Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Toward a biological definition of neuronal and glial synucleinopathies

Abstract

Cerebral accumulation of alpha-synuclein (αSyn) aggregates is the hallmark event in a group of neurodegenerative diseases—collectively called synucleinopathies—which include Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy. Currently, these are diagnosed by their clinical symptoms and definitively confirmed postmortem by the presence of αSyn deposits in the brain. Here, we summarize the drawbacks of the current clinical definition of synucleinopathies and outline the rationale for moving toward an earlier, biology-anchored definition of these disorders, with or without the presence of clinical symptoms. We underscore the utility of the αSyn seed amplification assay to detect aggregated αSyn in living patients and to differentiate between neuronal or glial αSyn pathology. We anticipate that a biological definition of synucleinopathies, if well-integrated with the current clinical classifications, will enable further understanding of the disease pathogenesis and contribute to the development of effective, disease-modifying therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The putative pathobiological pathway of synucleinopathies.
Fig. 2: A biologically anchored definition of synucleinopathies.
Fig. 3: Definition of neuronal and glial synuclein disease.
Fig. 4: Unknown nature and origin of αSyn seeds in CSF.

Similar content being viewed by others

References

  1. Bras, I. C. et al. Synucleinopathies: where we are and where we need to go. J. Neurochem. 153, 433–454 (2020).

    CAS  PubMed  Google Scholar 

  2. Goedert, M., Jakes, R. & Spillantini, M. G. The synucleinopathies: twenty years on. J. Parkinsons Dis. 7, S53–S71 (2017).

    Google Scholar 

  3. Poewe, W. et al. Diagnosis and management of Parkinson’s disease dementia. Int. J. Clin. Pract. 62, 1581–1587 (2008).

    CAS  PubMed  Google Scholar 

  4. Rocca, W. A. The future burden of Parkinson’s disease. Mov. Disord. 33, 8–9 (2018).

    PubMed  Google Scholar 

  5. Desai, U. et al. Epidemiology and economic burden of Lewy body dementia in the United States. Curr. Med. Res. Opin. 38, 1177–1188 (2022).

    PubMed  Google Scholar 

  6. Armstrong, M. J. & Okun, M. S. Diagnosis and treatment of Parkinson disease: a review. JAMA 323, 548–560 (2020).

    PubMed  Google Scholar 

  7. Rizzo, G. et al. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology 86, 566–576 (2016).

    PubMed  Google Scholar 

  8. Adler, C. H. et al. Clinical diagnostic accuracy of early/advanced parkinson disease: an updated clinicopathologic study. Neurol. Clin. Pract. 11, e414–e421 (2021).

    PubMed  PubMed Central  Google Scholar 

  9. Wenning, G. K., Krismer, F. & Poewe, W. New insights into atypical parkinsonism. Curr. Opin. Neurol. 24, 331–338 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kon, T., Tomiyama, M. & Wakabayashi, K. Neuropathology of Lewy body disease: clinicopathological crosstalk between typical and atypical cases. Neuropathology 40, 30–39 (2020).

    CAS  PubMed  Google Scholar 

  11. Twohig, D. & Nielsen, H. M. Alpha-synuclein in the pathophysiology of Alzheimer’s disease. Mol. Neurodegener. 14, 23 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Chung, E. J. et al. Clinical features of Alzheimer disease with and without lewy bodies. JAMA Neurol. 72, 789–796 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Palmqvist, S. et al. Cognitive effects of Lewy body pathology in clinically unimpaired individuals. Nat. Med. 29, 1971–1978 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Quadalti, C. et al. Clinical effects of Lewy body pathology in cognitively impaired individuals. Nat. Med. 29, 1964–1970 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hampel, H. et al. Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat. Rev. Neurol. 17, 580–589 (2021).

    PubMed  Google Scholar 

  16. Jack, C. R. Jr. et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14, 535–562 (2018).

    PubMed  Google Scholar 

  17. Jack, C. R. Jr. et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87, 539–547 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoglinger, G. U. et al. A biological classification of Parkinson’s disease: the SynNeurGe research diagnostic criteria. Lancet Neurol. 23, 191–204 (2024).

    PubMed  Google Scholar 

  19. Simuni, T. et al. A biological definition of neuronal alpha-synuclein disease: towards an integrated staging system for research. Lancet Neurol. 23, 178–190 (2024).

    CAS  PubMed  Google Scholar 

  20. Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601 (2015).

    PubMed  Google Scholar 

  21. McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89, 88–100 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Gilman, S. et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71, 670–676 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wenning, G. K. et al. The movement disorder society criteria for the diagnosis of multiple system atrophy. Mov. Disord. 37, 1131–1148 (2022).

    PubMed  PubMed Central  Google Scholar 

  24. Greffard, S. et al. Motor score of the unified Parkinson disease rating scale as a good predictor of Lewy body-associated neuronal loss in the substantia nigra. Arch. Neurol. 63, 584–588 (2006).

    PubMed  Google Scholar 

  25. Neikrug, A. B. et al. Parkinson’s disease and REM sleep behavior disorder result in increased non-motor symptoms. Sleep. Med. 15, 959–966 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Mahlknecht, P., Seppi, K. & Poewe, W. The concept of prodromal Parkinson’s disease. J. Parkinsons Dis. 5, 681–697 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Berg, D. et al. Prodromal Parkinson disease subtypes — key to understanding heterogeneity. Nat. Rev. Neurol. 17, 349–361 (2021).

    PubMed  Google Scholar 

  28. Berg, D. et al. MDS research criteria for prodromal Parkinson’s disease. Mov. Disord. 30, 1600–1611 (2015).

    PubMed  Google Scholar 

  29. van de Beek, M. et al. Prodromal dementia with Lewy bodies: clinical characterization and predictors of progression. Mov. Disord. 35, 859–867 (2020).

    PubMed  PubMed Central  Google Scholar 

  30. Wyman-Chick, K. A. et al. Prodromal dementia with Lewy bodies: evolution of symptoms and predictors of dementia onset. J. Geriatr. Psychiatry Neurol. 35, 527–534 (2021).

  31. McKeith, I. G. et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology 94, 743–755 (2020).

    PubMed  PubMed Central  Google Scholar 

  32. Fereshtehnejad, S. M. et al. Evolution of prodromal Parkinson’s disease and dementia with Lewy bodies: a prospective study. Brain 142, 2051–2067 (2019).

    PubMed  Google Scholar 

  33. Williams, D. R. & Litvan, I. Parkinsonian syndromes. Continuum19, 1189–1212 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. Arvanitakis, Z., Shah, R. C. & Bennett, D. A. Diagnosis and management of dementia: review. JAMA 322, 1589–1599 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Park, K. W. et al. Dementia with Lewy bodies versus Alzheimer’s disease and Parkinson’s disease dementia: a comparison of cognitive profiles. J. Clin. Neurol. 7, 19–24 (2011).

    PubMed  PubMed Central  Google Scholar 

  36. Hohl, U., Tiraboschi, P., Hansen, L. A., Thal, L. J. & Corey-Bloom, J. Diagnostic accuracy of dementia with Lewy bodies. Arch. Neurol. 57, 347–351 (2000).

    CAS  PubMed  Google Scholar 

  37. Tiraboschi, P. et al. What best differentiates Lewy body from Alzheimer’s disease in early-stage dementia? Brain 129, 729–735 (2006).

    PubMed  Google Scholar 

  38. McFarthing, K., Rafaloff, G., Baptista, M. A. S., Wyse, R. K. & Stott, S. R. W. Parkinson’s disease drug therapies in the clinical trial pipeline: 2021 update. J. Parkinsons Dis. 11, 891–903 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Salvado, G. et al. Disease staging of Alzheimer’s disease using a CSF-based biomarker model. Nat. Aging 4, 694–708 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Reiman, E. M. Drug trial for Alzheimer’s disease is a game changer. Nature 615, 42–43 (2023).

    PubMed  Google Scholar 

  41. Huang, L. K., Kuan, Y. C., Lin, H. W. & Hu, C. J. Clinical trials of new drugs for Alzheimer disease: a 2020–2023 update. J. Biomed. Sci. 30, 83 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Darweesh, S. K. L., Sampaio, C. & Bloem, B. R. Has the time come to redefine Parkinson’s disease? Lancet Neurol. 23, 130–133 (2024).

    PubMed  Google Scholar 

  43. Dickson, D. W. Neuropathology of Parkinson disease. Parkinsonism Relat. Disord. 46, S30–S33 (2018).

    PubMed  Google Scholar 

  44. Miller, K. M., Mercado, N. M. & Sortwell, C. E. Synucleinopathy-associated pathogenesis in Parkinson’s disease and the potential for brain-derived neurotrophic factor. NPJ Parkinsons Dis. 7, 35 (2021).

