Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical translation of microbiome research

Abstract

The landscape of clinical microbiome research has dramatically evolved over the past decade. By leveraging in vivo and in vitro experimentation, multiomic approaches and computational biology, we have uncovered mechanisms of action and microbial metrics of association and identified effective ways to modify the microbiome in many diseases and treatment modalities. This Review explores recent advances in the clinical application of microbiome research over the past 5 years, while acknowledging existing barriers and highlighting opportunities. We focus on the translation of microbiome research into clinical practice, spearheaded by Food and Drug Administration (FDA)-approved microbiome therapies for recurrent Clostridioides difficile infections and the emerging fields of microbiome-based diagnostics and therapeutics. We highlight key examples of studies demonstrating how microbiome mechanisms, metrics and modifiers can advance clinical practice. We also discuss forward-looking perspectives on key challenges and opportunities toward integrating microbiome data into routine clinical practice, precision medicine and personalized healthcare and nutrition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustrating mechanisms, metrics and modifiers through the example of IBD.
Fig. 2: Timeline of product discovery and development for the FDA-approved medication VOWST.

Similar content being viewed by others

References

  1. Chang, D. et al. Gut Microbiome Wellness Index 2 enhances health status prediction from gut microbiome taxonomic profiles. Nat. Commun. 15, 7447 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hickman, B. et al. Gut microbiota wellbeing index predicts overall health in a cohort of 1000 infants. Nat. Commun. 15, 8323 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schmartz, G. P. et al. Decoding the diagnostic and therapeutic potential of microbiota using pan-body pan-disease microbiomics. Nat. Commun. 15, 8261 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weingarden, A. et al. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome 3, 10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ross, F. C. et al. The interplay between diet and the gut microbiome: implications for health and disease. Nat. Rev. Microbiol. 22, 671–686 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Shanahan, F., Ghosh, T. S. & O’Toole, P. W. The healthy microbiome—what is the definition of a healthy gut microbiome? Gastroenterology 160, 483–494 (2021).

    Article  PubMed  Google Scholar 

  7. Mensah, G. E., Maseng, M. G., Allard, S. & Gilbert, J. A. in Precision Nutrition (eds Heber, D. et al.) Ch. 6 (Elsevier, 2024).

  8. Quinn-Bohmann, N. et al. Microbial community-scale metabolic modelling predicts personalized short-chain fatty acid production profiles in the human gut. Nat. Microbiol. 9, 1700–1712 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Armstrong, G. et al. Swapping metagenomics preprocessing pipeline components offers speed and sensitivity increases. mSystems 7, e0137821 (2022).

    Article  PubMed  Google Scholar 

  10. Piperni, E. et al. Intestinal Blastocystis is linked to healthier diets and more favorable cardiometabolic outcomes in 56,989 individuals from 32 countries. Cell 187, 4554–4570 (2024).

  11. Bermingham, K. M. et al. Effects of a personalized nutrition program on cardiometabolic health: a randomized controlled trial. Nat. Med. 30, 1888–1897 (2024).

  12. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gilbert, J. A. & Lynch, S. V. Community ecology as a framework for human microbiome research. Nat. Med. 25, 884–889 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sala, A. et al. A new phenotype in Candida–epithelial cell interaction distinguishes colonization- versus vulvovaginal candidiasis-associated strains. mBio 14, e0010723 (2023).

  16. Abt, M. C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steed, A. L. et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357, 498–502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Erttmann, S. F. et al. The gut microbiota prime systemic antiviral immunity via the cGAS–STING–IFN-I axis. Immunity 55, 847–861 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Vasquez Ayala, A. et al. Commensal bacteria promote type I interferon signaling to maintain immune tolerance in mice. J. Exp. Med. 221, e20230063 (2024).

  20. Glick, V. J. et al. Vaginal lactobacilli produce anti-inflammatory β-carboline compounds. Cell Host Microbe 32, 1897–1909 (2024).

  21. Kwon, M. S. & Lee, H. K. Host and microbiome interplay shapes the vaginal microenvironment. Front. Immunol. 13, 919728 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pramanick, R. et al. Vaginal microbiota of asymptomatic bacterial vaginosis and vulvovaginal candidiasis: are they different from normal microbiota? Microb. Pathog. 134, 103599 (2019).

    Article  PubMed  Google Scholar 

  23. McCauley, K. E. et al. Heritable vaginal bacteria influence immune tolerance and relate to early-life markers of allergic sensitization in infancy. Cell Rep. Med. 3, 100713 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lebeer, S. et al. A citizen-science-enabled catalogue of the vaginal microbiome and associated factors. Nat. Microbiol. 8, 2183–2195 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spencer, B. L. et al. Heterogeneity of the group B streptococcal type VII secretion system and influence on colonization of the female genital tract. Mol. Microbiol. 120, 258–275 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heath, P. T. & Jardine, L. A. Neonatal infections: group B streptococcus. BMJ Clin. Evid. 2014, 0323 (2014).

  27. Ni, J. et al. Early antibiotic exposure and development of asthma and allergic rhinitis in childhood. BMC Pediatr. 19, 225 (2019).

    Google Scholar 

  28. Chelimo, C., Camargo, C. A. Jr., Morton, S. M. B. & Grant, C. C. Association of repeated antibiotic exposure up to age 4 years with body mass at age 4.5 years. JAMA Netw. Open 3, e1917577 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Reid, G., Beuerman, D., Heinemann, C. & Bruce, A. W. Probiotic Lactobacillus dose required to restore and maintain a normal vaginal flora. FEMS Immunol. Med. Microbiol. 32, 37–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Lev-Sagie, A. et al. Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat. Med. 25, 1500–1504 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Wrønding, T. et al. Antibiotic-free vaginal microbiota transplant with donor engraftment, dysbiosis resolution and live birth after recurrent pregnancy loss: a proof of concept case study. EClinicalMedicine 61, 102070 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Petricevic, L. et al. Effect of vaginal probiotics containing Lactobacillus casei rhamnosus (Lcr regenerans) on vaginal dysbiotic microbiota and pregnancy outcome, prospective, randomized study. Sci. Rep. 13, 7129 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ali, A., Jørgensen, J. S. & Lamont, R. F. The contribution of bacteriophages to the aetiology and treatment of the bacterial vaginosis syndrome. Fac. Rev. 11, 8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Landlinger, C. et al. Engineered phage endolysin eliminates Gardnerella biofilm without damaging beneficial bacteria in bacterial vaginosis ex vivo. Pathogens 10, 54 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Al-Anany, A. M. et al. Phage therapy in the management of urinary tract infections: a comprehensive systematic review. Phage 4, 112–127 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bogaert, D. et al. Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites. Cell Host Microbe 31, 447–460 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Jašarević, E. et al. The composition of human vaginal microbiota transferred at birth affects offspring health in a mouse model. Nat. Commun. 12, 6289 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li, H.-T., Zhou, Y.-B. & Liu, J.-M. The impact of cesarean section on offspring overweight and obesity: a systematic review and meta-analysis. Int. J. Obes. 37, 893–899 (2013).

    Article  Google Scholar 

  39. Kuhle, S., Tong, O. S. & Woolcott, C. G. Association between caesarean section and childhood obesity: a systematic review and meta‐analysis. Obes. Rev. 16, 295–303 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Yuan, C. et al. Association between cesarean birth and risk of obesity in offspring in childhood, adolescence, and early adulthood. JAMA Pediatr. 170, e162385 (2016).

  41. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mueller, N. T. et al. Maternal bacterial engraftment in multiple body sites of cesarean section born neonates after vaginal seeding—a randomized controlled trial. mBio 14, e0049123 (2023).

    Article  PubMed  Google Scholar 

  43. Korpela, K. et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 183, 324–334 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Dubois, L. et al. Paternal and induced gut microbiota seeding complement mother-to-infant transmission. Cell Host Microbe 32, 1011–1024 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. Song, S. J. et al. Naturalization of the microbiota developmental trajectory of cesarean-born neonates after vaginal seeding. Med 2, 951–964 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Bode, L. et al. It’s alive: microbes and cells in human milk and their potential benefits to mother and infant. Adv. Nutr. 5, 571–573 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xu, D. et al. Complement in breast milk modifies offspring gut microbiota to promote infant health. Cell 187, 750–763 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Johnson-Hence, C. B. et al. Stability and heterogeneity in the antimicrobiota reactivity of human milk-derived immunoglobulin A. J. Exp. Med. 220, e20220839 (2023).

  49. Christian, P. et al. The need to study human milk as a biological system. Am. J. Clin. Nutr. 113, 1063–1072 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shenhav, L. et al. Microbial colonization programs are structured by breastfeeding and guide healthy respiratory development. Cell 187, 5431–5452 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Barratt, M. J. et al. Bifidobacterium infantis treatment promotes weight gain in Bangladeshi infants with severe acute malnutrition. Sci. Transl. Med. 14, eabk1107 (2022).

  53. Nguyen, M. et al. Impact of probiotic B. infantis EVC001 feeding in premature infants on the gut microbiome, nosocomially acquired antibiotic resistance, and enteric inflammation. Front. Pediatr. 9, 618009 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. van den Akker, C. H. P. et al. Reevaluating the FDA’s warning against the use of probiotics in preterm neonates: a societal statement by ESPGHAN and EFCNI. J. Pediatr. Gastroenterol. Nutr. 78, 1403–1408 (2024).

    Article  PubMed  Google Scholar 

  55. Wang, Y. et al. Probiotics, prebiotics, lactoferrin, and combination products for prevention of mortality and morbidity in preterm infants: a systematic review and network meta-analysis. JAMA Pediatr. 177, 1158–1167 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gilbert, J. A. et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535, 94–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Mullish, B. H. & Allegretti, J. R. The contribution of bile acid metabolism to the pathogenesis of Clostridioides difficile infection. Therap. Adv. Gastroenterol. 14, 17562848211017724 (2021).

    Article  Google Scholar 

  59. Sinha, S. R. et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 27, 659–670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N. Engl. J. Med. 386, 220–229 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Ben-Yacov, O. et al. Gut microbiome modulates the effects of a personalised postprandial-targeting (PPT) diet on cardiometabolic markers: a diet intervention in pre-diabetes. Gut 72, 1486–1496 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Culp, E. J., Nelson, N. T., Verdegaal, A. A. & Goodman, A. L. Microbial transformation of dietary xenobiotics shapes gut microbiome composition. Cell 187, 6327–6345 (2024).

  63. She, J. et al. Statins aggravate insulin resistance through reduced blood glucagon-like peptide-1 levels in a microbiota-dependent manner. Cell Metab. 36, 408–421 (2024).

    Article  CAS  PubMed  Google Scholar 

  64. Wilmanski, T. et al. Heterogeneity in statin responses explained by variation in the human gut microbiome. Med 3, 388–405 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bolte, L. A. et al. Association of a Mediterranean diet with outcomes for patients treated with immune checkpoint blockade for advanced melanoma. JAMA Oncol. 9, 705–709 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Björk, J. R. et al. Longitudinal gut microbiome changes in immune checkpoint blockade-treated advanced melanoma. Nat. Med. 30, 785–796 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Abdelsalam, N. A., Hegazy, S. M. & Aziz, R. K. The curious case of Prevotella copri. Gut Microbes 15, 2249152 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Baldelli, V., Scaldaferri, F., Putignani, L. & Del Chierico, F. The role of Enterobacteriaceae in gut microbiota dysbiosis in inflammatory bowel diseases. Microorganisms 9, 697 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mills, R. H. et al. Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nat. Microbiol. 7, 262–276 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Federici, S. et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 185, 2879–2898 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Grubb, D. S. et al. PHAGE-2 Study: supplemental bacteriophages extend Bifidobacterium animalis subsp. lactis BL04 benefits on gut health and microbiota in healthy adults. Nutrients 12, 2474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, X., Zhang, S., Guo, G., Han, J. & Yu, J. Gut microbiome in modulating immune checkpoint inhibitors. EBioMedicine 82, 104163 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Stein-Thoeringer, C. K. et al. A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy. Nat. Med. 29, 906–916 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, Y., Wang, Y., Zhang, B., Li, P. & Zhao, Y. Methods and biomarkers for early detection, prediction, and diagnosis of colorectal cancer. Biomed. Pharmacother. 163, 114786 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Wu, C. et al. Obesity-enriched gut microbe degrades myo-inositol and promotes lipid absorption. Cell Host Microbe 32, 1301–1314 (2024).

  81. DiNicolantonio, J. J. & O’Keefe, J. H. Myo-inositol for insulin resistance, metabolic syndrome, polycystic ovary syndrome and gestational diabetes. Open Heart 9, e001989 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Diener, C. et al. Baseline gut metagenomic functional gene signature associated with variable weight loss responses following a healthy lifestyle intervention in humans. mSystems 6, e0096421 (2021).

    Article  PubMed  Google Scholar 

  83. Corbin, L. J. et al. The metabolomic signature of weight loss and remission in the Diabetes Remission Clinical Trial (DiRECT). Diabetologia 67, 74–87 (2024).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, T. et al. Free fatty acid receptor 4 modulates dietary sugar preference via the gut microbiota. Nat. Microbiol. 10, 348–361 (2025).

  85. Tan, S. et al. Interaction between the gut microbiota and colonic enteroendocrine cells regulates host metabolism. Nat. Metab. 6, 1076–1091 (2024).

    Article  CAS  PubMed  Google Scholar 

  86. Christensen, L. et al. Prevotella abundance and salivary amylase gene copy number predict fat loss in response to wholegrain diets. Front. Nutr. 9, 947349 (2022).

  87. Christensen, L., Roager, H. M., Astrup, A. & Hjorth, M. F. Microbial enterotypes in personalized nutrition and obesity management. Am. J. Clin. Nutr. 108, 645–651 (2018).

    Article  PubMed  Google Scholar 

  88. Christensen, L. et al. Prevotella abundance predicts weight loss success in healthy, overweight adults consuming a whole-grain diet ad libitum: a post hoc analysis of a 6-wk randomized controlled trial. J. Nutr. 149, 2174–2181 (2019).

    Article  PubMed  Google Scholar 

  89. Mei, Z. et al. Strain-specific gut microbial signatures in type 2 diabetes identified in a cross-cohort analysis of 8,117 metagenomes. Nat. Med. 30, 2265–2276 (2024).

  90. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ruaud, A. et al. Syntrophy via interspecies H2 transfer between Christensenella and Methanobrevibacter underlies their global cooccurrence in the human gut. mBio 11, e03235-19 (2020).

  92. Waters, J. L. & Ley, R. E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 17, 83 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Akbuğa-Schön, T. et al. The keystone gut species Christensenella minuta boosts gut microbial biomass and voluntary physical activity in mice. mBio 15, e0283623 (2024).

    Article  PubMed  Google Scholar 

  94. Mazier, W. et al. A new strain of Christensenella minuta as a potential biotherapy for obesity and associated metabolic diseases. Cells 10, 823 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ignatyeva, O. et al. Christensenella minuta, a new candidate next-generation probiotic: current evidence and future trajectories. Front. Microbiol. 14, 1241259 (2023).

    Article  PubMed  Google Scholar 

  96. Relizani, K. et al. Selection of a novel strain of Christensenella minuta as a future biotherapy for Crohn’s disease. Sci. Rep. 12, 6017 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kropp, C. et al. Christensenella minuta protects and restores intestinal barrier in a colitis mouse model by regulating inflammation. npj Biofilms Microbiomes 10, 88 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zahavi, L. et al. Bacterial SNPs in the human gut microbiome associate with host BMI. Nat. Med. 29, 2785–2792 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kurt, Ö., Doğruman Al, F. & Tanyüksel, M. Eradication of Blastocystis in humans: really necessary for all? Parasitol. Int. 65, 797–801 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Li, H. et al. Resistant starch intake facilitates weight loss in humans by reshaping the gut microbiota. Nat. Metab. 6, 578–597 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Van Hul, M. & Cani, P. D. The gut microbiota in obesity and weight management: microbes as friends or foe? Nat. Rev. Endocrinol. 19, 258–271 (2023).

    Article  PubMed  Google Scholar 

  102. Maifeld, A. et al. Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nat. Commun. 12, 1970 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Koutoukidis, D. A. et al. The association of weight loss with changes in the gut microbiota diversity, composition, and intestinal permeability: a systematic review and meta-analysis. Gut Microbes 14, 2020068 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wolter, M. et al. Diet-driven differential response of Akkermansia muciniphila modulates pathogen susceptibility. Mol. Syst. Biol. 20, 596–625 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang, Z. et al. Impact of fecal microbiota transplantation on obesity and metabolic syndrome—a systematic review. Nutrients 11, 2291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Tsai, C.-Y. et al. Gut microbial signatures for glycemic responses of GLP-1 receptor agonists in type 2 diabetic patients: a pilot study. Front. Endocrinol. 12, 814770 (2021).

    Article  Google Scholar 

  108. Chen, R. Y. et al. A microbiota-directed food intervention for undernourished children. N. Engl. J. Med. 384, 1517–1528 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Chang, H.-W. et al. Prevotella copri and microbiota members mediate the beneficial effects of a therapeutic food for malnutrition. Nat. Microbiol. 9, 922–937 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cheng, J., Venkatesh, S., Ke, K., Barratt, M. J. & Gordon, J. I. A human gut Faecalibacterium prausnitzii fatty acid amide hydrolase. Science 386, eado6828 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ecklu-Mensah, G. et al. Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study. Nat. Commun. 14, 5160 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Suez, J. et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 185, 3307–3328 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Rein, M. et al. Effects of personalized diets by prediction of glycemic responses on glycemic control and metabolic health in newly diagnosed T2DM: a randomized dietary intervention pilot trial. BMC Med. 20, 56 (2022).

  115. Perraudeau, F. et al. Improvements to postprandial glucose control in subjects with type 2 diabetes: a multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation. BMJ Open Diabetes Res. Care 8, e001319 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wang, C.-H. et al. Adjuvant probiotics of Lactobacillus salivarius subsp. salicinius AP-32, L. johnsonii MH-68, and Bifidobacterium animalis subsp. lactis CP-9 attenuate glycemic levels and inflammatory cytokines in patients with type 1 diabetes mellitus. Front. Endocrinol. 13, 754401 (2022).

  117. Kumar, S. et al. A high potency multi‐strain probiotic improves glycemic control in children with new‐onset type 1 diabetes mellitus: a randomized, double‐blind, and placebo‐controlled pilot study. Pediatr. Diabetes 22, 1014–1022 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Savilahti, E. et al. Probiotic intervention in infancy is not associated with development of beta cell autoimmunity and type 1 diabetes. Diabetologia 61, 2668–2670 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Moravejolahkami, A. R., Shakibaei, M., Fairley, A. M. & Sharma, M. Probiotics, prebiotics, and synbiotics in type 1 diabetes mellitus: a systematic review and meta-analysis of clinical trials. Diabetes Metab. Res. Rev. 40, e3655 (2024).

    Article  CAS  PubMed  Google Scholar 

  120. Groele, L. et al. Lack of effect of Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12 on beta-cell function in children with newly diagnosed type 1 diabetes: a randomised controlled trial. BMJ Open Diabetes Res. Care 9, e001523 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Shabani-Mirzaee, H. et al. The effect of oral probiotics on glycated haemoglobin levels in children with type 1 diabetes mellitus — a randomized clinical trial. Pediatr. Endocrinol. Diabetes Metab. 29, 128–133 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ali, Z., Ma, H., Ayim, I. & Wali, A. Efficacy of new beverage made of dates vinegar and garlic juice in improving serum lipid profile parameters and inflammatory biomarkers of mildly hyperlipidemic adults: a double-blinded, randomized, placebo-controlled study. J. Food Biochem. 42, e12545 (2018).

    Article  Google Scholar 

  123. Johnston, C. S., Kim, C. M. & Buller, A. J. Vinegar improves insulin sensitivity to a high-carbohydrate meal in subjects with insulin resistance or type 2 diabetes. Diabetes Care 27, 281–282 (2004).

    Article  PubMed  Google Scholar 

  124. Ali, Z., Ma, H., Wali, A., Ayim, I. & Sharif, M. N. Daily date vinegar consumption improves hyperlipidemia, β-carotenoid and inflammatory biomarkers in mildly hypercholesterolemic adults. J. Herb. Med. 17–18, 100265 (2019).

    Article  Google Scholar 

  125. Armstrong, H. K. et al. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients. Gastroenterology 164, 228–240 (2023).

    Article  CAS  PubMed  Google Scholar 

  126. Arifuzzaman, M. et al. Dietary fiber is a critical determinant of pathologic ILC2 responses and intestinal inflammation. J. Exp. Med. 221, e20232148 (2024).

  127. Girard, C., Tromas, N., Amyot, M. & Shapiro, B. J. Gut microbiome of the Canadian Arctic Inuit. mSphere 2, e00297-16 (2017).

  128. Campbell, R., Hauptmann, A., Campbell, K., Fox, S. & Marco, M. L. Better understanding of food and human microbiomes through collaborative research on Inuit fermented foods. Microbiome Res. Rep. 1, 5 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Jones, S. An ethical way forward for Indigenous microbiome research. Nature https://doi.org/10.1038/d41586-024-02792-w (2024).

  130. Jensen, N. et al. Dietary fiber monosaccharide content alters gut microbiome composition and fermentation. Appl. Environ. Microbiol. 90, e00964-24 (2024).

  131. Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26, 964–973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Abed, J. et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 20, 215–225 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yang, Y. et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating Toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21. Gastroenterology 152, 851–866 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Ternes, D. et al. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat. Metab. 4, 458–475 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Komiya, Y. et al. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. Gut 68, 1335–1337 (2019).

    Article  PubMed  Google Scholar 

  136. Zepeda-Rivera, M. et al. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. Nature 628, 424–432 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kerns, K. A. et al. Localized microbially induced inflammation influences distant healthy tissues in the human oral cavity. Proc. Natl Acad. Sci. USA 120, e2306020120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Grodner, B. et al. Spatial mapping of mobile genetic elements and their bacterial hosts in complex microbiomes. Nat. Microbiol. 9, 2262–2277 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Surma, S. et al. Periodontitis, blood pressure, and the risk and control of arterial hypertension: epidemiological, clinical, and pathophysiological aspects—review of the literature and clinical trials. Curr. Hypertens. Rep. 23, 27 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Huang, S. et al. Predictive modeling of gingivitis severity and susceptibility via oral microbiota. ISME J. 8, 1768–1780 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. O’Dwyer, D. N. et al. Commensal oral microbiota, disease severity, and mortality in fibrotic lung disease. Am. J. Respir. Crit. Care Med. 209, 1101–1110 (2024).

    Article  PubMed  Google Scholar 

  142. Jemimah, S., Chabib, C. M. M., Hadjileontiadis, L. & AlShehhi, A. Gut microbiome dysbiosis in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. PLoS ONE 18, e0285346 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Naughten, S. et al. The re-emerging role of linoleic acid in paediatric asthma. Eur. Respir. Rev. 32, 230063 (2023).

  144. Stewart, C. J. Homing in on 12,13-diHOME in asthma. Nat. Microbiol. 4, 1774–1775 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Lin, D. L. et al. 12,13-diHOME promotes inflammatory macrophages and epigenetically modifies their capacity to respond to microbes and allergens. J. Immunol. Res. 2024, 2506586 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Levan, S. R. et al. Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance. Nat. Microbiol. 4, 1851–1861 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fujimura, K. E. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22, 1187–1191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yan, Z. et al. Multi-omics analyses of airway host–microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions. Nat. Microbiol. 7, 1361–1375 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Mitropoulou, G. et al. Phage therapy for pulmonary infections: lessons from clinical experiences and key considerations. Eur. Respir. Rev. 31, 220121 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Nakatsuji, T., Cheng, J. Y. & Gallo, R. L. Mechanisms for control of skin immune function by the microbiome. Curr. Opin. Immunol. 72, 324–330 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Sanford, J. A., O’Neill, A. M., Zouboulis, C. C. & Gallo, R. L. Short-chain fatty acids from Cutibacterium acnes activate both a canonical and epigenetic inflammatory response in human sebocytes. J. Immunol. 202, 1767–1776 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Lai, Y. et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat. Med. 15, 1377–1382 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nakatsuji, T. et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat. Med. 27, 700–709 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Myles, I. A. et al. Therapeutic responses to Roseomonas mucosa in atopic dermatitis may involve lipid-mediated TNF-related epithelial repair. Sci. Transl. Med. 12, eaaz8631 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Guéniche, A. et al. Improvement of atopic dermatitis skin symptoms by Vitreoscilla filiformis bacterial extract. Eur. J. Dermatol. 16, 380–384 (2006).

    PubMed  Google Scholar 

  156. Shen, Z. et al. A genome catalog of the early-life human skin microbiome. Genome Biol. 24, 252 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Farias Amorim, C. et al. Multiomic profiling of cutaneous leishmaniasis infections reveals microbiota-driven mechanisms underlying disease severity. Sci. Transl. Med. 15, eadh1469 (2023).

    Article  CAS  PubMed  Google Scholar 

  158. Oh, J., Robison, J. & Kuchel, G. A. Frailty-associated dysbiosis of human microbiotas in older adults in nursing homes. Nat. Aging 2, 876–877 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Larson, P. J. et al. Associations of the skin, oral and gut microbiome with aging, frailty and infection risk reservoirs in older adults. Nat. Aging 2, 941–955 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Sulakvelidze, A., Alavidze, Z. & Morris, J. G. Jr. Bacteriophage therapy. Antimicrob. Agents Chemother. 45, 649–659 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pirnay, J.-P. et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nat. Microbiol. 9, 1434–1453 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. He, Y. et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat. Med. 24, 1532–1535 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Olsson, L. M. et al. Dynamics of the normal gut microbiota: a longitudinal one-year population study in Sweden. Cell Host Microbe 30, 726–739 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Zaramela, L. S., Tjuanta, M., Moyne, O., Neal, M. & Zengler, K. SynDNA — a synthetic DNA spike-in method for absolute quantification of shotgun metagenomic sequencing. mSystems 7, e0044722 (2022).

  165. Uyttebroek, S. et al. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. Lancet Infect. Dis. 22, e208–e220 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Montassier, E. et al. Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner. Nat. Microbiol. 6, 1043–1054 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Schmidt, F. et al. Noninvasive assessment of gut function using transcriptional recording sentinel cells. Science 376, eabm6038 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Crossette, E. et al. Metagenomic quantification of genes with internal standards. mBio 12, e03173-20 (2021).

  172. Chiu, C. Y. & Miller, S. A. Clinical metagenomics. Nat. Rev. Genet. 20, 341–355 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wilson, M. R. et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis. N. Engl. J. Med. 380, 2327–2340 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gu, W. et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nat. Med. 27, 115–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Miller, S. et al. Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid. Genome Res. 29, 831–842 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Blauwkamp, T. A. et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat. Microbiol. 4, 663–674 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Tan, J. K. et al. Laboratory validation of a clinical metagenomic next-generation sequencing assay for respiratory virus detection and discovery. Nat. Commun. 15, 9016 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Benoit, P. et al. Seven-year performance of a clinical metagenomic next-generation sequencing test for diagnosis of central nervous system infections. Nat. Med. 30, 3522–3533 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Langelier, C. et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc. Natl Acad. Sci. USA 115, E12353–E12362 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ma, P. et al. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. Cell 186, 877–891 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kuchina, A. et al. Microbial single-cell RNA sequencing by split-pool barcoding. Science 371, eaba5257 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Lötstedt, B., Stražar, M., Xavier, R., Regev, A. & Vickovic, S. Spatial host–microbiome sequencing reveals niches in the mouse gut. Nat. Biotechnol. 42, 1394–1403 (2023).

  183. McNulty, R. et al. Probe-based bacterial single-cell RNA sequencing predicts toxin regulation. Nat. Microbiol. 8, 934–945 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Valdés-Mas, R. et al. Metagenome-informed metaproteomics of the human gut microbiome, host, and dietary exposome uncovers signatures of health and inflammatory bowel disease. Cell 188, 1062–1083 (2025).

  185. Duncan, S. H., Conti, E., Ricci, L. & Walker, A. W. Links between diet, intestinal anaerobes, microbial metabolites and health. Biomedicines 11, 1338 (2023).

  186. Beresford-Jones, B. S. et al. The Mouse Gastrointestinal Bacteria Catalogue enables translation between the mouse and human gut microbiotas via functional mapping. Cell Host Microbe 30, 124–138 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zaramela, L. S. et al. The sum is greater than the parts: exploiting microbial communities to achieve complex functions. Curr. Opin. Biotechnol. 67, 149–157 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Louie, T. et al. VE303, a defined bacterial consortium, for prevention of recurrent Clostridioides difficile infection. JAMA 329, 1356–1366 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Ponce, D. M. et al. Safety and efficacy results from a randomized, double-blind, placebo-controlled cohort 2 of a phase 1b study of an investigational live biotherapeutic, SER-155, in adults undergoing allo-HCT. Transplant. Cell. Ther. 31, S86 (2025).

  191. Abbott, M. & Ustoyev, Y. Cancer and the immune system: the history and background of immunotherapy. Semin. Oncol. Nurs. 35, 150923 (2019).

    Article  PubMed  Google Scholar 

  192. Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  PubMed  Google Scholar 

  193. Khanna, S. et al. A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. J. Infect. Dis. 214, 173–181 (2016).

    Article  PubMed  Google Scholar 

  194. McGovern, B. H. et al. SER-109, an investigational microbiome drug to reduce recurrence after Clostridioides difficile infection: lessons learned from a phase 2 trial. Clin. Infect. Dis. 72, 2132–2140 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Sims, M. D. et al. Safety and tolerability of SER-109 as an investigational microbiome therapeutic in adults with recurrent Clostridioides difficile infection: a phase 3, open-label, single-arm trial. JAMA Netw. Open 6, e2255758 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Straub, T. J. et al. Impact of a purified microbiome therapeutic on abundance of antimicrobial resistance genes in patients with recurrent Clostridioides difficile infection. Clin. Infect. Dis. 78, 833–841 (2024).

    Article  CAS  PubMed  Google Scholar 

  197. Khanna, S. et al. SER-109: an oral investigational microbiome therapeutic for patients with recurrent Clostridioides difficile infection (rCDI). Antibiotics 11, 1234 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Jain, N., Umar, T. P., Fahner, A.-F. & Gibietis, V. Advancing therapeutics for recurrent Clostridioides difficile infections: an overview of Vowst’s FDA approval and implications. Gut Microbes 15, 2232137 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Food and Drug Administration. Early Clinical Trials with Live Biotherapeutic Products: Chemistry, Manufacturing, and Control Information. FDA www.fda.gov/media/82945/download (2016).

  200. Food and Drug Administration. Enforcement Policy Regarding Investigational New Drug Requirements for Use of Fecal Microbiota for Transplantation to Treat Clostridioides difficile Infection Not Responsive to Standard Therapies. FDA www.fda.gov/media/86440/download (2022).

  201. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    Article  PubMed  Google Scholar 

  202. Green, J. E. et al. Efficacy and safety of fecal microbiota transplantation for the treatment of diseases other than Clostridium difficile infection: a systematic review and meta-analysis. Gut Microbes 12, 1–25 (2020).

    Article  PubMed  Google Scholar 

  203. Food and Drug Administration. Fecal Microbiota Products. FDA www.fda.gov/vaccines-blood-biologics/fecal-microbiota-products (2024).

  204. Canada’s Drug Agency. Fecal microbiota therapy in Canada: an environmental scan. CDA FMT www.cda-amc.ca/fecal-microbiota-therapy-canada-environmental-scan#:~:text=FMT%20is%20approved%20in%20Canada,clinical%20criteria%20to%20receive%20treatment (2024).

  205. Australian Department of Health and Aged Care. Faecal Microbiota Transplant Products Regulation. Understand How We Regulate Faecal Microbiota Transplant (FMT) Products www.tga.gov.au/products/biologicals-blood-and-tissues-and-advanced-therapies/biologicals/faecal-microbiota-transplant-products-regulation (2023).

  206. Lee, C. et al. Safety of fecal microbiota, live-jslm (REBYOTA™) in individuals with recurrent Clostridioides difficile infection: data from five prospective clinical trials. Therap. Adv. Gastroenterol. 16, 17562848231174276 (2023).

    Article  Google Scholar 

  207. Microbiome Therapeutics Innovation Group. Navigating regulatory and analytical challenges in live biotherapeutic product development and manufacturing. Front. Microbiomes https://doi.org/10.3389/frmbi.2024.1441290 (2024).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack A. Gilbert.

Ethics declarations

Competing interests

J.A.G. is associated with Holobiome, BiomeSense, Bened Life and Sun Genomics. C.Y.C. is associated with Delve Bio and receives research support from Abbott Laboratories. P.S. is associated with Holobiome. E.E. and E.S. are associated with DayTwo. M.R.H. is associated with Seres Therapeutics. T.D.S. is associated with ZOE. S.V.L. is associated with Siolta Therapeutics. M.J.B. is associated with Seed Health, ProDermIQ and Elysium Health. M.B.A. is associated with Tiny Health. R.K. is associated with BiomeSense, GenCirq, DayTwo, Cybele and Biota.

Peer review

Peer review information

Nature Medicine thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilbert, J.A., Azad, M.B., Bäckhed, F. et al. Clinical translation of microbiome research. Nat Med 31, 1099–1113 (2025). https://doi.org/10.1038/s41591-025-03615-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41591-025-03615-9

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology