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Flooding greatly endangers public health and is an urgent concern as rapid

population growthin flood-prone regions and more extreme weather events
willincrease the number of people at risk. However, an exhaustive analysis
of mortality following floods has not been conducted. Here we used 35.6
million complete death records over 18 years (2001-2018) from the National
Center for Health Statistics in the United States, highly resolved flood
exposure data and a Bayesian conditional quasi-Poisson model to estimate
the association of flooding with monthly county-level death rates for
cancers, cardiovascular diseases, infectious and parasitic diseases, injuries,
neuropsychiatric conditions and respiratory diseases up to 3 months after
the flood. During the month of flooding, very severe heavy rain-related
floods were associated with increased infectious disease (3.2%; 95% credible
interval (Crl): 0.1%, 6.2%) and cardiovascular disease (2.1%; 95% Crl: 1.3%,
3.0%) death rates and tropical cyclone-related floods were associated with

increased injury death rates (15.3%; 95% Crl: 12.4%, 18.1%). During the month
of very severe tropical cyclone-related flooding, increases ininjury death
rate were higher for those =65 years old (24.9; 95% Crl: 20.0%, 29.8%) than for
those aged <65 years (10.2%; 95% Crl: 6.6%, 13.8%) and for females (21.2%; 95%
Crl:16.3%,26.1%) than for males (12.6%; 95% Crl: 9.1%,16.1%). Effective public
healthresponses are critical now and with projected increased flood severity

driven by climate change.

Flooding, theinundation of water onto typically dryland, is an urgent
global health concern'?. The number of people living in flood-prone
areas has increased by 58-86 million worldwide between 2000 and
2015 (ref. 3),and human settlementsin areas with the highest flood risk
have grown by 121% since 1985 (ref. 4). Climate change will likely lead to
more frequent river, coastal and flash floods globally, compounding
population-driven risk'. Inthe United States, population growth alone
is projected to result in an estimated 72% increase in the population
exposed to floods annually by 2050, before accounting for the effect

of climate change on flooding’. Flooding has been associated with
increased rates of injuries®, cardiovascular diseases’, infectious dis-
eases®and mental health conditions’. However, most previous work has
focused onspecific flooding case studies related to tropical cyclones'™",
floods over ashort period of time' or on fatalities attributed to acute
flash floods™!. Although tropical cyclones are animportant driver of
increased flood risk, atmospheric warming, the intensification of the
global water cycle and sea-level rise will also lead to more catastrophic
floodsindependent of tropical cyclones”. Identifying health outcomes
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Fig.1| Total deaths by cause of death, sex and age group in the United States during 2001-2018. All deaths in counties that experienced at least one flood event

(n=2,711 counties) during the study period.

associated with distinct flood causes is critical for effective disaster
and public health preparedness as development patterns and climate
change amplify flood risk™.

Floods can affect health through direct and indirect pathways
that may function at different time scales leading to both acute and
delayed health effects'”'®. A storm surge, for example, can cause acute
direct effects, including drownings and injuries*'’, whereas standing
floodwater that contaminates drinking water sources or facilitates
moldgrowth canlead to delayed direct effects oninfectious disease and
respiratory outcomes®*”. Rapid displacement can drive acute indirect
effectsincludingtrafficaccidents, stress-induced cardiovascular events,
andinfectious disease transmission related to overcrowding'”'®. Disrup-
tions to critical infrastructure, meanwhile, canlead to delayed indirect
effects when people are unable to meet basic needs including access to
healthcare, food, and shelter”. Most flood-related health outcomes are
notrestricted to asingle exposure pathway or timeline; cardiovascular
events, forexample, canbe triggered by direct exposure to stormsurges
oroccur after periods of chronic disaster-related stress™".

Flood cause and severity likely affect the association between
exposure and specific health outcomes. Mild or moderate floods, for
example, may have anegligible effect on mortality; in some cases, gen-
eralflood exposure hasbeen associated with decreased overallmortal-
ity”>. Among snowmelt-related floods, however, even moderate events
have longer average durations compared to other flood causes*** and
may have an effect on health comparable to more severe floods.

Characterizing exposure to floods at a spatial scale appropriate
for mortality analyses is a central challenge for studying flood-related
health effects as it can be difficult to determine the magnitude and
timing of flood events. Here, we address this gap using a validated flood
exposure dataset® to comprehensively examine the association of large
floods with death rates for six major causes of death (cancers, cardio-
vascular disease, infectious and parasitic diseases, injuries, neuropsy-
chiatric conditions and respiratory diseases) over an 18-year period
(2001-2018) at the county level across the United States. We evaluated
whether these associations differed by flood cause (heavy rain, tropical

cyclone, snowmelt and ice jam or dam break) and severity (mild, mod-
erate, severe and very severe); further, we examined the association
of flood exposure with cause-specific mortality by age group and sex.

Results

Deaths

There were 35,613,398 deaths from the 6 causes of death in counties that
experienced floods during 2001-2018, representing 86.2% of all deaths
in these counties (Fig. 1). Total deaths in these counties represented
77.8% of all deaths nationally during the study period. Cardiovascular
diseases were the leading cause of death (n =13,709,850), followed by
cancers (n=9,587,570) and neuropsychiatric conditions (n = 4,390,885)
(Supplementary Table1). Seasonality in death rates varied among the
causes of death; death rates were greatest for cardiovascular disease,
neuropsychiatric conditions and respiratory disease from December
to March (peaking in January), whereas cancer and infectious disease
mortality was relatively consistent throughout the year. Injury deaths
were more common among younger males (<54 years old; 43.5% of all
injury deaths) forwhom death rates peaked between June and August.
During2001-2018, long-term trends in death rates also differed among
the causes of death; age-standardized deathratesincreased by 87.0% for
neuropsychiatric conditions and by 12.0% for injuries but substantially
decreased for cardiovascular diseases (-34.8%), cancers (-25.9%) and
respiratory diseases (-16.0%) (Extended Data Fig. 1).

Flood events

There were 93 large flood events, each typically affecting multiple coun-
ties (Supplementary Table 2), which occurred throughout 2,711 counties
during 2001-2018 (Fig. 2). The median number of floods per county was
7 (mean: 7.4, range: 1-28). Of the 93 flood events, the majority (61; 65.6%
of all floods) were due to heavy rain (Supplementary Table 3). These
floods occurred throughout the United States—particularly evidentin
Appalachia and along the Mississippi River-Ohio River junction—and
throughout the year (Extended Data Fig. 2). Tropical cyclone-related
flooding was the second-most common flood cause (18;19.4% of all
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Fig. 2| Total count of flood events per county by flood causes during 2001-2018. a, Heavy rain flood events (n = 61). b, Tropical cyclone flood events (n = 18).
¢, Snowmelt flood events (n=9).d, Ice jam or dam break flood events (n = 5).
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Fig.3|Percentage change in all-cause death rates. Percentage change in all-cause death (n = 35,613,398) rates per flood event by flood cause, flood severity and lag
time. Lag time is measured in months after flood event. Dots show the mean point estimates, and error bars represent 95% Crl.
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Fig. 4 | Percentage changein cause of death-specific death rates. Percentage change in death (n = 35,613,398) rates per flood event by flood cause, flood severity,
cause of death and lag time. Lag time is measured in months after flood event. Dots show the mean point estimates, and error bars represent 95% Crl.

floods) and primarily occurred along the Gulfand southeastern Atlantic
Coasts during the Atlantic hurricane season (June 1to November 30)*.
Snowmelt-related (9;9.7% of all floods) and ice jam or dam break-related
floods (5; 5.3% of all floods) were concentrated in Upper Midwest and
Mountain West counties during the late winter and early spring.

Specific flood causes and all-cause death rates
Very severe heavy rain-related floods were associated with increased
all-cause deathrates during the flood month (1.5%; 95% credible interval
(Crl):1.0%,2.0%) inaddition to 2 months (1.0%; 95% Crl: 0.4%,1.3%) and 3
months (0.6%; 95% Crl: 0.2%,1.0%) after the flood (Fig. 3). All other flood
severity types, however, were associated with decreased death rates
duringthe flood month. Moderate (1.0%; 95% Crl: 0.4%,1.2%) and severe
(0.4%;95% Crl: 0.0%, 0.8%) heavy rain-related floods were associated with
delayedincreasesinall-cause death rates1and 2 months after the flood,
respectively.Severe (-1.6%; 95% Crl: -3.0%, 0.0%) and very severe (-1.3%;
95% Crl:-2.6%, 0.0%) ice jam or dam break-related floods were associated
with slight decreases in all-cause death rates during the flood month
but with slightly increased death rates 2 and 3 months after the flood.
Snowmelt-related floods of all severity levels were associated with
increased all-cause death rates, with mild floods exhibiting the strong-
est association (8.9%; 95% Crl: 7.6%, 10.1%). Tropical cyclone-related
floods were associated with decreased death rates for mild (-2.5%; 95%
Crl:-3.4%, -1.5%), moderate (-1.9%; 95% Crl: -2.8%, -1.0%) and severe
(=2.0%; 95% Crl: -2.8%, -1.1%) events during the flood month. Death
ratesincreased, however, 1 month after moderate flooding events (1.1%;
95% Crl: 0.7%, 1.6%) and 2 months after very severe flooding events
(1.0%;95% Crl: 0.5%,1.4%).