    PubMed  PubMed Central  Google Scholar 

  45. Parnetti, L. et al. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol. 18, 573–586 (2019).

    CAS  PubMed  Google Scholar 

  46. Berman, S. B. & Miller-Patterson, C. PD and DLB: brain imaging in Parkinson’s disease and dementia with Lewy bodies. Prog. Mol. Biol. Transl. Sci. 165, 167–185 (2019).

    CAS  PubMed  Google Scholar 

  47. Chen-Plotkin, A. S. et al. Finding useful biomarkers for Parkinson’s disease. Sci. Transl. Med. 10, eaam6003 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Korat, S. et al. Alpha-synuclein PET tracer development—an overview about current efforts. Pharmaceuticals 14, 847 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Alzghool, O. M., van Dongen, G., van de Giessen, E., Schoonmade, L. & Beaino, W. Alpha-synuclein radiotracer development and in vivo imaging: recent advancements and new perspectives. Mov. Disord. 37, 936–948 (2022).

    PubMed  PubMed Central  Google Scholar 

  50. Eusebi, P. et al. Diagnostic utility of cerebrospinal fluid alpha-synuclein in Parkinson’s disease: a systematic review and meta-analysis. Mov. Disord. 32, 1389–1400 (2017).

    CAS  PubMed  Google Scholar 

  51. Donadio, V. et al. Skin nerve alpha-synuclein deposits: a biomarker for idiopathic Parkinson disease. Neurology 82, 1362–1369 (2014).

    CAS  PubMed  Google Scholar 

  52. Simonsen, A. H. et al. The utility of alpha-synuclein as biofluid marker in neurodegenerative diseases: a systematic review of the literature. Biomark. Med. 10, 19–34 (2015).

  53. Atik, A., Stewart, T. & Zhang, J. Alpha-synuclein as a biomarker for parkinson’s disease. Brain Pathol. 26, 410–418 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao, L. et al. Cerebrospinal fluid alpha-synuclein as a biomarker for Parkinson’s disease diagnosis: a systematic review and meta-analysis. Int. J. Neurosci. 125, 645–654 (2015).

    CAS  PubMed  Google Scholar 

  55. Ganguly, U. et al. Alpha-synuclein as a biomarker of Parkinson’s disease: good, but not good enough. Front. Aging Neurosci. 13, 702639 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hall, S. et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol. 69, 1445–1452 (2012).

    PubMed  Google Scholar 

  57. Soto, C. Alpha-synuclein seed amplification technology for Parkinson’s disease and related synucleinopathies. Trends Biotechnol. 42, 829–841 (2024).

    CAS  PubMed  Google Scholar 

  58. Concha-Marambio, L., Pritzkow, S., Shahnawaz, M., Farris, C. M. & Soto, C. Seed amplification assay for the detection of pathologic alpha-synuclein aggregates in cerebrospinal fluid. Nat. Protoc. 18, 1179–1196 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Shahnawaz, M. et al. Development of a biochemical diagnosis of parkinson disease by detection of alpha-synuclein misfolded aggregates in cerebrospinal fluid. JAMA Neurol. 74, 163–172 (2017).

    PubMed  Google Scholar 

  60. Fairfoul, G. et al. Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann. Clin. Transl. Neurol. 3, 812–818 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Siderowf, A. et al. Assessment of heterogeneity among participants in the Parkinson’s Progression Markers Initiative cohort using alpha-synuclein seed amplification: a cross-sectional study. Lancet Neurol. 22, 407–417 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Concha-Marambio, L. et al. Accurate detection of alpha-synuclein seeds in cerebrospinal fluid from isolated rapid eye movement sleep behavior disorder and patients with Parkinson’s disease in the DeNovo Parkinson (DeNoPa) cohort. Mov. Disord. 38, 567–578 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Russo, M. J. et al. High diagnostic performance of independent alpha-synuclein seed amplification assays for detection of early Parkinson’s disease. Acta Neuropathol. Commun. 9, 179 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Concha-Marambio, L. et al. Seed amplification assay to diagnose early Parkinson’s and predict dopaminergic deficit progression. Mov. Disord. 36, 2444–2446 (2021).

    PubMed  PubMed Central  Google Scholar 

  65. Singer, W. et al. Alpha-synuclein oligomers and neurofilament light chain predict phenoconversion of pure autonomic failure. Ann. Neurol. 89, 1212–1220 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Shahnawaz, M. et al. Discriminating alpha-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578, 273–277 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Singer, W. et al. Alpha-synuclein oligomers and neurofilament light chain in spinal fluid differentiate multiple system atrophy from lewy body synucleinopathies. Ann. Neurol. 88, 503–512 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kang, U. J. et al. Comparative study of cerebrospinal fluid alpha-synuclein seeding aggregation assays for diagnosis of Parkinson’s disease. Mov. Disord. 34, 536–544 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nakagaki, T., Nishida, N. & Satoh, K. Development of alpha-synuclein real-time quaking-induced conversion as a diagnostic method for alpha-synucleinopathies. Front. Aging Neurosci. 13, 703984 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rossi, M. et al. Diagnostic value of the CSF alpha-synuclein real-time quaking-induced conversion assay at the prodromal MCI stage of dementia with Lewy bodies. Neurology 97, e930–e940 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mammana, A. et al. RT-QuIC detection of pathological alpha-synuclein in skin punches of patients with Lewy body disease. Mov. Disord. 36, 2173–2177 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Han, J. Y., Shin, C. & Choi, Y. P. Preclinical detection of alpha-synuclein seeding activity in the colon of a transgenic mouse model of synucleinopathy by RT-QuIC. Viruses 13, 759 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bargar, C. et al. Streamlined alpha-synuclein RT-QuIC assay for various biospecimens in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol. Commun. 9, 62 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Manne, S. et al. Alpha-synuclein real-time quaking-induced conversion in the submandibular glands of Parkinson’s disease patients. Mov. Disord. 35, 268–278 (2020).

    CAS  PubMed  Google Scholar 

  75. Wang, Z. et al. Skin alpha-synuclein aggregation seeding activity as a novel biomarker for Parkinson disease. JAMA Neurol. 78, 1–11 (2020).

    PubMed  PubMed Central  Google Scholar 

  76. Manne, S. et al. Blinded RT-QuIC analysis of alpha-synuclein biomarker in skin tissue from Parkinson’s disease patients. Mov. Disord. 35, 2230–2239 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Park, S. J. et al. Establishment of method for the determination of aggregated alpha-synuclein in DLB patient using RT-QuIC assay. Protein Pept. Lett. 28, 115–120 (2020).

    Google Scholar 

  78. Rossi, M. et al. Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol. 140, 49–62 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Han, J. Y., Jang, H. S., Green, A. J. E. & Choi, Y. P. RT-QuIC-based detection of alpha-synuclein seeding activity in brains of dementia with Lewy body patients and of a transgenic mouse model of synucleinopathy. Prion 14, 88–94 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bongianni, M. et al. Alpha-synuclein RT-QuIC assay in cerebrospinal fluid of patients with dementia with Lewy bodies. Ann. Clin. Transl. Neurol. 6, 2120–2126 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Groveman, B. R. et al. Rapid and ultra-sensitive quantitation of disease-associated alpha-synuclein seeds in brain and cerebrospinal fluid by alphaSyn RT-QuIC. Acta Neuropathol. Commun. 6, 7 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Iranzo, A. et al. Detection of alpha-synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: a longitudinal observational study. Lancet Neurol. 20, 203–212 (2021).

    CAS  PubMed  Google Scholar 

  83. Okuzumi, A. et al. Propagative alpha-synuclein seeds as serum biomarkers for synucleinopathies. Nat. Med. 29, 1448–1455 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Iranzo, A. et al. Misfolded alpha-synuclein assessment in the skin and CSF by RT-QuIC in isolated REM sleep behavior disorder. Neurology 100, e1944–e1954 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kuzkina, A. et al. Dermal real-time quaking-induced conversion is a sensitive marker to confirm isolated rapid eye movement sleep behavior disorder as an early alpha-synucleinopathy. Mov. Disord. 38, 1077–1082 (2023).

    CAS  PubMed  Google Scholar 

  86. Vivacqua, G. et al. Salivary alpha-synuclein RT-QuIC correlates with disease severity in de novo Parkinson’s disease. Mov. Disord. 38, 153–155 (2023).

    CAS  PubMed  Google Scholar 

  87. Bongianni, M. et al. Olfactory swab sampling optimization for alpha-synuclein aggregate detection in patients with Parkinson’s disease. Transl. Neurodegener. 11, 37 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Luan, M. et al. Diagnostic value of salivary real-time quaking-induced conversion in Parkinson’s disease and multiple system atrophy. Mov. Disord. 37, 1059–1063 (2022).

    CAS  PubMed  Google Scholar 

  89. Fernandes Gomes, B. et al. Alpha-synuclein seed amplification assay as a diagnostic tool for parkinsonian disorders. Parkinsonism Relat. Disord. 117, 105807 (2023).

  90. Arnold, M. R. et al. Alpha-synuclein seed amplification in CSF and brain from patients with different brain distributions of pathological alpha-synuclein in the context of co-pathology and non-LBD diagnoses. Ann. Neurol. 92, 650–662 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Chahine, L. M. et al. Central and peripheral alpha-synuclein in Parkinson disease detected by seed amplification assay. Ann. Clin. Transl. Neurol. 10, 696–705 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kluge, A. et al. Detection of neuron-derived pathological alpha-synuclein in blood. Brain 145, 3058–3071 (2022).

    PubMed  Google Scholar 

  93. Koga, S., Sekiya, H., Kondru, N., Ross, O. A. & Dickson, D. W. Neuropathology and molecular diagnosis of synucleinopathies. Mol. Neurodegener. 16, 83 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Pagano, G., Niccolini, F. & Politis, M. Imaging in Parkinson’s disease. Clin. Med. 16, 371–375 (2016).

    Google Scholar 

  95. Bega, D. et al. Clinical utility of DaTscan in patients with suspected Parkinsonian syndrome: a systematic review and meta-analysis. NPJ Parkinsons Dis. 7, 43 (2021).

    PubMed  PubMed Central  Google Scholar 

  96. Chahine, L. M. et al. Dopamine transporter imaging predicts clinically-defined alpha-synucleinopathy in REM sleep behavior disorder. Ann. Clin. Transl. Neurol. 8, 201–212 (2021).

    CAS  PubMed  Google Scholar 

  97. Siderowf, A. et al. Clinical and imaging progression in the PARS Cohort: long-term follow-up. Mov. Disord. 35, 1550–1557 (2020).

    CAS  PubMed  Google Scholar 

  98. De Micco, R., Russo, A. & Tessitore, A. Structural MRI in idiopathic Parkinson’s disease. Int Rev. Neurobiol. 141, 405–438 (2018).

    PubMed  Google Scholar 

  99. Catalan, M. et al. (123)I-metaiodobenzylguanidine myocardial scintigraphy in discriminating degenerative parkinsonisms. Mov. Disord. Clin. Pract. 8, 717–724 (2021).

    PubMed  PubMed Central  Google Scholar 

  100. Snow, B. J. Fluorodopa PET scanning in Parkinson’s disease. Adv. Neurol. 69, 449–457 (1996).

    CAS  PubMed  Google Scholar 

  101. Meyer, P. T., Frings, L., Rucker, G. & Hellwig, S. (18)F-FDG PET in parkinsonism: differential diagnosis and evaluation of cognitive impairment. J. Nucl. Med. 58, 1888–1898 (2017).

    CAS  PubMed  Google Scholar 

  102. Schneider, S. A. & Alcalay, R. N. Neuropathology of genetic synucleinopathies with parkinsonism: review of the literature. Mov. Disord. 32, 1504–1523 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. McKeith, I. G. Spectrum of Parkinson’s disease, Parkinson’s dementia, and Lewy body dementia. Neurol. Clin. 18, 865–902 (2000).

    CAS  PubMed  Google Scholar 

  104. Jellinger, K. A. & Korczyn, A. D. Are dementia with Lewy bodies and Parkinson’s disease dementia the same disease? BMC Med 16, 34 (2018).

    PubMed  PubMed Central  Google Scholar 

  105. Weintraub, D. What’s in a name? The time has come to unify Parkinson’s disease and dementia with Lewy bodies. Mov. Disord. 38, 1977–1981 (2023).

    PubMed  Google Scholar 

  106. Yang, Y. et al. Structures of alpha-synuclein filaments from human brains with Lewy pathology. Nature 610, 791–795 (2022).

    CAS  PubMed  Google Scholar 

  107. Valera, E. & Masliah, E. The neuropathology of multiple system atrophy and its therapeutic implications. Auton. Neurosci. 211, 1–6 (2018).

    CAS  PubMed  Google Scholar 

  108. Ma, Y. et al. Sensitivity and specificity of a seed amplification assay for diagnosis of multiple system atrophy: a multicentre cohort study. Lancet Neurol. 23, 1225–1237 (2024).

    CAS  PubMed  Google Scholar 

  109. Xue, C., Lin, T. Y., Chang, D. & Guo, Z. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R. Soc. Open Sci. 4, 160696 (2017).

    PubMed  PubMed Central  Google Scholar 

  110. Brück, D. et al. Glia and alpha-synuclein in neurodegeneration: a complex interaction. Neurobiol. Dis. 85, 262–274 (2016).

    PubMed  Google Scholar 

  111. Liguori, R. et al. A comparative blind study between skin biopsy and seed amplification assay to disclose pathological alpha-synuclein in RBD. NPJ Parkinsons Dis. 9, 34 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Donadio, V. et al. Skin biopsy may help to distinguish multiple system atrophy-parkinsonism from Parkinson’s disease with orthostatic hypotension. Mov. Disord. 35, 1649–1657 (2020).

    CAS  PubMed  Google Scholar 

  113. Funayama, M., Nishioka, K., Li, Y. & Hattori, N. Molecular genetics of Parkinson’s disease: contributions and global trends. J. Hum. Genet 68, 125–130 (2023).

    PubMed  Google Scholar 

  114. Day, J. O. & Mullin, S. The genetics of Parkinson’s disease and implications for clinical practice. Genes 12, 1006 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Schneider, S. A., Hizli, B. & Alcalay, R. N. Emerging targeted therapeutics for genetic subtypes of parkinsonism. Neurotherapeutics 17, 1378–1392 (2020).

    PubMed  PubMed Central  Google Scholar 

  116. Soto, C. & Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332–1340 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Uchikado, H., Lin, W. L., DeLucia, M. W. & Dickson, D. W. Alzheimer disease with amygdala Lewy bodies: a distinct form of alpha-synucleinopathy. J. Neuropathol. Exp. Neurol. 65, 685–697 (2006).

    CAS  PubMed  Google Scholar 

  118. Bellomo, G. et al. Investigating alpha-synuclein co-pathology in Alzheimer’s disease by means of cerebrospinal fluid alpha-synuclein seed amplification assay. Alzheimers Dement. 20, 2444–2452 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Irwin, D. J. & Hurtig, H. I. The contribution of tau, amyloid-beta and alpha-synuclein pathology to dementia in Lewy body disorders. J. Alzheimers Dis. Parkinsonism 8, 444 (2018).

  120. Salvadores, N., Shahnawaz, M., Scarpini, E., Tagliavini, F. & Soto, C. Detection of misfolded abeta oligomers for sensitive biochemical diagnosis of Alzheimer’s disease. Cell Rep. 7, 261–268 (2014).

    CAS  PubMed  Google Scholar 

  121. kraus, A. et al. Seeding selectivity and ultrasensitive detection of tau aggregate conformers of Alzheimer disease. Acta Neuropathol. 137, 585–598 (2019).

    PubMed  Google Scholar 

  122. Scialo, C. et al. TDP-43 real-time quaking induced conversion reaction optimization and detection of seeding activity in CSF of amyotrophic lateral sclerosis and frontotemporal dementia patients. Brain Commun. 2, fcaa142 (2020).

    PubMed  PubMed Central  Google Scholar 

  123. Ingelsson, M. Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other Lewy body disorders. Front Neurosci. 10, 408 (2016).

    PubMed  PubMed Central  Google Scholar 

  124. Samudra, N. et al. Clinicopathological correlation of cerebrospinal fluid alpha-synuclein seed amplification assay in a behavioral neurology autopsy cohort. Alzheimers Dement. 20, 3334–3341 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Goedert, M., Masuda-Suzukake, M. & Falcon, B. Like prions: the propagation of aggregated tau and alpha-synuclein in neurodegeneration. Brain 140, 266–278 (2017).

    PubMed  Google Scholar 

  126. Grossauer, A. et al. Alpha-synuclein seed amplification assays in the diagnosis of synucleinopathies using cerebrospinal fluid-a systematic review and meta-analysis. Mov. Disord. Clin. Pract. 10, 737–747 (2023).

    PubMed  PubMed Central  Google Scholar 

  127. Food and Drug Administration. Drug development tool letter of support DDT-MBQ-000157; https://www.fda.gov/media/181368/download (19 August 2024).

Download references

Acknowledgements

C.S. received funding from NIH grants R01AG055053, U24AG079685 and R01AG079685, as well as grants from the Michael J. Fox Foundation for Parkinson’s Research (MJFF). B.M. is a member of the executive steering committee of the Parkinson Progression Marker Initiative of the MJFF and has received research funding from MJFF and Aligning Science Across Parkinson’s disease (ASAP, CRN). O.H. is supported by the European Research Council (ADG-101096455), the Alzheimer’s Association (ZEN24-1069572, SG-23-1061717), the GHR Foundation, the Swedish Research Council (2022-00775), ERA PerMed (ERAPERMED2021-184), the Knut and Alice Wallenberg foundation (2022-0231), Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson’s disease) at Lund University, the Swedish Alzheimer Foundation (AF-980907), the Swedish Brain Foundation (FO2021-0293), the Parkinson Foundation of Sweden (1412/22), the Cure Alzheimer’s Fund, the Rönström Family Foundation, the Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse, Skåne University Hospital Foundation (2020-O000028), the Regionalt Forskningsstöd (2022-1259) and the Swedish federal government under the ALF agreement (2022-Projekt0080). U.J.K. is supported by NIH grants R01NS131658, U01NS113851 and U01NS122419, R01NS133742 and U01NS126406. R.N.A. received funding from the Parkinson’s Foundation, the NIH, the Department of Defense, the MJFF, and the Silverstein Foundation for GBA/PD. D.S. is funded by Abbvie, the American Parkinson Disease Association, the MJFF, The National Parkinson Foundation, the Alabama Department of Commerce, the Alabama Innovation Fund, Genentech, the Department of Defense, and NIH grant P50NS108675. D.G. is funded by NIH grants P30AG062429 and U01NS100610. K.P. is a member of the executive steering committee of the Parkinson’s Progression Marker Initiative of the MJFF and has received funding from the MJFF and NIH (NS115114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Soto.

Ethics declarations

Competing interests

C.S. is a founder, chief scientific officer, shareholder and member of the board of directors of Amprion, a biotechnology company that focuses on the commercial use of seed amplification assays for high-sensitivity detection of misfolded protein aggregates involved in various neurodegenerative diseases. The University of Texas Health Science Center has licensed patents to Amprion. B.M. is scientific advisor to Amprion and has received honoraria for consultancy and/or educational presentations from GE, Bial, Roche, Biogen and AbbVie. O.H. has acquired research support (for the institution) from AVID Radiopharmaceuticals, Biogen, C2N Diagnostics, Eli Lilly, Eisai, Fujirebio, GE Healthcare and Roche. In the past 2 years, he has received consultancy or speaker fees from AC Immune, Alzpath, BioArctic, Biogen, Bristol Meyer Squibb, Cerveau, Eisai, Eli Lilly, Fujirebio, Merck, Novartis, Novo Nordisk, Roche, Sanofi and Siemens. U.J.K. is on the scientific advisory board of Amprion and consults for UCB, NurrOn and HanAll. R.N.A. has received consulting fees from Biogen, Biohaven, Capsida, Gain Therapeutics, Sanofi, Servier, Takeda and Vanqua Bio. D.S. is a consultant for or received honoraria from Abbvie, Alnylam Pharmaceutics, Appello, Biohaven Pharmaceuticals, BlueRock Therapeutics, Coave Therapeutics Curium Pharma, F. Hoffman-La Roche, Eli Lilly USA, Sanofi-Aventis and Theravance. K.M. declares support from his institution (Institute for Neurodegenerative Disorders) from the MJFF, and consultancies for Invicro, Xing Imaging, Ixico, the MJFF, Roche, Calico, Coave, Neuron23, Orbimed, Biohaven, Sanofi, Koneksa, Merck, Lilly, Inhibikase, Neuramedy, IRLabs and Prothena. D.G. has served as a consultant for GE Healthcare, Eisai and Biogen. K.P. is a scientific advisor to Amprion and has served as a consultant for Curasen, Novartis, Biohaven and Neuron23.

Peer review

Peer review information

Nature Medicine thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto, C., Mollenhauer, B., Hansson, O. et al. Toward a biological definition of neuronal and glial synucleinopathies. Nat Med 31, 396–408 (2025). https://doi.org/10.1038/s41591-024-03469-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41591-024-03469-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing