of 
errors does not vary significantly. It is worth noting that the condition labels for 
MIMIC-CXR cases are obtained using CheXpert52 on the original human-written 
reports. Additionally, if more than one condition is associated with a particular 

chest X-ray image (which is often the case), the clinically significant errors on 
the corresponding reports are reported for all of these conditions. (b) For IND1, 
we do not observe striking differences across conditions in terms of clinically 
significant errors reported in the AI-generated reports, even though there are 
more errors on average reported for cases with pleural effusion than those with 
cardiomegaly. Interestingly, no errors are reported in cases with fracture, so 
we omit this condition from the figure. These findings indicate that condition 
prevalence in the training data does not necessarily affect report quality.
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Extended Data Fig. 6 | Clinician-AI collaboration and clinically significant 
errors. Subgroup analysis of the data presented in Fig. 5 illustrates that (a) 
clinician-AI collaboration produced an improvement in ratings for the subgroup 
of AI reports that had clinically significant errors (with MIMIC-CXR p values 
given by p* = 2.6x10−3, p** = 1.5x10−7, p*** = 2.9x10−8 and with IND1 p values given 
by p* = 6.3x10−7, p** = 4.0x10−8 p*** = 1.3x10−5), whereas (b), there was little or 
no improvement for the subgroup of AI reports that did not have clinically 
significant errors (with MIMIC-CXR p values given by p* = 1.2x10−2, p** = 1.2x10−2 

and with IND1 p values given by p* = 3.2x10−2). As before, significant differences 
(p < 0.05) between clinician-AI results and AI-only results calculated using 
a one-sided Chi-squared are indicated by asterisks. This suggests that the 
positive impact of clinician-AI collaboration is largely attributable to edits in AI 
reports that had clinically significant errors. Data for all panels is presented as 
mean values and error bars show 95% confidence intervals for the cumulative 
preference scores.
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Extended Data Table 1 | Examples of reports that contain references to prior measurements both in the original clinician 
reports and in the predicted reports from Flamingo-CXR trained with/without pre-processing

The descriptions that mention prior data are highlighted.
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Extended Data Table 2 | Automated report generation metrics

(a) Comparison of automatic report generation metrics on the MIMIC-CXR dataset. The column ‘Sections’ indicates which sections of the radiology reports are generated by the respective 
models; ‘F’ indicates FINDINGS and ̀ I` indicates IMPRESSIONS sections. Note that the metrics are retrieved from the corresponding publications. For all metrics, the higher (the bluer) the 
better, and the best results are shown in bold. (b) Automated report generation metrics on the IND1 dataset. We note that there are no published report generation metrics due to the private 
nature of the dataset. The disease classification accuracy (F1 scores) are also computed for two radiologists.
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Extended Data Table 3 | Examples of cases with clinically significant errors found in the ground truth radiology report, but 
not in the predicted Flamingo-CXR report

Clinically significant errors in the ground truth radiology report are highlighted in red. Information that was identified to be missing in the ground truth report but is represented in the 
Flamingo-CXR report is highlighted in green.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03302-1

Extended Data Table 4 | Examples of cases with clinically significant errors found in the Flamingo-CXR report, but not in the 
original ground-truth report

Clinically significant errors in the Flamingo-CXR report are highlighted in red. Information that was identified to be missing in the Flamingo-CXR report but is represented in the ground truth 
radiologist report is highlighted in green.

http://www.nature.com/naturemedicine
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