Heavy rain-related floods and cause-specific death rates
Very severe heavy rain-related floods were associated with increased
death rates for infectious and parasitic diseases (3.2%; 95% Crl:0.1%,

6.2%) and cardiovascular diseases (2.1%; 95% Crl: 1.3%, 3.0%) during
the flood month and, for infectious diseases (4.7%; 95% Crl:2.4%, 7.1%)
and injuries (2.6%; 95% Crl:1.0%, 4.2%), 1 month after flooding events
(Fig. 4). The association of heavy rain-related floods with respiratory
disease death rates varied by flood severity. Death rates increased
2months after the event for severe floods (1.9%; 95% Crl: 0.7%, 3.1%) but
decreased during the flood month for mild (-2.5%; 95% Crl: —4.1%, -1.0%)
and moderate floods (-2.1%; 95% Crl: -3.7%,-1.0%). Mild and moderate
heavy rain-related floods were also associated with decreased death
rates for neuropsychiatric conditions (-2.1%; 95% Crl: =3.7%, -1.0%)
and infectious diseases (—=6.3%; 95% Crl: —9.3%, —3.2%), respectively,
during the flood month. Cancer death rates showed some evidence
of increase 2 (0.8%; 95% Crl: 0.0%, 1.6%) and 3 months (1.1%; 95% Crl:
0.0%,1.9%) after very severe heavy rain-related flooding, though all
associations were close to null.

Icejam or dam break-related floods and cause-specific death
rates

Very severe ice jam or dam break-related floods were associated with
decreased deathrates during the flood month for infectious and para-
sitic diseases (-11.0%; 95% Crl: -17.6%, —4.3%), respiratory diseases
(-8.3%; 95% Crl: -11.9%, —4.7%) and neuropsychiatric conditions (-5.6%;
95% Crl: -9.0%, —2.1%) (Fig. 4). In the month after very severe floods,
deathratesincreased forinfectious diseases (4.4%; 95% Crl: 1.9%, 6.9%)
and injuries (3.0%; 95% Crl: 1.4%, 4.7%). Severe ice jam or dam break
floods were also associated with decreased infectious disease (-9.7%;
95% Crl: -17.7%, -1.6%) and injury (-7.7; 95% Crl: -13.2%, —2.2%) death
rates during the flood month.

Snowmelt-related floods and cause-specific death rates
Deathrates increased during snowmelt-related flood months for all
causes of death except cancer (Fig. 4). Mild floods were associated
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with the largest death rate increases for respiratory diseases (22.3%;
95% Crl:19.0%, 25.5%), neuropsychiatric conditions (15.9%; 95% Crl:
12.5%,19.3%) and cardiovascular diseases (8.9%; 95% Crl: 6.9%,11.0%),
though rates increased for all flood severity levels for these causes of
death. Increases in death rates for infectious and parasitic diseases
(12.3%; 95% Crl: 6.4%,18.3%) and injuries (6.1%; 95% Crl: 2.0%, 10.2%)
were largest for moderate snowmelt-related floods.

Tropical cyclone-related floods and cause-specific death rates
Tropical cyclone-related floods were associated with increased injury
deathrates during the flood month for severe (4.7%; 95% Cr1:1.8%, 7.6%)
and very severe (15.3%; 95% Crl:12.4%, 18.1%) floods (Fig. 4). For very
severe floods, injury death rates remained elevated 1 month after tropi-
cal cyclone events (3.2%; 95% Crl: 1.5%, 4.9%). Infectious and parasitic
disease death rates also increased 1 month after very severe floods
(4.8%; 95% Crl: 2.3%, 7.3%), with only a marginally significant associa-
tion during the actual flood month (3.7%; 95% Crl: —0.9%, 8.4%). The
most delayed association was with respiratory disease death rates,
which increased 2 months after severe floods (1.8%; 95% Crl: 0.5%,
3.0%). Mild tropical cyclone-related floods, conversely, were associ-
ated with decreased death rates for cardiovascular diseases (-2.7%;
95% Crl: —4.3%, -1.1%) and neuropsychiatric conditions (-5.3%; 95%
Crl: -7.9%, -2.8%) during the flood month.

Floods and cause-specific death rates by sex

During very severe flood months, increasesin tropical cyclone-related
injury deathrates were higher for females (21.2%; 95% Crl:16.3%, 26.1%)
than for males (12.6%; 95% Crl: 9.1%,16.1%) (Fig. 5). Infectious and para-
siticdisease deathratesincreased for males (8.4%; 95% Crl: 4.9%, 11.8%)
but not for females (1.2%; 95% Crl: —2.4%, 4.9%) 1 month after heavy
rain-related flooding events; this disparity was consistent across all

flood causes. Neuropsychiatric death rates decreased for females dur-
ing months with tropical cyclone-related floods (-3.1%; 95% Crl: -6.3%,
0.0%) but not for males (1.9%; 95% Crl: -2.0%, 5.6%), though credible
intervals overlapped.

Floods and cause-specific death rates by age group

Increases in injury death rates during very severe tropical
cyclone-related floods months were higher for those aged >65 years old
(24.9;95% Crl: 20.0%, 29.8%) than for people <65 years old (10.2%; 95%
Crl:6.6%,13.8%) (Fig. 6). The positive association of all causes of death
except cancer with very severe snowmelt-related flooding was likely
driven by increased death rates among adults >65 years old, though
credible intervals overlapped.

Combined analyses of floods and cause-specific death rates
The analysis of all flood events was largely consistent with heavy rain-
and tropical cyclone-related floods analyses, though these associa-
tions were attenuated. For snowmelt- and ice jam or dam break-related
floods, however, the combined analysis with all flood events masked
distinct associations (Extended Data Fig. 3). Compared with analyses
by flood cause, there were also slight, delayed associations between
very severe floods and cancer mortality 2 (1.0%; 95% Crl: 0.1%,1.7%) and
3 (1.0%; 95% Crl: 0.2%,1.8%) months after the event.

Additional deaths per million associated with flood exposure

Cardiovascular disease was the leading cause of additional monthly
deaths associated with very severe heavy rain-related (3.65; 95% Crl:
2.06,5.25 deaths per million (DPM)) and snowmelt-related (8.24; 95%
Crl:4.76,11.72 DPM) floods during the flood month (Supplementary
Table9).Injuries were the leading cause of additional monthly deaths
for very severe tropical cyclone-related floods during the flood month
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(7.3;95%Crl:5.95,8.65 DPM) and 1 month after the flood event (1.96; 95%
Crl: 1.15,2.78 DPM). Injuries were also the leading cause of additional
monthly deaths for very severe ice jam-related floods 1 month after
the flood event (1.91; 95% Crl:1.09, 2.72 DPM).

Discussion
Using nearly two decades of highly resolved flood exposure data, we
found that flooding events were associated with increased death rates
for cardiovascular diseases, infectious and parasitic diseases, injuries
andrespiratory diseases, with generally greater associations for more
severe floods compared with less severe. Injury death rates were higher
for females and older adults associated with acute exposure to tropical
cyclone-related flooding, and infectious disease mortality was elevated
for males associated with exposure to all flood causes, particularly
tropical cyclone- and heavy rain-related floods. Analyses stratified
by flood cause identified associations that were attenuated, or for
snowmelt-related floods entirely obscured, compared to the all-flood
analysis. The value of the stratified analysis is that flood cause catego-
ries encompass events with similar characteristics (for example, dura-
tion, location and extent) that may drive associations with mortality.
We observed higher infectious and parasitic disease death rates
1 month after very severe events for all floods, which suggests that
exposure pathways may be similar across flood causes. The delay
likely reflects disruptions to drinking water and sewage infrastructure
that can lead to waterborne disease transmission”**. Floodwater can
directly contaminate drinking water sources with pathogens, particu-
larly untreated private wells* or inadequately treated groundwater
sources®, and/or inundate drinking water treatment infrastructure
leading to backflow contamination or insufficient disinfection®. For
example, the largest drinking water treatment plant in Jackson, Mis-
sissippi, with a population size 0f 173,500, was rendered inoperable

by heavy rain-related river flooding in 2022 after the city had been
under a federal consent decree since 2012 due to consistent failures
to maintain operational and maintenance standards®. Flooding can
also damage wastewater treatment plants and cause combined sewer
overflows, resulting in the direct discharge of untreated sewage into
the environment>?*,

Immediate direct contact with contaminated floodwater may
be another important exposure pathway, the importance of which
varies by flood cause and severity. There is often advance warning
for tropical cyclone- or ice jam-related floods that allows people to
avoid exposure®>¢, Direct contact may be more likely, however, with
floods unrelated to these extreme events, including river floods due
to heavy precipitation or snowmelt, because they typically do not
generate an equivalent emergency response. Supporting evidence is
provided by the variability in short-term associations between infec-
tious disease mortality and specific flood causes; increased death
rates were observed after very severe heavy rain-related and moderate
snowmelt-related floods but not with the more severe tropical cyclone-
andicejam-related events. Heavy rain and snowmelt often cause river
floods, which are of particular concerninagricultural regions, as flood-
waters can mobilize bacterial and parasitic pathogens in fertilizer or
animal slurry”. Direct contact with pathogenic floodwater may be an
important waterborne disease transmission pathway during floods
and may help explain the variability in infectious disease death rates
by flood cause.

Injury mortality associated with very severe floods increased inthe
month after floods. The lagged association could be driven by people
succumbing to injuries sustained during the flood, delaying wound
care in the aftermath of a catastrophic flood*® or acquiring injuries
during cleanup efforts®. For tropical cyclone-related flooding, how-
ever, injury mortality was most strongly associated with acute flood
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exposure, which is consistent with previous work that found most
deaths directly attributable to tropical cyclones were due to storm
surges and heavyrain'®. Tropical cyclones are multihazard events that
are defined by high windspeeds accompanied by heavy precipitation
and storm surges. Determining the effect of specifichazards on health
outcomes within a multihazard event is a fundamental challenge in
disaster epidemiology*’, and our study design did not attempt to
distinguish specific hazard-related associations. Windspeed and pre-
cipitation intensity are not highly correlated after tropical cyclones
that make landfall*, however, and are not interchangeable exposure
metrics*. Findings here likely reflect the combined associations of
tropical cyclone-related hazards with mortality, which is inherent to
these events.

Both infectious disease and injury death rates varied by sex and
age with different demographic groups at greater risk for distinct
flood events. Infectious disease death rate increases after aflood were
higher among males compared to females for all flood causes, with
the greatest difference after heavy rain-related flood exposure. This
finding is consistent with previous work that has found males are
overrepresented in fatalities associated with rain-related floods and
has been explained by risk-taking behavior in males and greater likeli-
hood of working in emergency services>**. Males may also be more
likely to work onrecovery or cleanup efforts, which increases the risk
of direct contact with contaminated floodwater and potential infec-
tious disease transmission. Females had higher increases in death
rates associated with tropical cyclone-related flood exposure than
males, which is also consistent with previous findings**. The dynam-
icsunderlingthis associationare not well understood, but qualitative
research suggests thattheincreased risk may be due to child and elder
careresponsibilities that are disproportionately borne by females**°.
We found that the timing of increased injury mortality differed by age
group for very severe tropical cyclone-related floods. Higher mortality
was observed for older adults during the flood month before return-
ing to baseline, whereas young people had elevated death rates over
the ensuing months. Increased injury death rates for young people in
the months after a flood were seen for all flood causes, which further
suggests that the cleanup period is a time of heightened risk for very
severe floods regardless of the cause and should be afocus of disaster
preparedness policies.

Examining associations by flood cause and severity can provide
insight into the pathways through which floods may affect the other
causes of death (cardiovascular diseases, respiratory diseases and
neuropsychiatric conditions) over time. For example, snowmelt often
leads toriver floods that move slower than storm surges during tropi-
calcyclonesbut generate persistent standing water, leading to longer
flood events**”. The mechanisms underlying snowmelt-related asso-
ciations are likely due the duration and size of these events. Even
mild floods can lead to prolonged disruptions that cause chronic
stress, which can adversely affect short-and long-term health through
inflammation, oxidative stress, and mitochondrial dysfunction*®,
and destabilize healthcare infrastructure*. Mild snowmelt-related
floods were associated with the largest increases in mortality for res-
piratory diseases, neuropsychiatric conditions, and cardiovascular
diseases, whereas for all flood causes, mild floods were associated
with decreased or unchanged death rates. These causes of death
primarily occur among people >75 years old, which suggests that
ageis a crucial risk factor for snowmelt-related mortality. The asso-
ciations also demonstrate how location informs our understanding
flood-related health risks; snowmelt-related floods are concentrated in
the Upper Midwest, particularly Minnesota and the Dakotas, which has
among the highest percentages of adults =65 years old in the United
States*’. The combination of extensive, persistent snowmelt-related
floods and a population that is predominantly rural, older, and often
more socially isolated makes this region especially vulnerable to

flood-related mortality*"*,

Specific flood causes may also engender distinct behavioral
responses to floods. The frequency of events varies among flood
causes, which could influence individual risk perception, emer-
gency preparedness and mitigation strategies. Comparing cardio-
vascular disease death rates associated with heavy rain- and tropical
cyclone-related floods may elucidate how flood cause affects behavior.
Mortality increased with both flood causes 1and 2 months after flood
events, however, only heavy rain-related floods were associated with
acute increased cardiovascular disease mortality during the flood
month. This difference could be due to lowered risk perception in
riverine regions, such as Appalachia and the Midwest, where large
heavy rain-related floods are common®. Perceiving floods as low risk,
people living in these areas may not move away from or prepare for
large heavy rain-related floods and are thus more likely to experience
acute cardiovascular strain preparing for or during floods™.

Sociodemographicfactors could also driveincreased acute cardio-
vascular disease mortality in areas that experience relatively frequent
flooding. An analysis of flood risk behavior in riverine regions found
that communities characterized by ‘risk enduring’ behavior—areas
less likely to have flood defenses and more reliant on migration during
floods—had higher poverty and alower proportion of white residents
compared to thosein ‘risk-averse’ communities®. Riverine communi-
ties are disproportionately low-income® and as a result may attract
inadequate federal responses, which are typically more robustin highly
populated or wealthier areas®®”. Insufficient mitigation policies could
compound the risk stemming from individual- or community-level
risk perception.

Wefound that flood exposure was associated with decreased death
rates for some causes of death, which could be due to vulnerable people
evacuating before aflood. Evacuation may modify health risks associ-
ated withfloods, butits short- to long-terminfluence on specific health
outcomes is nuanced, and research is hampered by the absence of
publichealth surveillance and mobility data®®. Conversely, lower death
rates may notreflectagenuine reductioninrisk but, rather, result from
displaced people dying outside their county of residence. Information
on where people evacuate, and the duration of their displacement, is
needed to evaluate how mobility affects flood-related mortality.

This study has several limitations. First, misclassification bias
could occur if decedents lived outside of their official county of resi-
dence during a flood or if their residence within the county did not
matchtheir exposure classification. This type of exposure misclassifica-
tionis likely nondifferential and, therefore, would bias results toward
the null’’. Second, we cannot account for evacuation or displacement.
Flood-driven population movement, however, would likely lead to an
underestimation of the associations between flood and cause-specific
mortality as the true population during the flood would be smaller
than the official county population®, Third, the Global Flood Database
(GFD) does notinclude all floods that occurred during the study period;
Moderate Resolution Imaging Spectroradiometer (MODIS) satellite
imagery has limitations with resolving urban floods and thus they are
underrepresented in the dataset’. As a result, some tropical cyclones
that affected the East Coast were not included in the analysis, though
cause-specific mortality associated with tropical cyclone exposure has
beenstudied elsewhere and is consistent with these findings®. Fourth,
floods often coincide with storms that cause other hazards including
high winds and tornadoes, which are not included in the analysis and
could affect mortality. Fifth, the spatial unit of analysis was county
and counties contain exposure disparities that are not captured by
the analysis. Populations within counties are also heterogeneous,
and the ability to mitigate health effects related to flooding varies by
demographicand socioeconomic factors®. Future work maybe able to
study associations by smaller areal units as appropriate demographic
and outcome data become available. Sixth, short-term changes are
summarized into monthly associations due to the temporal resolution
of the mortality data. Our objective was to examine the association
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of large, persistent floods on mortality over multiple months, and as
such, the monthly resolution is appropriate for the analysis. Never-
theless, this analysis does not address immediate (that is, days after
flood) associations; further work evaluating the short-term effect of
persistent floods on daily and weekly mortality is necessary and would
complement this analysis. Seventh, the difference between the geo-
graphicrange for tropical cyclone-related flooding and the other flood
causes introduces the potential for spatial effect modification, though
our stratified model approach allows flexibility in model parameter
estimation to account for this.

Our analysis finds that the association of flooding with mortal-
ity was comparable to impactful climate-related disasters such as
hurricanes and other tropical cyclones and varied by cause of death,
sex, age group, flood cause and severity. These observations address
the gap in our understanding of post-flood changes in cause-specific
mortality. Preparing for flood-related health effects is asystemic public
policy challenge made urgent by population growth in flood-prone
regions and the intensification of flooding due to climate change’™.
Sea-levelrise, rapid snowpack melt and more powerful cyclonic storms
willincrease flood severity', but flooding unrelated to hurricanes may
be less likely to trigger an adequate disaster management response.
Effective and equitable preparation and response to flooding risk in
the United States is necessary to mitigate risks to public health.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgments, peer review information; details of author contribu-
tionsand competinginterests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-024-03358-z.
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Methods

This study was reviewed and approved by the Columbia University Insti-
tutional Review Board and was classified non-human subjects research,
though not exempt from an ethics review (protocol IRB-AAAT9710).

Flood exposure data

We obtained data on flood exposure in the continental United States
from the GFD that provides satellite-derived flood maps from 2001~
2018°. The GFD was developed using the Dartmouth Flood Observatory
(DFO), ageospatial event catalog of large floods from 1985 to present®,
to identify the location and timing of global flood events using satel-
lite data®’. The DFO defines large floods as those that generate media
coverage, which typically include floods that cause structural damage,
harm crops, and/or cause fatalities. Satellite imagery from MODIS,
operated by NASA and available since 2000, was acquired for dates and
watershedsidentified as aflood eventin the DFO catalog®. MODIS is fre-
quently used to map inundation® ** and provides two satellite images
per day with global coverage. We analyzed every MODIS image over
the relevant watershed for each day in the event date range reported
by the DFO. To determine flooded areas from MODIS imagery, surface
reflectance valuesin thevisible, near-infrared, and short-wave infrared
wavelengths were selected and harmonized at a spatial resolution of
250-meters’. A flood detection algorithm relying on the reflectance
values from these bands used a threshold approach to classify each
pixel as water or not water in every MODIS image over the relevant
watershed and dates reported in the DFO catalog. Specifically, reflec-
tance values from the near-infrared, red, and short-wave-infrared
bands were compared to fixed threshold reflectance values that were
empirically determined from United States Geological Survey river
gauge discharge data®. To reduce the possibility of false detections
primarily arising from cloud shadows, a landscape feature similar to
surface water, daily flood footprints were composited over 3 days to
ensure that pixel-level classifications (water or not water) were consist-
ent over multiple days. Inundated pixels were defined as those where
surface water was identified outside of permanent water bodies as
defined by the Global Surface Water dataset®.

In this study, we calculated flood exposure for each county by
intersecting the GFD flood event maps with gridded population
estimates from the Global Human Settlement Layer (GHSL) avail-
able for2000 and 2015 at 250-m resolution®**’. For floods occurring
in years without available gridded population data from GHSL, we
used the closest year of available GHSL data to estimate the per-
centage of the exposed population®. We categorized flood causes
as events resulting from heavy rain, tropical cyclone, snowmelt or
ice jam or dam break floods, consistent with the DFO classification
(Supplementary Table 4). Because our objective was to evaluate the
association between flood exposure and mortality, we restricted our
analysis to counties that experienced at least one flood event during
the study period.

Flood severity

For each flood event in the GFD, counties that experienced no flood-
ing were defined as unexposed; among counties that experienced
any flooding, we determined the severity of the flood exposure. Flood
severity has no universal definition®®, and multiple factors can be
used to define flood severity. We used the proportion of the popula-
tion affected by a flood event to define flood severity, because this
approach standardizes severity estimates across diverse flood causes
and geographic regions. For each county and flood (‘county-flood’)
event,the GFD included the populationin the inundated pixels and the
total county population based on estimates from the GHSL®. With this
pixel-level flood and population data, we calculated the proportion of
the county population residing in flooded areas for each county-flood
event during2001-2018. We generated a population exposure distribu-
tionusingthese values for all flood events collectively and for separate

flood causes (Supplementary Table 5). For each county-flood event, we
compared the percent of the population exposed to the all-flood and
flood cause-specific distributions to define exposure severity (Sup-
plementary Table 6). Mild floods were defined as those with population
exposure in <25" percentile, moderate floods were defined as those
with population exposure in 225" and <50" percentile, severe floods
were defined as those with population exposure in 50" percentile
and <75 percentile and very severe floods were defined as those with
population exposure in 275" percentile.

For each flood cause, we found the median and median maximal
flood duration (Supplementary Table 7); here, the median maximal
durationinacountyis defined as the median of the pixels with the long-
est flood duration across all flood cause-specific events. We assessed
median and median maximal duration by geographic region (Extended
DataFigs.4 andS5).

Temperature data

We obtained temperature data from the Parameter-elevation Regres-
sions on Independent Slopes Model (PRISM), which collects climate
observations from a range of monitoring networks’’. The model uses
quality control measures to generate a national temperature dataset
with full space and time coverage during the study period. We used
gridded daily estimates at 4-kmresolution to generate area-weighted
monthly average temperatures by county. Previous work comparing
gridded climate datasets has found that the validity of PRISM data are
equivalentto” or outperform’ alternatives and are well suited for stud-
iesthatinvolve complex and variable terrain’, such as throughout the
continental United States.

Outcomes

We used complete national death records fromthe National Center for
Health Statistics (NCHS) to identify monthly total and cause-specific
deathsbyage group, sex and county inthe United States (2001-2018).
To calculate monthly death rates by county, we linearly interpolated
county-, sex- and age group-specific annual population counts from
the NCHS bridged-race dataset (https://www.cdc.gov/nchs/nvss/
bridged_race.htm)®.

Cause-specific mortality outcomes

We coded the underlying causes of death according to the Interna-
tional Classification of Diseases (ICD) system (10" revision), and World
Health Organization Global Health Estimate cause categories’. We
grouped the deathrecords into six primary causes of death—cancers,
cardiovascular disease, infectious and parasitic diseases, injuries,
neuropsychiatric conditions and respiratory diseases—that comprise
86.2% of all deaths inincluded counties during the study period (Sup-
plementary Table 8).

Statistical methods
We used a Bayesian formulation of the conditional quasi-Poisson
model to analyze the county-level association between the number
of flood events per month and monthly death rates, building on pre-
vious analyses®”, that accounted for overdispersion in the mortality
data. The conditional approach examines differences within matched
strata (here, county-months) like a case-crossover study design, which
removes confounding bias due to factors that vary across strata’®.
Bayesian inference enables the ‘borrowing of information” across
county units and for the full distributional estimation of the param-
eters of interest””.

The percentage change indeath rates associated with flood expo-
sureis modeled as:

log (E[deaths,,]) = ap + Aemr) + Z?:o B,Exposurec(t_,) o

+n5 (t) + Temp,, + log (Population,,)
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where deaths,, is the number of all-cause or cause-specific deaths in
county cand month-year time ¢ (ranging from1to 216, the total number
of months in the study period); a, is the overall intercept and a,,, is
the county-month specific intercept, which is not estimated in the
conditional Poisson model, where m(t) is a function that extracts the
calendar month for time ¢; B, is the lag-specific coefficient (log rate
ratio) for flood exposure inlagged month [; Exposure,, is the count of
flood events in lagged month [, county c, at time ¢; ns(¢) is a natural
splinetermwith 3 degrees of freedom per year to account for seasonal-
ity andlong-term trends; 7., is asecond-order randomwalk term to
flexibly model the temperature-mortality relationship where temp,,is
the area-weighted monthly average temperaturein county cand time
t; and Population,, is the population in county cand time ¢, included as
apopulation offset.

Asin previous related work®’®, we used weakly informative priors
for parameter estimation. For the county-month intercepts a, and
the second-order random walk term 7, hyper-priors were defined on
the logarithm of the precision (1/0?) and modeled as logGamma(#, 5)
distributions withshape #=1andrate §=0.001. All of the other terms,
including the B, parameters, were modeled with Gaussian priors
N(0,1000).

All-cause and cause-specific mortality associated with flood events
is likely differential by flood cause and severity; therefore, we con-
ducted analyses separately by all-cause and cause-specific mortality
(cancers, cardiovascular diseases, infectious and parasitic diseases,
injuries, neuropsychiatric conditions, and respiratory diseases), flood
cause (all floods, heavy rain, tropical cyclone, snowmelt, and ice jam
or dam break), and flood severity (mild, moderate, severe, and very
severe). Because very severe flood events were most strongly associ-
ated with increased mortality across all flood causes and mortality
groups, we further analyzed associations stratified by age group (0-64
years and >65 years) and sex (female and male) for very severe floods
only. We presented results as percent changes in death rates per unit
increase in flood events in a month. As a supplementary analysis, we
calculated deaths per million due to flood exposure for each flood and
cause of death for each lag period (0-3 months). Monthly deaths per
million was calculated by multiplying effect estimates by monthly 2018
age-standardized death rates. We used the R-INLA (version 23.9.9) and
splines (version 4.3.1) packages to conduct the statistical analyses in
R (version3.6.3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The Global Flood Database (GFD) flood event data and Global Human
Settlement Layer (GHSL) population data can be downloaded from
https://global-flood-database.cloudtostreet.ai/. Data for individual
floods are available with no restrictions. Cause-specific mortal-
ity data with geographic information can be requested through
the National Center for Health Statistics (NCHS) at https://www.
cdc.gov/nchs/nvss/nvss-restricted-data.htm. Applicants must sub-
mit a project review form (https://www.cdc.gov/nchs/data/nvss/
nchs-research-review-application.pdf) to nvssrestricteddata@cdc.
gov and allow four to six weeks for processing. Parameter-elevation
Regression onIndependent Slopes Model (PRISM) temperature data
can be downloaded from https://prism.oregonstate.edu/recent/
with no restrictions.

Code availability

The R code for the statistical analysis is available on the
SPARK Lab GitHub repo at https://github.com/sparklabnyc/
usa_floods_mortality 2024.
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