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Large floods drive changes in cause-specific 
mortality in the United States

Victoria D. Lynch    1  , Jonathan A. Sullivan    2, Aaron B. Flores    3, 
Xicheng Xie4, Sarika Aggarwal    5, Rachel C. Nethery5, 
Marianthi-Anna Kioumourtzoglou1, Anne E. Nigra    1 & Robbie M. Parks    1

Flooding greatly endangers public health and is an urgent concern as rapid 
population growth in flood-prone regions and more extreme weather events 
will increase the number of people at risk. However, an exhaustive analysis 
of mortality following floods has not been conducted. Here we used 35.6 
million complete death records over 18 years (2001–2018) from the National 
Center for Health Statistics in the United States, highly resolved flood 
exposure data and a Bayesian conditional quasi-Poisson model to estimate 
the association of flooding with monthly county-level death rates for 
cancers, cardiovascular diseases, infectious and parasitic diseases, injuries, 
neuropsychiatric conditions and respiratory diseases up to 3 months after 
the flood. During the month of flooding, very severe heavy rain-related 
floods were associated with increased infectious disease (3.2%; 95% credible 
interval (CrI): 0.1%, 6.2%) and cardiovascular disease (2.1%; 95% CrI: 1.3%, 
3.0%) death rates and tropical cyclone-related floods were associated with 
increased injury death rates (15.3%; 95% CrI: 12.4%, 18.1%). During the month 
of very severe tropical cyclone-related flooding, increases in injury death 
rate were higher for those ≥65 years old (24.9; 95% CrI: 20.0%, 29.8%) than for 
those aged <65 years (10.2%; 95% CrI: 6.6%, 13.8%) and for females (21.2%; 95% 
CrI: 16.3%, 26.1%) than for males (12.6%; 95% CrI: 9.1%,16.1%). Effective public 
health responses are critical now and with projected increased flood severity 
driven by climate change.

Flooding, the inundation of water onto typically dry land, is an urgent 
global health concern1,2. The number of people living in flood-prone 
areas has increased by 58–86 million worldwide between 2000 and 
2015 (ref. 3), and human settlements in areas with the highest flood risk 
have grown by 121% since 1985 (ref. 4). Climate change will likely lead to 
more frequent river, coastal and flash floods globally, compounding 
population-driven risk1. In the United States, population growth alone 
is projected to result in an estimated 72% increase in the population 
exposed to floods annually by 2050, before accounting for the effect 

of climate change on flooding5. Flooding has been associated with 
increased rates of injuries6, cardiovascular diseases7, infectious dis-
eases8 and mental health conditions9. However, most previous work has 
focused on specific flooding case studies related to tropical cyclones10,11, 
floods over a short period of time12 or on fatalities attributed to acute 
flash floods13,14. Although tropical cyclones are an important driver of 
increased flood risk, atmospheric warming, the intensification of the 
global water cycle and sea-level rise will also lead to more catastrophic 
floods independent of tropical cyclones15. Identifying health outcomes 
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cyclone, snowmelt and ice jam or dam break) and severity (mild, mod-
erate, severe and very severe); further, we examined the association 
of flood exposure with cause-specific mortality by age group and sex.

Results
Deaths
There were 35,613,398 deaths from the 6 causes of death in counties that 
experienced floods during 2001–2018, representing 86.2% of all deaths 
in these counties (Fig. 1). Total deaths in these counties represented 
77.8% of all deaths nationally during the study period. Cardiovascular 
diseases were the leading cause of death (n = 13,709,850), followed by 
cancers (n = 9,587,570) and neuropsychiatric conditions (n = 4,390,885) 
(Supplementary Table 1). Seasonality in death rates varied among the 
causes of death; death rates were greatest for cardiovascular disease, 
neuropsychiatric conditions and respiratory disease from December 
to March (peaking in January), whereas cancer and infectious disease 
mortality was relatively consistent throughout the year. Injury deaths 
were more common among younger males (≤54 years old; 43.5% of all 
injury deaths) for whom death rates peaked between June and August. 
During 2001–2018, long-term trends in death rates also differed among 
the causes of death; age-standardized death rates increased by 87.0% for 
neuropsychiatric conditions and by 12.0% for injuries but substantially 
decreased for cardiovascular diseases (−34.8%), cancers (−25.9%) and 
respiratory diseases (−16.0%) (Extended Data Fig. 1).

Flood events
There were 93 large flood events, each typically affecting multiple coun-
ties (Supplementary Table 2), which occurred throughout 2,711 counties 
during 2001–2018 (Fig. 2). The median number of floods per county was 
7 (mean: 7.4, range: 1–28). Of the 93 flood events, the majority (61; 65.6% 
of all floods) were due to heavy rain (Supplementary Table 3). These 
floods occurred throughout the United States—particularly evident in 
Appalachia and along the Mississippi River-Ohio River junction—and 
throughout the year (Extended Data Fig. 2). Tropical cyclone-related 
flooding was the second-most common flood cause (18; 19.4% of all 

associated with distinct flood causes is critical for effective disaster 
and public health preparedness as development patterns and climate 
change amplify flood risk16.

Floods can affect health through direct and indirect pathways 
that may function at different time scales leading to both acute and 
delayed health effects17,18. A storm surge, for example, can cause acute 
direct effects, including drownings and injuries2,19, whereas standing 
floodwater that contaminates drinking water sources or facilitates 
mold growth can lead to delayed direct effects on infectious disease and 
respiratory outcomes20,21. Rapid displacement can drive acute indirect 
effects including traffic accidents, stress-induced cardiovascular events, 
and infectious disease transmission related to overcrowding17,18. Disrup-
tions to critical infrastructure, meanwhile, can lead to delayed indirect 
effects when people are unable to meet basic needs including access to 
healthcare, food, and shelter19,22. Most flood-related health outcomes are 
not restricted to a single exposure pathway or timeline; cardiovascular 
events, for example, can be triggered by direct exposure to storm surges 
or occur after periods of chronic disaster-related stress11,17.

Flood cause and severity likely affect the association between 
exposure and specific health outcomes. Mild or moderate floods, for 
example, may have a negligible effect on mortality; in some cases, gen-
eral flood exposure has been associated with decreased overall mortal-
ity23. Among snowmelt-related floods, however, even moderate events 
have longer average durations compared to other flood causes24,25 and 
may have an effect on health comparable to more severe floods.

Characterizing exposure to floods at a spatial scale appropriate 
for mortality analyses is a central challenge for studying flood-related 
health effects as it can be difficult to determine the magnitude and 
timing of flood events. Here, we address this gap using a validated flood 
exposure dataset3 to comprehensively examine the association of large 
floods with death rates for six major causes of death (cancers, cardio-
vascular disease, infectious and parasitic diseases, injuries, neuropsy-
chiatric conditions and respiratory diseases) over an 18-year period 
(2001–2018) at the county level across the United States. We evaluated 
whether these associations differed by flood cause (heavy rain, tropical 
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Fig. 1 | Total deaths by cause of death, sex and age group in the United States during 2001–2018. All deaths in counties that experienced at least one flood event 
(n = 2,711 counties) during the study period.
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Fig. 2 | Total count of flood events per county by flood causes during 2001–2018. a, Heavy rain flood events (n = 61). b, Tropical cyclone flood events (n = 18).  
c, Snowmelt flood events (n = 9). d, Ice jam or dam break flood events (n = 5).
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Fig. 3 | Percentage change in all-cause death rates. Percentage change in all-cause death (n = 35,613,398) rates per flood event by flood cause, flood severity and lag 
time. Lag time is measured in months after flood event. Dots show the mean point estimates, and error bars represent 95% CrI.
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floods) and primarily occurred along the Gulf and southeastern Atlantic 
Coasts during the Atlantic hurricane season ( June 1 to November 30)26. 
Snowmelt-related (9; 9.7% of all floods) and ice jam or dam break-related 
floods (5; 5.3% of all floods) were concentrated in Upper Midwest and 
Mountain West counties during the late winter and early spring.

Specific flood causes and all-cause death rates
Very severe heavy rain-related floods were associated with increased 
all-cause death rates during the flood month (1.5%; 95% credible interval 
(CrI): 1.0%, 2.0%) in addition to 2 months (1.0%; 95% CrI: 0.4%, 1.3%) and 3 
months (0.6%; 95% CrI: 0.2%, 1.0%) after the flood (Fig. 3). All other flood 
severity types, however, were associated with decreased death rates 
during the flood month. Moderate (1.0%; 95% CrI: 0.4%, 1.2%) and severe 
(0.4%; 95% CrI: 0.0%, 0.8%) heavy rain-related floods were associated with 
delayed increases in all-cause death rates 1 and 2 months after the flood, 
respectively. Severe (−1.6%; 95% CrI: −3.0%, 0.0%) and very severe (−1.3%; 
95% CrI: −2.6%, 0.0%) ice jam or dam break-related floods were associated 
with slight decreases in all-cause death rates during the flood month 
but with slightly increased death rates 2 and 3 months after the flood.

Snowmelt-related floods of all severity levels were associated with 
increased all-cause death rates, with mild floods exhibiting the strong-
est association (8.9%; 95% CrI: 7.6%, 10.1%). Tropical cyclone-related 
floods were associated with decreased death rates for mild (−2.5%; 95% 
CrI: −3.4%, −1.5%), moderate (−1.9%; 95% CrI: −2.8%, −1.0%) and severe 
(−2.0%; 95% CrI: −2.8%, −1.1%) events during the flood month. Death 
rates increased, however, 1 month after moderate flooding events (1.1%; 
95% CrI: 0.7%, 1.6%) and 2 months after very severe flooding events 
(1.0%; 95% CrI: 0.5%, 1.4%).

Heavy rain-related floods and cause-specific death rates
Very severe heavy rain-related floods were associated with increased 
death rates for infectious and parasitic diseases (3.2%; 95% CrI:0.1%, 

6.2%) and cardiovascular diseases (2.1%; 95% CrI: 1.3%, 3.0%) during 
the flood month and, for infectious diseases (4.7%; 95% CrI: 2.4%, 7.1%) 
and injuries (2.6%; 95% CrI: 1.0%, 4.2%), 1 month after flooding events 
(Fig. 4). The association of heavy rain-related floods with respiratory 
disease death rates varied by flood severity. Death rates increased  
2 months after the event for severe floods (1.9%; 95% CrI: 0.7%, 3.1%) but 
decreased during the flood month for mild (−2.5%; 95% CrI: −4.1%, −1.0%) 
and moderate floods (−2.1%; 95% CrI: −3.7%, −1.0%). Mild and moderate 
heavy rain-related floods were also associated with decreased death 
rates for neuropsychiatric conditions (−2.1%; 95% CrI: −3.7%, −1.0%) 
and infectious diseases (−6.3%; 95% CrI: −9.3%, −3.2%), respectively, 
during the flood month. Cancer death rates showed some evidence 
of increase 2 (0.8%; 95% CrI: 0.0%, 1.6%) and 3 months (1.1%; 95% CrI: 
0.0%, 1.9%) after very severe heavy rain-related flooding, though all 
associations were close to null.

Ice jam or dam break-related floods and cause-specific death 
rates
Very severe ice jam or dam break-related floods were associated with 
decreased death rates during the flood month for infectious and para-
sitic diseases (−11.0%; 95% CrI: −17.6%, −4.3%), respiratory diseases 
(−8.3%; 95% CrI: −11.9%, −4.7%) and neuropsychiatric conditions (−5.6%; 
95% CrI: −9.0%, −2.1%) (Fig. 4). In the month after very severe floods, 
death rates increased for infectious diseases (4.4%; 95% CrI: 1.9%, 6.9%) 
and injuries (3.0%; 95% CrI: 1.4%, 4.7%). Severe ice jam or dam break 
floods were also associated with decreased infectious disease (−9.7%; 
95% CrI: −17.7%, −1.6%) and injury (−7.7; 95% CrI: −13.2%, −2.2%) death 
rates during the flood month.

Snowmelt-related floods and cause-specific death rates
Death rates increased during snowmelt-related flood months for all 
causes of death except cancer (Fig. 4). Mild floods were associated 
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Fig. 4 | Percentage change in cause of death-specific death rates. Percentage change in death (n = 35,613,398) rates per flood event by flood cause, flood severity, 
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with the largest death rate increases for respiratory diseases (22.3%; 
95% CrI: 19.0%, 25.5%), neuropsychiatric conditions (15.9%; 95% CrI: 
12.5%, 19.3%) and cardiovascular diseases (8.9%; 95% CrI: 6.9%, 11.0%), 
though rates increased for all flood severity levels for these causes of 
death. Increases in death rates for infectious and parasitic diseases 
(12.3%; 95% CrI: 6.4%, 18.3%) and injuries (6.1%; 95% CrI: 2.0%, 10.2%) 
were largest for moderate snowmelt-related floods.

Tropical cyclone-related floods and cause-specific death rates
Tropical cyclone-related floods were associated with increased injury 
death rates during the flood month for severe (4.7%; 95% CrI:1.8%, 7.6%) 
and very severe (15.3%; 95% CrI:12.4%, 18.1%) floods (Fig. 4). For very 
severe floods, injury death rates remained elevated 1 month after tropi-
cal cyclone events (3.2%; 95% CrI: 1.5%, 4.9%). Infectious and parasitic 
disease death rates also increased 1 month after very severe floods 
(4.8%; 95% CrI: 2.3%, 7.3%), with only a marginally significant associa-
tion during the actual flood month (3.7%; 95% CrI: −0.9%, 8.4%). The 
most delayed association was with respiratory disease death rates, 
which increased 2 months after severe floods (1.8%; 95% CrI: 0.5%, 
3.0%). Mild tropical cyclone-related floods, conversely, were associ-
ated with decreased death rates for cardiovascular diseases (−2.7%; 
95% CrI: −4.3%, −1.1%) and neuropsychiatric conditions (−5.3%; 95% 
CrI: −7.9%, −2.8%) during the flood month.

Floods and cause-specific death rates by sex
During very severe flood months, increases in tropical cyclone-related 
injury death rates were higher for females (21.2%; 95% CrI:16.3%, 26.1%) 
than for males (12.6%; 95% CrI: 9.1%, 16.1%) (Fig. 5). Infectious and para-
sitic disease death rates increased for males (8.4%; 95% CrI: 4.9%, 11.8%) 
but not for females (1.2%; 95% CrI: −2.4%, 4.9%) 1 month after heavy 
rain-related flooding events; this disparity was consistent across all 

flood causes. Neuropsychiatric death rates decreased for females dur-
ing months with tropical cyclone-related floods (−3.1%; 95% CrI: −6.3%, 
0.0%) but not for males (1.9%; 95% CrI: −2.0%, 5.6%), though credible 
intervals overlapped.

Floods and cause-specific death rates by age group
Increases in injury death rates during very severe tropical 
cyclone-related floods months were higher for those aged ≥65 years old 
(24.9; 95% CrI: 20.0%, 29.8%) than for people <65 years old (10.2%; 95% 
CrI: 6.6%, 13.8%) (Fig. 6). The positive association of all causes of death 
except cancer with very severe snowmelt-related flooding was likely 
driven by increased death rates among adults ≥65 years old, though 
credible intervals overlapped.

Combined analyses of floods and cause-specific death rates
The analysis of all flood events was largely consistent with heavy rain- 
and tropical cyclone-related floods analyses, though these associa-
tions were attenuated. For snowmelt- and ice jam or dam break-related 
floods, however, the combined analysis with all flood events masked 
distinct associations (Extended Data Fig. 3). Compared with analyses 
by flood cause, there were also slight, delayed associations between 
very severe floods and cancer mortality 2 (1.0%; 95% CrI: 0.1%, 1.7%) and 
3 (1.0%; 95% CrI: 0.2%, 1.8%) months after the event.

Additional deaths per million associated with flood exposure
Cardiovascular disease was the leading cause of additional monthly 
deaths associated with very severe heavy rain-related (3.65; 95% CrI: 
2.06, 5.25 deaths per million (DPM)) and snowmelt-related (8.24; 95% 
CrI: 4.76, 11.72 DPM) floods during the flood month (Supplementary 
Table 9). Injuries were the leading cause of additional monthly deaths 
for very severe tropical cyclone-related floods during the flood month 
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(7.3; 95% CrI: 5.95, 8.65 DPM) and 1 month after the flood event (1.96; 95% 
CrI: 1.15, 2.78 DPM). Injuries were also the leading cause of additional 
monthly deaths for very severe ice jam-related floods 1 month after 
the flood event (1.91; 95% CrI: 1.09, 2.72 DPM).

Discussion
Using nearly two decades of highly resolved flood exposure data, we 
found that flooding events were associated with increased death rates 
for cardiovascular diseases, infectious and parasitic diseases, injuries 
and respiratory diseases, with generally greater associations for more 
severe floods compared with less severe. Injury death rates were higher 
for females and older adults associated with acute exposure to tropical 
cyclone-related flooding, and infectious disease mortality was elevated 
for males associated with exposure to all flood causes, particularly 
tropical cyclone- and heavy rain-related floods. Analyses stratified 
by flood cause identified associations that were attenuated, or for 
snowmelt-related floods entirely obscured, compared to the all-flood 
analysis. The value of the stratified analysis is that flood cause catego-
ries encompass events with similar characteristics (for example, dura-
tion, location and extent) that may drive associations with mortality.

We observed higher infectious and parasitic disease death rates 
1 month after very severe events for all floods, which suggests that 
exposure pathways may be similar across flood causes. The delay 
likely reflects disruptions to drinking water and sewage infrastructure 
that can lead to waterborne disease transmission27,28. Floodwater can 
directly contaminate drinking water sources with pathogens, particu-
larly untreated private wells29 or inadequately treated groundwater 
sources30, and/or inundate drinking water treatment infrastructure 
leading to backflow contamination or insufficient disinfection31. For 
example, the largest drinking water treatment plant in Jackson, Mis-
sissippi, with a population size of 173,500, was rendered inoperable 

by heavy rain-related river flooding in 2022 after the city had been 
under a federal consent decree since 2012 due to consistent failures 
to maintain operational and maintenance standards32. Flooding can 
also damage wastewater treatment plants and cause combined sewer 
overflows, resulting in the direct discharge of untreated sewage into 
the environment33,34.

Immediate direct contact with contaminated floodwater may 
be another important exposure pathway, the importance of which 
varies by flood cause and severity. There is often advance warning 
for tropical cyclone- or ice jam-related floods that allows people to 
avoid exposure35,36. Direct contact may be more likely, however, with 
floods unrelated to these extreme events, including river floods due 
to heavy precipitation or snowmelt, because they typically do not 
generate an equivalent emergency response. Supporting evidence is 
provided by the variability in short-term associations between infec-
tious disease mortality and specific flood causes; increased death 
rates were observed after very severe heavy rain-related and moderate 
snowmelt-related floods but not with the more severe tropical cyclone- 
and ice jam-related events. Heavy rain and snowmelt often cause river 
floods, which are of particular concern in agricultural regions, as flood-
waters can mobilize bacterial and parasitic pathogens in fertilizer or 
animal slurry37. Direct contact with pathogenic floodwater may be an 
important waterborne disease transmission pathway during floods 
and may help explain the variability in infectious disease death rates 
by flood cause.

Injury mortality associated with very severe floods increased in the 
month after floods. The lagged association could be driven by people 
succumbing to injuries sustained during the flood, delaying wound 
care in the aftermath of a catastrophic flood38 or acquiring injuries 
during cleanup efforts39. For tropical cyclone-related flooding, how-
ever, injury mortality was most strongly associated with acute flood 
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exposure, which is consistent with previous work that found most 
deaths directly attributable to tropical cyclones were due to storm 
surges and heavy rain18. Tropical cyclones are multihazard events that 
are defined by high windspeeds accompanied by heavy precipitation 
and storm surges. Determining the effect of specific hazards on health 
outcomes within a multihazard event is a fundamental challenge in 
disaster epidemiology40, and our study design did not attempt to 
distinguish specific hazard-related associations. Windspeed and pre-
cipitation intensity are not highly correlated after tropical cyclones 
that make landfall41, however, and are not interchangeable exposure 
metrics42. Findings here likely reflect the combined associations of 
tropical cyclone-related hazards with mortality, which is inherent to 
these events.

Both infectious disease and injury death rates varied by sex and 
age with different demographic groups at greater risk for distinct 
flood events. Infectious disease death rate increases after a flood were 
higher among males compared to females for all flood causes, with 
the greatest difference after heavy rain-related flood exposure. This 
finding is consistent with previous work that has found males are 
overrepresented in fatalities associated with rain-related floods and 
has been explained by risk-taking behavior in males and greater likeli-
hood of working in emergency services13,43. Males may also be more 
likely to work on recovery or cleanup efforts, which increases the risk 
of direct contact with contaminated floodwater and potential infec-
tious disease transmission. Females had higher increases in death 
rates associated with tropical cyclone-related flood exposure than 
males, which is also consistent with previous findings44. The dynam-
ics underling this association are not well understood, but qualitative 
research suggests that the increased risk may be due to child and elder 
care responsibilities that are disproportionately borne by females45,46. 
We found that the timing of increased injury mortality differed by age 
group for very severe tropical cyclone-related floods. Higher mortality 
was observed for older adults during the flood month before return-
ing to baseline, whereas young people had elevated death rates over 
the ensuing months. Increased injury death rates for young people in 
the months after a flood were seen for all flood causes, which further 
suggests that the cleanup period is a time of heightened risk for very 
severe floods regardless of the cause and should be a focus of disaster 
preparedness policies.

Examining associations by flood cause and severity can provide 
insight into the pathways through which floods may affect the other 
causes of death (cardiovascular diseases, respiratory diseases and 
neuropsychiatric conditions) over time. For example, snowmelt often 
leads to river floods that move slower than storm surges during tropi-
cal cyclones but generate persistent standing water, leading to longer 
flood events24,47. The mechanisms underlying snowmelt-related asso-
ciations are likely due the duration and size of these events. Even 
mild floods can lead to prolonged disruptions that cause chronic 
stress, which can adversely affect short- and long-term health through 
inflammation, oxidative stress, and mitochondrial dysfunction48, 
and destabilize healthcare infrastructure49. Mild snowmelt-related 
floods were associated with the largest increases in mortality for res-
piratory diseases, neuropsychiatric conditions, and cardiovascular 
diseases, whereas for all flood causes, mild floods were associated 
with decreased or unchanged death rates. These causes of death 
primarily occur among people ≥75 years old, which suggests that 
age is a crucial risk factor for snowmelt-related mortality. The asso-
ciations also demonstrate how location informs our understanding 
flood-related health risks; snowmelt-related floods are concentrated in 
the Upper Midwest, particularly Minnesota and the Dakotas, which has 
among the highest percentages of adults ≥65 years old in the United 
States50. The combination of extensive, persistent snowmelt-related 
floods and a population that is predominantly rural, older, and often 
more socially isolated makes this region especially vulnerable to 
flood-related mortality51,52.

Specific flood causes may also engender distinct behavioral 
responses to floods. The frequency of events varies among flood 
causes, which could influence individual risk perception, emer-
gency preparedness and mitigation strategies. Comparing cardio-
vascular disease death rates associated with heavy rain- and tropical 
cyclone-related floods may elucidate how flood cause affects behavior. 
Mortality increased with both flood causes 1 and 2 months after flood 
events, however, only heavy rain-related floods were associated with 
acute increased cardiovascular disease mortality during the flood 
month. This difference could be due to lowered risk perception in 
riverine regions, such as Appalachia and the Midwest, where large 
heavy rain-related floods are common53. Perceiving floods as low risk, 
people living in these areas may not move away from or prepare for 
large heavy rain-related floods and are thus more likely to experience 
acute cardiovascular strain preparing for or during floods54.

Sociodemographic factors could also drive increased acute cardio-
vascular disease mortality in areas that experience relatively frequent 
flooding. An analysis of flood risk behavior in riverine regions found 
that communities characterized by ‘risk enduring’ behavior—areas 
less likely to have flood defenses and more reliant on migration during 
floods—had higher poverty and a lower proportion of white residents 
compared to those in ‘risk-averse’ communities53. Riverine communi-
ties are disproportionately low-income55 and as a result may attract 
inadequate federal responses, which are typically more robust in highly 
populated or wealthier areas56,57. Insufficient mitigation policies could 
compound the risk stemming from individual- or community-level 
risk perception.

We found that flood exposure was associated with decreased death 
rates for some causes of death, which could be due to vulnerable people 
evacuating before a flood. Evacuation may modify health risks associ-
ated with floods, but its short- to long-term influence on specific health 
outcomes is nuanced, and research is hampered by the absence of 
public health surveillance and mobility data58. Conversely, lower death 
rates may not reflect a genuine reduction in risk but, rather, result from 
displaced people dying outside their county of residence. Information 
on where people evacuate, and the duration of their displacement, is 
needed to evaluate how mobility affects flood-related mortality.

This study has several limitations. First, misclassification bias 
could occur if decedents lived outside of their official county of resi-
dence during a flood or if their residence within the county did not 
match their exposure classification. This type of exposure misclassifica-
tion is likely nondifferential and, therefore, would bias results toward 
the null59. Second, we cannot account for evacuation or displacement. 
Flood-driven population movement, however, would likely lead to an 
underestimation of the associations between flood and cause-specific 
mortality as the true population during the flood would be smaller 
than the official county population58. Third, the Global Flood Database 
(GFD) does not include all floods that occurred during the study period; 
Moderate Resolution Imaging Spectroradiometer (MODIS) satellite 
imagery has limitations with resolving urban floods and thus they are 
underrepresented in the dataset3. As a result, some tropical cyclones 
that affected the East Coast were not included in the analysis, though 
cause-specific mortality associated with tropical cyclone exposure has 
been studied elsewhere and is consistent with these findings6. Fourth, 
floods often coincide with storms that cause other hazards including 
high winds and tornadoes, which are not included in the analysis and 
could affect mortality. Fifth, the spatial unit of analysis was county 
and counties contain exposure disparities that are not captured by 
the analysis. Populations within counties are also heterogeneous, 
and the ability to mitigate health effects related to flooding varies by 
demographic and socioeconomic factors60. Future work may be able to 
study associations by smaller areal units as appropriate demographic 
and outcome data become available. Sixth, short-term changes are 
summarized into monthly associations due to the temporal resolution 
of the mortality data. Our objective was to examine the association 
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of large, persistent floods on mortality over multiple months, and as 
such, the monthly resolution is appropriate for the analysis. Never-
theless, this analysis does not address immediate (that is, days after 
flood) associations; further work evaluating the short-term effect of 
persistent floods on daily and weekly mortality is necessary and would 
complement this analysis. Seventh, the difference between the geo-
graphic range for tropical cyclone-related flooding and the other flood 
causes introduces the potential for spatial effect modification, though 
our stratified model approach allows flexibility in model parameter 
estimation to account for this.

Our analysis finds that the association of flooding with mortal-
ity was comparable to impactful climate-related disasters such as 
hurricanes and other tropical cyclones and varied by cause of death, 
sex, age group, flood cause and severity. These observations address 
the gap in our understanding of post-flood changes in cause-specific 
mortality. Preparing for flood-related health effects is a systemic public 
policy challenge made urgent by population growth in flood-prone 
regions and the intensification of flooding due to climate change3–5. 
Sea-level rise, rapid snowpack melt and more powerful cyclonic storms 
will increase flood severity1, but flooding unrelated to hurricanes may 
be less likely to trigger an adequate disaster management response. 
Effective and equitable preparation and response to flooding risk in 
the United States is necessary to mitigate risks to public health.

Online content
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maries, source data, extended data, supplementary information, 
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Methods
This study was reviewed and approved by the Columbia University Insti-
tutional Review Board and was classified non-human subjects research, 
though not exempt from an ethics review (protocol IRB-AAAT9710).

Flood exposure data
We obtained data on flood exposure in the continental United States 
from the GFD that provides satellite-derived flood maps from 2001–
20183. The GFD was developed using the Dartmouth Flood Observatory 
(DFO), a geospatial event catalog of large floods from 1985 to present61, 
to identify the location and timing of global flood events using satel-
lite data61. The DFO defines large floods as those that generate media 
coverage, which typically include floods that cause structural damage, 
harm crops, and/or cause fatalities. Satellite imagery from MODIS, 
operated by NASA and available since 2000, was acquired for dates and 
watersheds identified as a flood event in the DFO catalog3. MODIS is fre-
quently used to map inundation62–64 and provides two satellite images 
per day with global coverage. We analyzed every MODIS image over 
the relevant watershed for each day in the event date range reported 
by the DFO. To determine flooded areas from MODIS imagery, surface 
reflectance values in the visible, near-infrared, and short-wave infrared 
wavelengths were selected and harmonized at a spatial resolution of 
250-meters3. A flood detection algorithm relying on the reflectance 
values from these bands used a threshold approach to classify each 
pixel as water or not water in every MODIS image over the relevant 
watershed and dates reported in the DFO catalog. Specifically, reflec-
tance values from the near-infrared, red, and short-wave-infrared 
bands were compared to fixed threshold reflectance values that were 
empirically determined from United States Geological Survey river 
gauge discharge data62. To reduce the possibility of false detections 
primarily arising from cloud shadows, a landscape feature similar to 
surface water, daily flood footprints were composited over 3 days to 
ensure that pixel-level classifications (water or not water) were consist-
ent over multiple days. Inundated pixels were defined as those where 
surface water was identified outside of permanent water bodies as 
defined by the Global Surface Water dataset65.

In this study, we calculated flood exposure for each county by 
intersecting the GFD flood event maps with gridded population 
estimates from the Global Human Settlement Layer (GHSL) avail-
able for 2000 and 2015 at 250-m resolution66,67. For floods occurring 
in years without available gridded population data from GHSL, we 
used the closest year of available GHSL data to estimate the per-
centage of the exposed population3. We categorized flood causes 
as events resulting from heavy rain, tropical cyclone, snowmelt or 
ice jam or dam break floods, consistent with the DFO classification 
(Supplementary Table 4). Because our objective was to evaluate the 
association between flood exposure and mortality, we restricted our 
analysis to counties that experienced at least one flood event during 
the study period.

Flood severity
For each flood event in the GFD, counties that experienced no flood-
ing were defined as unexposed; among counties that experienced 
any flooding, we determined the severity of the flood exposure. Flood 
severity has no universal definition68, and multiple factors can be 
used to define flood severity. We used the proportion of the popula-
tion affected by a flood event to define flood severity, because this 
approach standardizes severity estimates across diverse flood causes 
and geographic regions. For each county and flood (‘county-flood’) 
event, the GFD included the population in the inundated pixels and the 
total county population based on estimates from the GHSL69. With this 
pixel-level flood and population data, we calculated the proportion of 
the county population residing in flooded areas for each county-flood 
event during 2001–2018. We generated a population exposure distribu-
tion using these values for all flood events collectively and for separate 

flood causes (Supplementary Table 5). For each county-flood event, we 
compared the percent of the population exposed to the all-flood and 
flood cause-specific distributions to define exposure severity (Sup-
plementary Table 6). Mild floods were defined as those with population 
exposure in <25th percentile, moderate floods were defined as those 
with population exposure in ≥25th and <50th percentile, severe floods 
were defined as those with population exposure in ≥50th percentile 
and <75th percentile and very severe floods were defined as those with 
population exposure in ≥75th percentile.

For each flood cause, we found the median and median maximal 
flood duration (Supplementary Table 7); here, the median maximal 
duration in a county is defined as the median of the pixels with the long-
est flood duration across all flood cause-specific events. We assessed 
median and median maximal duration by geographic region (Extended 
Data Figs. 4 and 5).

Temperature data
We obtained temperature data from the Parameter-elevation Regres-
sions on Independent Slopes Model (PRISM), which collects climate 
observations from a range of monitoring networks70. The model uses 
quality control measures to generate a national temperature dataset 
with full space and time coverage during the study period. We used 
gridded daily estimates at 4-km resolution to generate area-weighted 
monthly average temperatures by county. Previous work comparing 
gridded climate datasets has found that the validity of PRISM data are 
equivalent to71 or outperform72 alternatives and are well suited for stud-
ies that involve complex and variable terrain73, such as throughout the 
continental United States.

Outcomes
We used complete national death records from the National Center for 
Health Statistics (NCHS) to identify monthly total and cause-specific 
deaths by age group, sex and county in the United States (2001–2018). 
To calculate monthly death rates by county, we linearly interpolated 
county-, sex- and age group-specific annual population counts from 
the NCHS bridged-race dataset (https://www.cdc.gov/nchs/nvss/ 
bridged_race.htm)6.

Cause-specific mortality outcomes
We coded the underlying causes of death according to the Interna-
tional Classification of Diseases (ICD) system (10th revision), and World 
Health Organization Global Health Estimate cause categories74. We 
grouped the death records into six primary causes of death—cancers, 
cardiovascular disease, infectious and parasitic diseases, injuries, 
neuropsychiatric conditions and respiratory diseases—that comprise 
86.2% of all deaths in included counties during the study period (Sup-
plementary Table 8).

Statistical methods
We used a Bayesian formulation of the conditional quasi-Poisson 
model to analyze the county-level association between the number 
of flood events per month and monthly death rates, building on pre-
vious analyses6,75, that accounted for overdispersion in the mortality 
data. The conditional approach examines differences within matched 
strata (here, county-months) like a case-crossover study design, which 
removes confounding bias due to factors that vary across strata76. 
Bayesian inference enables the ‘borrowing of information’ across 
county units and for the full distributional estimation of the param-
eters of interest77.

The percentage change in death rates associated with flood expo-
sure is modeled as:

log (E [deathsct]) = α0 + αcm(t) + ∑3
l=0 βlExposurec(t−l)

+ns (t) + τtempct
+ log (Populationct)

(1)
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where deathsct is the number of all-cause or cause-specific deaths in 
county c and month-year time t (ranging from 1 to 216, the total number 
of months in the study period); α0 is the overall intercept and αcm(t) is 
the county-month specific intercept, which is not estimated in the 
conditional Poisson model, where m(t) is a function that extracts the 
calendar month for time t; βl is the lag-specific coefficient (log rate 
ratio) for flood exposure in lagged month l; Exposurelct is the count of 
flood events in lagged month l, county c, at time t; ns(t) is a natural 
spline term with 3 degrees of freedom per year to account for seasonal-
ity and long-term trends; τtempct

 is a second-order random walk term to 
flexibly model the temperature-mortality relationship where tempct is 
the area-weighted monthly average temperature in county c and time 
t; and Populationct  is the population in county c and time t, included as 
a population offset.

As in previous related work6,78, we used weakly informative priors 
for parameter estimation. For the county-month intercepts αc and 
the second-order random walk term τ, hyper-priors were defined on 
the logarithm of the precision (1/σ2) and modeled as logGamma(θ, δ)  
distributions with shape θ = 1 and rate δ = 0.001. All of the other terms, 
including the βl parameters, were modeled with Gaussian priors  
N(0, 1000).

All-cause and cause-specific mortality associated with flood events 
is likely differential by flood cause and severity; therefore, we con-
ducted analyses separately by all-cause and cause-specific mortality 
(cancers, cardiovascular diseases, infectious and parasitic diseases, 
injuries, neuropsychiatric conditions, and respiratory diseases), flood 
cause (all floods, heavy rain, tropical cyclone, snowmelt, and ice jam 
or dam break), and flood severity (mild, moderate, severe, and very 
severe). Because very severe flood events were most strongly associ-
ated with increased mortality across all flood causes and mortality 
groups, we further analyzed associations stratified by age group (0–64 
years and ≥65 years) and sex (female and male) for very severe floods 
only. We presented results as percent changes in death rates per unit 
increase in flood events in a month. As a supplementary analysis, we 
calculated deaths per million due to flood exposure for each flood and 
cause of death for each lag period (0–3 months). Monthly deaths per 
million was calculated by multiplying effect estimates by monthly 2018 
age-standardized death rates. We used the R-INLA (version 23.9.9) and 
splines (version 4.3.1) packages to conduct the statistical analyses in 
R (version 3.6.3).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The Global Flood Database (GFD) flood event data and Global Human 
Settlement Layer (GHSL) population data can be downloaded from 
https://global-flood-database.cloudtostreet.ai/. Data for individual 
floods are available with no restrictions. Cause-specific mortal-
ity data with geographic information can be requested through 
the National Center for Health Statistics (NCHS) at https://www.
cdc.gov/nchs/nvss/nvss-restricted-data.htm. Applicants must sub-
mit a project review form (https://www.cdc.gov/nchs/data/nvss/
nchs-research-review-application.pdf) to nvssrestricteddata@cdc.
gov and allow four to six weeks for processing. Parameter-elevation 
Regression on Independent Slopes Model (PRISM) temperature data 
can be downloaded from https://prism.oregonstate.edu/recent/ 
with no restrictions.

Code availability
The R code for the statistical analysis is available on the 
SPARK Lab GitHub repo at https://github.com/sparklabnyc/ 
usa_floods_mortality_2024.
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Extended Data Fig. 1 | Age-standardized death rates during 2001–2018. Age-standardized death rates per 100,000 by month and year for each cause of death and 
by sex during 2001–2018.
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Extended Data Fig. 2 | Count of flood events by month and flood cause during 2001–2018. Number of flood events by flood cause (heavy rain, tropical cyclone, 
snowmelt, and ice jam or dam break) and month during 2001–2018.
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Extended Data Fig. 3 | Percentage change in death rates. Percentage change in death rates per flood event by cause of death, flood severity, and lag time. Lag time is 
measured in months after flood. Dots show point estimates and error bars represent 95% credible intervals.
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Extended Data Fig. 4 | Median flood duration in days. Median flood duration in days by county and flood cause during 2001–2018. Panel A: heavy rain flood events 
(n = 61); Panel B: tropical cyclone flood events (n = 18); Panel C: snowmelt flood events (n = 9); Panel D: ice jam or dam break flood events (n = 5).
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Extended Data Fig. 5 | Median maximum flood duration in days. Median maximum flood duration in days by county and flood cause during 2001–2018. Panel A: 
heavy rain flood events (n = 61); Panel B: tropical cyclone flood events (n = 18); Panel C: snowmelt flood events (n = 9); Panel D: ice jam/dam break flood events (n = 5).
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