Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Noncanonical and mortality-defining toxicities of CAR T cell therapy

Abstract

Chimeric antigen receptor (CAR) T cell therapy is associated with a unique spectrum of toxicities that drive morbidity, mortality and patient quality of life. Previous efforts yielded consensus grading systems for the prototypical immunotoxicities—namely, cytokine-release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). These grading systems set the stage for severity-based and standardized treatment protocols that have contributed to a reduction in the acute toxicity burden of CAR T cell therapy and have enabled outpatient administration. However, understanding of CAR T cell therapy has since grown to encompass new targets, new diseases and broader patient populations—including long-term survivors. As side effects are better defined and novel toxicities emerge, there is a need to understand their mechanisms and standardize reporting to improve clinical management. Here we review the current state of knowledge for mortality-defining and rare toxicities of CAR T cell therapies, beyond CRS and ICANS. We discuss mechanisms, including on-target injury, cytokine-associated inflammation and dysregulated recovery, and how these mechanisms affect the timing and management of toxicities. Finally, we define key unmet needs and delineate future priorities and research directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timing of mortality-defining CAR T cell-related toxicities.
Fig. 2: Identification and description of emerging toxicities following CAR T cell therapy.
Fig. 3: Major immune deficits and associated infectious sequelae following CAR T cell therapy.
Fig. 4: Distribution and proposed pathophysiology of SPMs arising after CAR T cell therapy.

Similar content being viewed by others

References

  1. Locke, F. L. et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N. Engl. J. Med. 386, 640–654 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Shah, B. D. et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 398, 491–502 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Locke, F. L. et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 20, 31–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muller, F. et al. CD19 CAR T-cell therapy in autoimmune disease - a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    Article  PubMed  Google Scholar 

  6. Schett, G., Mackensen, A. & Mougiakakos, D. CAR T-cell therapy in autoimmune diseases. Lancet 402, 2034–2044 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Shimabukuro-Vornhagen, A. et al. Cytokine release syndrome. J. Immunother. Cancer 6, 56 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Karschnia, P. et al. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells. Blood 133, 2212–2221 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Karschnia, P. et al. Neurologic toxicities following adoptive immunotherapy with BCMA-directed CAR T cells. Blood 142, 1243–1248 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Wudhikarn, K. et al. DLBCL patients treated with CD19 CAR T cells experience a high burden of organ toxicities but low nonrelapse mortality. Blood Adv. 4, 3024–3033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jain, T. et al. Hematopoietic recovery in patients receiving chimeric antigen receptor T-cell therapy for hematologic malignancies. Blood Adv. 4, 3776–3787 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rejeski, K. et al. The CAR-HEMATOTOX score as a prognostic model of toxicity and response in patients receiving BCMA-directed CAR-T for relapsed/refractory multiple myeloma. J. Hematol. Oncol. 16, 88 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rejeski, K. et al. CAR-HEMATOTOX: a model for CAR T-cell-related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood 138, 2499–2513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rejeski, K. et al. An international survey on grading, diagnosis, and management of immune effector cell-associated hematotoxicity (ICAHT) following CAR T-cell therapy on behalf of the EBMT and EHA. Hemasphere 7, e889 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rejeski, K. et al. Immune effector cell-associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations. Blood 142, 865–877 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Rejeski, K., Jain, M. D., Shah, N. N., Perales, M. A. & Subklewe, M. Immune effector cell-associated haematotoxicity after CAR T-cell therapy: from mechanism to management. Lancet Haematol. 11, e459–e470 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Hill, J. A. et al. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood 131, 121–130 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rejeski, K. et al. The CAR-HEMATOTOX risk-stratifies patients for severe infections and disease progression after CD19 CAR-T in R/R LBCL. J. Immunother. Cancer 10, e004475 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gudiol, C., Lewis, R. E., Strati, P. & Kontoyiannis, D. P. Chimeric antigen receptor T-cell therapy for the treatment of lymphoid malignancies: is there an excess risk for infection? Lancet Haematol. 8, e216–e228 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Kampouri, E. et al. Infections after chimeric antigen receptor (CAR)-T-cell therapy for hematologic malignancies. Transpl. Infect. Dis. e14157 (2023).

  21. Wudhikarn, K. et al. Infection during the first year in patients treated with CD19 CAR T cells for diffuse large B cell lymphoma. Blood Cancer J. 10, 79 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hill, J. A. & Seo, S. K. How I prevent infections in patients receiving CD19-targeted chimeric antigen receptor T cells for B-cell malignancies. Blood 136, 925–935 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Diorio, C. et al. Quadriparesis and paraparesis following chimeric antigen receptor T-cell therapy in children and adolescents. Blood 144, 1387–1398 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Hines, M. R. et al. Immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. Transpl. Cell Ther. 29, 431–438 (2023).

    Article  Google Scholar 

  25. Jain, M. D., Smith, M. & Shah, N. N. How I treat refractory CRS and ICANS after CAR T-cell therapy. Blood 141, 2430–2442 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cordas Dos Santos, D. M. et al. A systematic review and meta-analysis of nonrelapse mortality after CAR T cell therapy. Nat. Med. 30, 2667–2678 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jain, M. D. et al. Five-year follow-up of standard-of-care axicabtagene ciloleucel for large B-cell lymphoma: results from the US Lymphoma CAR T Consortium. J. Clin. Oncol. 42, 3581–3592 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. Lemoine, J. et al. Nonrelapse mortality after CAR T-cell therapy for large B-cell lymphoma: a LYSA study from the DESCAR-T registry. Blood Adv. 7, 6589–6598 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DeVita, V. T. Jr. & Chu, E. A history of cancer chemotherapy. Cancer Res. 68, 8643–8653 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Westin, J. R. et al. Survival with axicabtagene ciloleucel in large B-cell lymphoma. N. Engl. J. Med. 389, 148–157 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Harrison, S. J. et al. CAR+ T-cell lymphoma post ciltacabtagene autoleucel therapy for relapsed refractory multiple myeloma. Blood 142, 6939 (2023).

    Article  Google Scholar 

  32. Banerjee, R. et al. Answering the “Doctor, can CAR-T therapy cause cancer?” question in clinic. Blood Adv. 8, 895–898 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Verdun, N. & Marks, P. Secondary cancers after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 390, 584–586 (2024).

    Article  CAS  PubMed  Google Scholar 

  34. Levine, B. L. et al. Unanswered questions following reports of secondary malignancies after CAR-T cell therapy. Nat. Med. 30, 338–341 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tix, T. et al. Second primary malignancies after CAR T-cell therapy: a systematic review and meta-analysis of 5,517 lymphoma and myeloma patients. Clin. Cancer Res. 30, 4690–4700 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghilardi, G. et al. T cell lymphoma and secondary primary malignancy risk after commercial CAR T cell therapy. Nat. Med. 30, 984–989 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Storgard, R., Rejeski, K., Perales, M. A., Goldman, A. & Shouval, R. T-cell malignant neoplasms after chimeric antigen receptor T-cell therapy. JAMA Oncol. 10, 826–828 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chihara, D., Dores, G. M., Flowers, C. R. & Morton, L. M. The bidirectional increased risk of B-cell lymphoma and T-cell lymphoma. Blood 138, 785–789 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cordeiro, A. et al. Late events after treatment with CD19-targeted chimeric antigen receptor modified T cells. Biol. Blood Marrow Transpl. 26, 26–33 (2020).

    Article  CAS  Google Scholar 

  40. Zhao, A. et al. Secondary myeloid neoplasms after CD19 CAR T therapy in patients with refractory/relapsed B-cell lymphoma: case series and review of literature. Front. Immunol. 13, 1063986 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Neelapu, S. S. et al. Five-year follow-up of ZUMA-1 supports the curative potential of axicabtagene ciloleucel in refractory large B-cell lymphoma. Blood 141, 2307–2315 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuhnl, A. et al. Early FDG-PET response predicts CAR-T failure in large B-cell lymphoma. Blood Adv. 6, 321–326 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wesson, W. et al. Timing of toxicities and non-relapse mortality following CAR T therapy in myeloma. Transpl. Cell Ther. 30, 876–884 (2024).

    Article  Google Scholar 

  45. Ahmed, N. et al. Optimizing the post-CAR T monitoring period in recipients of axicabtagene ciloleucel, tisagenlecleucel, and lisocabtagene maraleucel. Blood Adv. 8, 5346–5354 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ventin, M. et al. Implications of high tumor burden on chimeric antigen receptor T-cell immunotherapy: a review. JAMA Oncol. 10, 115–121 (2024).

    Article  PubMed  Google Scholar 

  47. Jain, M. D. et al. Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma. Blood 137, 2621–2633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Giavridis, T. et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24, 731–738 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Norelli, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24, 739–748 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Parker, K. R. et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lichtenstein, D. A. et al. Characterization of HLH-like manifestations as a CRS variant in patients receiving CD22 CAR T cells. Blood 138, 2469–2484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Frank, M. J. et al. CD22-directed CAR T-cell therapy for large B-cell lymphomas progressing after CD19-directed CAR T-cell therapy: a dose-finding phase 1 study. Lancet 404, 353–363 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Sidana, S. et al. Safety and efficacy of standard-of-care ciltacabtagene autoleucel for relapsed/refractory multiple myeloma. Blood 145, 85–97 (2025).

    Article  CAS  PubMed  Google Scholar 

  54. Cohen, A. D. et al. Incidence and management of CAR-T neurotoxicity in patients with multiple myeloma treated with ciltacabtagene autoleucel in CARTITUDE studies. Blood Cancer J. 12, 32 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. San-Miguel, J. et al. Cilta-cel or standard care in lenalidomide-refractory multiple myeloma. N. Engl. J. Med. 389, 335–347 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Kumar, A. D. et al. Delayed neurotoxicity after CAR-T in multiple myeloma: results from a Global IMWG Registry. Blood 144, 4758–4758 (2024).

    Article  Google Scholar 

  57. Van De Donk, N. W. C. J. et al. Clinical experience with cranial nerve impairment in the CARTITUDE-1, CARTITUDE-2 cohorts A, B, and C, and CARTITUDE-4 studies of ciltacabtagene autoleucel (Cilta-cel). Blood 142, 3501–3501 (2023).

    Article  Google Scholar 

  58. Kathari, Y. K. et al. Immune-mediated facial nerve paralysis in a myeloma patient post B-cell maturation antigen-targeted chimeric antigen receptor T cells. Haematologica 109, 682–688 (2024).

    Article  PubMed  Google Scholar 

  59. Graham, C. E. et al. Chemotherapy-induced reversal of ciltacabtagene autoleucel-associated movement and neurocognitive toxicity. Blood 142, 1248–1252 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fortuna, G. G. et al. Immune effector cell-associated enterocolitis following chimeric antigen receptor T-cell therapy in multiple myeloma. Blood Cancer J. 14, 180 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jahnsen, F. L., Bækkevold, E. S., Hov, J. R. & Landsverk, O. J. Do long-lived plasma cells maintain a healthy microbiota in the gut? Trends Immunol. 39, 196–208 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Merz, M. et al. Idecabtagene vicleucel or ciltacabtagene autoleucel for relapsed or refractory multiple myeloma: an international multicenter study. Hemasphere 9, e70070 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hansen, D. K. et al. Comparison of standard-of-care idecabtagene vicleucel and ciltacabtagene autoleucel in relapsed/refractory multiple myeloma. J. Clin. Oncol. 43, 1597–1609 (2025).

    Article  CAS  PubMed  Google Scholar 

  64. Mailankody, S. et al. GPRC5D-Targeted CAR T cells for myeloma. N. Engl. J. Med. 387, 1196–1206 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Neri, P. et al. Just scratching the surface: novel treatment approaches for multiple myeloma targeting cell membrane proteins. Nat. Rev. Clin. Oncol. 21, 590–609 (2024).

    Article  CAS  PubMed  Google Scholar 

  66. Rodriguez-Otero, P. et al. GPRC5D as a novel target for the treatment of multiple myeloma: a narrative review. Blood Cancer J. 14, 24 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bal, S. et al. Efficacy and safety with extended follow-up in a phase 1 study of BMS-986393, a G-protein-coupled receptor class C group 5 member D (GPRC5D)-targeted CAR T cell therapy, in patients (pts) with heavily pretreated relapsed/refractory (RR) multiple myeloma (MM). Blood 144, 922 (2024).

    Article  Google Scholar 

  68. Perthus, A. et al. Remission after CAR T-cell therapy: do lymphoma patients recover a normal life? Hemasphere 8, e72 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Johnson, P. C. et al. Longitudinal patient-reported outcomes in patients receiving chimeric antigen receptor T-cell therapy. Blood Adv. 7, 3541–3550 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Logue, J. M. et al. Immune reconstitution and associated infections following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma. Haematologica 106, 978–986 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Jain, T., Olson, T. S. & Locke, F. L. How I treat cytopenias after CAR T-cell therapy. Blood 141, 2460–2469 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Vic, S. et al. Transfusion needs after CAR T-cell therapy for large B-cell lymphoma: predictive factors and outcome (a DESCAR-T study). Blood Adv. 8, 1573–1585 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rejeski, K., Subklewe, M. & Locke, F. L. Recognizing, defining, and managing CAR-T hematologic toxicities. Hematol. Am. Soc. Hematol. Educ. Program 2023, 198–208 (2023).

    Article  Google Scholar 

  74. Johnsrud, A. et al. Incidence and risk factors associated with bleeding and thrombosis following chimeric antigen receptor T-cell therapy. Blood Adv. 5, 4465–4475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rejeski K. et al. T-ICAHT: grading and prognostic impact of thrombocytopenia after CAR T-cell therapy. Blood https://doi.org/10.1182/blood.2025028833 (2025).

  76. Fried, S. et al. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplant. 54, 1643–1650 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Rejeski, K. et al. The CAR-HEMATOTOX score identifies patients at high risk for hematological toxicity, infectious complications, and poor treatment outcomes following brexucabtagene autoleucel for relapsed or refractory MCL. Am. J. Hematol. 98, 1699–1710 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rejeski, K. et al. Severe Candida glabrata pancolitis and fatal Aspergillus fumigatus pulmonary infection in the setting of bone marrow aplasia after CD19-directed CAR T-cell therapy - a case report. BMC Infect. Dis. 21, 121 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rejeski, K. et al. Severe hematotoxicity after CD19 CAR-T therapy is associated with suppressive immune dysregulation and limited CAR-T expansion. Sci. Adv. 9, eadg3919 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cohen, A. D. et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129, 2210–2221 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rejeski, K. et al. Identifying early infections in the setting of CRS with routine and exploratory serum proteomics and the HT10 score following CD19 CAR-T for relapsed/refractory B-NHL. Hemasphere 7, e858 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nair, M. S. et al. Development of ALL-Hematotox: predicting post-CAR T-cell hematotoxicity in B-cell acute lymphoblastic leukemia. Blood 145, 1136–1148 (2025).

    Article  CAS  PubMed  Google Scholar 

  83. Taplitz, R. A. et al. Antimicrobial prophylaxis for adult patients with cancer-related immunosuppression: ASCO and IDSA Clinical Practice Guideline Update. J. Clin. Oncol. 36, 3043–3054 (2018).

    Article  PubMed  Google Scholar 

  84. Rejeski, K. et al. Applying the EHA/EBMT grading for ICAHT after CAR-T: comparative incidence and association with infections and mortality. Blood Adv. 8, 1857–1868 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lievin, R. et al. Effect of early granulocyte-colony-stimulating factor administration in the prevention of febrile neutropenia and impact on toxicity and efficacy of anti-CD19 CAR-T in patients with relapsed/refractory B-cell lymphoma. Bone Marrow Transplant. 57, 431–439 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Miller, K. C. et al. Effect of granulocyte colony-stimulating factor on toxicities after CAR T cell therapy for lymphoma and myeloma. Blood Cancer J. 12, 146 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rejeski, K. et al. Safety and feasibility of stem cell boost as a salvage therapy for severe hematotoxicity after CD19 CAR T-cell therapy. Blood Adv. 6, 4719–4725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gagelmann, N. et al. Hematopoietic stem cell boost for persistent neutropenia after CAR T-cell therapy: a GLA/DRST study. Blood Adv. 7, 555–559 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Mohan, M. et al. Autologous stem cell boost improves persistent immune effector cell associated hematotoxicity following BCMA directed chimeric antigen receptor T (CAR T) cell therapy in multiple myeloma. Bone Marrow Transplant. 59, 647–652 (2024).

    Article  CAS  PubMed  Google Scholar 

  90. Drillet, G., Lhomme, F., De Guibert, S., Manson, G. & Houot, R. Prolonged thrombocytopenia after CAR T-cell therapy: the role of thrombopoietin receptor agonists. Blood Adv. 7, 537–540 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Wesson, W. et al. Safety and efficacy of eltrombopag in patients with post-CAR T cytopenias. Eur. J. Haematol. 112, 538–546 (2024).

    Article  CAS  PubMed  Google Scholar 

  92. Lickefett, B. et al. Lymphodepletion - an essential but undervalued part of the chimeric antigen receptor T-cell therapy cycle. Front. Immunol. 14, 1303935 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Strati, P. et al. Prolonged cytopenia following CD19 CAR T cell therapy is linked with bone marrow infiltration of clonally expanded IFNγ-expressing CD8 T cells. Cell Rep. Med. 4, 101158 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kampouri, E., Walti, C. S., Gauthier, J. & Hill, J. A. Managing hypogammaglobulinemia in patients treated with CAR-T-cell therapy: key points for clinicians. Expert Rev. Hematol. 15, 305–320 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Haidar, G. et al. Invasive mold infections after chimeric antigen receptor-modified T-cell therapy: a case series, review of the literature, and implications for prophylaxis. Clin. Infect. Dis. 71, 672–676 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Vora, S. B. et al. Infectious complications following CD19 chimeric antigen receptor T-cell therapy for children, adolescents, and young adults. Open Forum Infect. Dis. 7, ofaa121 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Baird, J. H. et al. Immune reconstitution and infectious complications following axicabtagene ciloleucel therapy for large B-cell lymphoma. Blood Adv. 5, 143–155 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wittmann Dayagi, T. et al. Characteristics and risk factors of infections following CD28-based CD19 CAR-T cells. Leuk. Lymphoma 62, 1692–1701 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Mikkilineni, L. et al. Infectious complications of CAR T-cell therapy across novel antigen targets in the first 30 days. Blood Adv. 5, 5312–5322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Little, J. S. et al. Low incidence of invasive fungal disease following CD19 chimeric antigen receptor T-cell therapy for non-Hodgkin lymphoma. Blood Adv. 6, 4821–4830 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kambhampati, S. et al. Infectious complications in patients with relapsed refractory multiple myeloma after BCMA CAR T-cell therapy. Blood Adv. 6, 2045–2054 (2022).

    Article  CAS  PubMed Central  Google Scholar 

  102. Mohan, M. et al. Risk of infections with B-cell maturation antigen-directed immunotherapy in multiple myeloma. Blood Adv. 6, 2466–2470 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Josyula, S. et al. Pathogen-specific humoral immunity and infections in B cell maturation antigen-directed chimeric antigen receptor T cell therapy recipients with multiple myeloma. Transpl. Cell Ther. 28, 304 e1–304.e9 (2022).

    Article  Google Scholar 

  104. Wang, Y. et al. Humoral immune reconstitution after anti-BCMA CAR T-cell therapy in relapsed/refractory multiple myeloma. Blood Adv. 5, 5290–5299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Logue, J. M. et al. Early cytopenias and infections after standard of care idecabtagene vicleucel in relapsed or refractory multiple myeloma. Blood Adv. 6, 6109–6119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kampouri, E. et al. Cytomegalovirus (CMV) reactivation and CMV-specific cell-mediated immunity after chimeric antigen receptor T-cell therapy. Clin. Infect. Dis. 78, 1022–1032 (2024).

    Article  CAS  PubMed  Google Scholar 

  107. Khawaja, F. et al. Cytomegaloviral infections in recipients of chimeric antigen receptor T-cell therapy: an observational study with focus on oncologic outcomes. Open Forum Infect. Dis. 11, ofae422 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lin, R. Y. et al. Incidence and outcomes of cytomegalovirus reactivation after chimeric antigen receptor T-cell therapy. Blood Adv. 8, 3813–3822 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kampouri, E. et al. Human herpesvirus 6 reactivation and disease are infrequent in chimeric antigen receptor T-cell therapy recipients. Blood 144, 490–495 (2024).

    Article  CAS  PubMed  Google Scholar 

  110. Strati, P. et al. Hematopoietic recovery and immune reconstitution after axicabtagene ciloleucel in patients with large B-cell lymphoma. Haematologica 106, 2667–2672 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Arnold, D. E. et al. Subcutaneous immunoglobulin replacement following CD19-specific chimeric antigen receptor T-cell therapy for B-cell acute lymphoblastic leukemia in pediatric patients. Pediatr. Blood Cancer 67, e28092 (2020).

    Article  PubMed  Google Scholar 

  112. Deya-Martinez, A. et al. Kinetics of humoral deficiency in CART19-treated children and young adults with acute lymphoblastic leukaemia. Bone Marrow Transplant. 56, 376–386 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Levine, J. E. et al. Pooled safety analysis of tisagenlecleucel in children and young adults with B cell acute lymphoblastic leukemia. J. Immunother. Cancer 9, e002287 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Walti, C. S. et al. Antibodies against vaccine-preventable infections after CAR-T cell therapy for B cell malignancies. JCI Insight 6, e146743 (2021).

    PubMed  PubMed Central  Google Scholar 

  115. O’Connor, B. P. et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J. Exp. Med. 199, 91–98 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bhoj, V. G. et al. Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood 128, 360–370 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stock, S. et al. Prognostic significance of immune reconstitution following CD19 CAR T-cell therapy for relapsed/refractory B-cell lymphoma. HemaSphere 9, e70062 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Angelidakis, G. et al. Humoral immunity and antibody responses against diphtheria, tetanus, and pneumococcus after immune effector cell therapies: a prospective study. Vaccines 12, 1070 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Reynolds, G., Hall, V. G. & Teh, B. W. Vaccine schedule recommendations and updates for patients with hematologic malignancy post-hematopoietic cell transplant or CAR T-cell therapy. Transpl. Infect. Dis. 25, e14109 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Walti, C. S. et al. Humoral immunogenicity of the seasonal influenza vaccine before and after CAR-T-cell therapy: a prospective observational study. J. Immunother. Cancer 9, e003428 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hill, J. A. et al. SARS-CoV-2 vaccination in the first year after hematopoietic cell transplant or chimeric antigen receptor T-cell therapy: a prospective, multicenter, observational study. Clin. Infect. Dis. 79, 542–554 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lee, D. et al. Pneumococcal conjugate vaccine does not induce humoral response when administrated within the six months after CD19 CAR T-cell therapy. Transplant. Cell Ther. 29, 271.e1–277.e9 (2023).

    Google Scholar 

  123. Meir, J., Abid, M. A. & Abid, M. B. State of the CAR-T: risk of infections with chimeric antigen receptor T-cell therapy and determinants of SARS-CoV-2 vaccine responses. Transpl. Cell Ther. 27, 973–987 (2021).

    Article  CAS  Google Scholar 

  124. Abid, M. B. The denominator in early phase CAR T-cell trials examining novel target antigens. Lancet 402, 354–356 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Teh, B. W. et al. Consensus position statement on advancing the standardised reporting of infection events in immunocompromised patients. Lancet Infect. Dis. 24, e59–e68 (2024).

    Article  PubMed  Google Scholar 

  126. Teh, B. W., Mikulska, M., Mueller, N. J. & Slavin, M. A. Goals to score: the need for a minimum reporting dataset in studies of infection events in immunocompromised patients. Transpl. Infect. Dis. 26, e14154 (2024).

    Article  PubMed  Google Scholar 

  127. Teh, B. W., Reynolds, G. D., Mikulska, M., Mueller, N. J. & Slavin, M. A. Improving infection reporting in hematology treatment trials. Blood Adv. 8, 5925–5926 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Jain, T. et al. Use of chimeric antigen receptor T cell therapy in clinical practice for relapsed/refractory aggressive B cell non-Hodgkin lymphoma: an expert panel opinion from the American Society for Transplantation and Cellular Therapy. Biol. Blood Marrow Transplant. 25, 2305–2321 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. McDonald, G. B. et al. Survival, nonrelapse mortality, and relapse-related mortality after allogeneic hematopoietic cell transplantation: comparing 2003-2007 versus 2013-2017 cohorts. Ann. Intern. Med. 172, 229–239 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Shahid, Z. et al. Best practice considerations by the American Society of Transplant and Cellular Therapy: infection prevention and management after chimeric antigen receptor T cell therapy for hematological malignancies. Transplant. Cell Ther. 30, 955–969 (2024).

    Article  CAS  PubMed  Google Scholar 

  131. Shahid, Z. et al. Defining and grading infections in clinical trials involving hematopoietic cell transplantation: a report from the BMT CTN Infectious Disease Technical Committee. Transplant. Cell Ther. 30, 540.e541–540.e513 (2024).

    Google Scholar 

  132. Patel, S. A., Spiegel, J. Y. & Dahiya, S. Second primary cancer after chimeric antigen receptor-T-cell therapy: a review. JAMA Oncol. 11, 174–181 (2025).

    Article  PubMed  Google Scholar 

  133. Harrison, S. J. et al. CAR+ T-cell lymphoma after cilta-cel therapy for relapsed or refractory myeloma. N. Engl. J. Med. 392, 677–685 (2025).

    Article  CAS  PubMed  Google Scholar 

  134. Perica, K. et al. CD4+ T-cell lymphoma harboring a chimeric antigen receptor integration in TP53. N. Engl. J. Med. 392, 577–583 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hamilton, M. P. et al. Risk of second tumors and T-cell lymphoma after CAR T-cell therapy. N. Engl. J. Med. 390, 2047–2060 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dulery, R. et al. T cell malignancies after CAR T cell therapy in the DESCAR-T registry. Nat. Med. 31, 1130–1133 (2025).

    Article  CAS  PubMed  Google Scholar 

  137. Kósa, F. et al. Secondary malignancies and survival of FCR-treated patients with chronic lymphocytic leukemia in Central Europe. Cancer Med. 12, 1961–1971 (2023).

    Article  PubMed  Google Scholar 

  138. Trab, T. et al. Second primary malignancies in patients with lymphoma in Denmark after high-dose chemotherapy and autologous haematopoietic stem-cell transplantation: a population-based, retrospective cohort study. Lancet Haematol. 10, e838–e848 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Miret, M. et al. Incidence of second primary malignancies in relapsed/refractory B-cell non-Hodgkin’s lymphoma patients in England. Leuk. Res. 127, 107042 (2023).

    Article  CAS  PubMed  Google Scholar 

  140. Joelsson, J. et al. Incidence and time trends of second primary malignancies after non-Hodgkin lymphoma: a Swedish population-based study. Blood Adv. 6, 2657–2666 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lamble, A. J. et al. Risk of T-cell malignancy after CAR T-cell therapy in children, adolescents, and young adults. Blood Adv. 8, 3544–3548 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  142. White, M. C. et al. Age and cancer risk: a potentially modifiable relationship. Am. J. Prev. Med. 46, S7–S15 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  143. DePinho, R. A. The age of cancer. Nature 408, 248–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Morton, L. M. et al. Association of chemotherapy for solid tumors with development of therapy-related myelodysplastic syndrome or acute myeloid leukemia in the modern era. JAMA Oncol. 5, 318–325 (2019).

    Article  PubMed  Google Scholar 

  145. Ghilardi, G. et al. Efficacy and safety of bendamustine for lymphodepletion before lisocabtagene maraleucel. J. Hematol. Oncol. 17, 19 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ghilardi, G. et al. Bendamustine lymphodepletion before axicabtagene ciloleucel is safe and associates with reduced inflammatory cytokines. Blood Adv. 8, 653–666 (2024).

    Article  CAS  PubMed  Google Scholar 

  147. Ghilardi, G. et al. Bendamustine is safe and effective for lymphodepletion before tisagenlecleucel in patients with refractory or relapsed large B-cell lymphomas. Ann. Oncol. 33, 916–928 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mailankody, S. et al. Allogeneic BCMA-targeting CAR T cells in relapsed/refractory multiple myeloma: phase 1 UNIVERSAL trial interim results. Nat. Med. 29, 422–429 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Pegram, H. J. et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119, 4133–4141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tennant, M. D., New, C., Ferreira, L. M. R. & O’Neil, R. T. Efficient T cell adoptive transfer in lymphoreplete hosts mediated by transient activation of Stat5 signaling. Mol. Ther. 31, 2591–2599 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Locke, F. L. et al. Tocilizumab prophylaxis following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma. Transpl. Cell Ther. 30, 1065–1079 (2024).

    Article  CAS  Google Scholar 

  153. Oluwole, O. O. et al. Long-term outcomes of patients with large B-cell lymphoma treated with axicabtagene ciloleucel and prophylactic corticosteroids. Bone Marrow Transplant. 59, 366–372 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Strati, P. et al. A phase 1 study of prophylactic anakinra to mitigate ICANS in patients with large B-cell lymphoma. Blood Adv. 7, 6785–6789 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Park, J. H. et al. CD19 CAR T-cell therapy and prophylactic anakinra in relapsed or refractory lymphoma: phase 2 trial interim results. Nat. Med. 29, 1710–1717 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Huarte, E. et al. Itacitinib (INCB039110), a JAK1 inhibitor, reduces cytokines associated with cytokine release syndrome induced by CAR T-cell therapy. Clin. Cancer Res. 26, 6299–6309 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Larson, R. C. et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature 604, 563–570 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Frigault, M. J. et al. Itacitinib for the prevention of immune effector cell therapy-associated cytokine release syndrome: results from the phase 2 INCB 39110-211 placebo-controlled randomized cohort. Blood 142, 356 (2023).

    Article  Google Scholar 

  159. Fugger, L., Jensen, L. T. & Rossjohn, J. Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell 181, 63–80 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Jain, M. D. & Spiegel, J. Y. Imagining the cell therapist: future CAR T cell monitoring and intervention strategies to improve patient outcomes. EJHaem 3, 46–53 (2022).

    Article  PubMed  Google Scholar 

  161. Sakemura, R., Can, I., Siegler, E. L. & Kenderian, S. S. In vivo CART cell imaging: paving the way for success in CART cell therapy. Mol. Ther. Oncolytics 20, 625–633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Liang, E. C. et al. Development and validation of an automated computational approach to grade immune effector cell-associated hematotoxicity. Bone Marrow Transplant. 59, 910–917 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Neelapu, S. S. et al. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: the phase 2 ZUMA-12 trial. Nat. Med. 28, 735–742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 25, 625–638 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Mahdi, J. et al. Tumor inflammation-associated neurotoxicity. Nat. Med. 29, 803–810 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Alkhateeb, H. B. et al. Therapy-related myeloid neoplasms following chimeric antigen receptor T-cell therapy for non-Hodgkin lymphoma. Blood Cancer J. 12, 113 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Elsallab, M. et al. Second primary malignancies after commercial car T cell therapy: analysis of FDA Adverse Events Reporting System (FAERS). Blood 143, 2099–2105 (2024).

    Article  CAS  PubMed  Google Scholar 

  168. Goldman, A. et al. Adverse cardiovascular and pulmonary events associated with chimeric antigen receptor T-cell therapy. J. Am. Coll. Cardiol. 78, 1800–1813 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Gutierrez, C., Neilan, T. G. & Grover, N. S. How I approach optimization of patients at risk of cardiac and pulmonary complications after CAR T-cell therapy. Blood 141, 2452–2459 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Munir, M., Sayed, A., Addison, D. & Epperla, N. Cardiovascular toxicities associated with novel cellular immune therapies. Blood Adv. 8, 6282–6296 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Deschenes-Simard, X., Santomasso, B. D. & Dahi, P. B. Clinical features, pathophysiology, and management of acute myelopathy following CAR T-cell therapy. Blood 144, 2083–2094 (2024).

    Article  CAS  PubMed  Google Scholar 

  172. Nair, R. et al. Acute leucoencephalomyelopathy and quadriparesis after CAR T-cell therapy. Haematologica 106, 1504–1506 (2021).

    Article  PubMed  Google Scholar 

  173. Couturier, A. et al. Parkinson-like neurotoxicity in female patients treated with idecabtagene-vicleucel. Hemasphere 8, e131 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bal, S. et al. S193: BMS-986393 (CC-95266), a G protein–coupled receptor class C group 5 member D (GPRC5D)–targeted CAR T-cell therapy for relapsed/refractory multiple myeloma (RRMM): results from a phase 1 study. Hemasphere 7, e9863287 (2023).

  175. Bindal, P. et al. A meta-analysis to assess the risk of bleeding and thrombosis following chimeric antigen receptor T-cell therapy: communication from the ISTH SSC Subcommittee on Hemostasis and Malignancy. J. Thromb. Haemost. 22, 2071–2080 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rejeski, K. et al. Influence of adipose tissue distribution, sarcopenia, and nutritional status on clinical outcomes after CD19 CAR T-cell therapy. Cancer Immunol. Res. 11, 707–719 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Valtis, Y. K. et al. Cancer cachexia and weight loss before CAR T-cell therapy for lymphoma are independently associated with poor outcomes. Blood Adv. 9, 151–161 (2024).

    Article  PubMed Central  Google Scholar 

  178. Ligon, J. A. et al. Fertility and CAR T-cells: current practice and future directions. Transpl. Cell Ther. 28, 605.e601–605.e608 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

K.R. acknowledges funding from the Else Kröner Forschungskolleg (EKFK) within the Munich Clinician Scientist Program (MCSP). This work was further supported by a grant from the Bruno and Helene Jöster Foundation (to K.R.) and the ‘CAR-T Control’ translational group within the Bavarian Center for Cancer Research (BZKF-TLG-22, to K.R.). M.D.J. is supported by the Mark Foundation and the Bankhead-Coley Cancer Biomedical Research Program.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: K.R.; Investigation: K.R., J.A.H., S.D. and M.D.J.; Formal analysis and visualization: K.R.; Methodology: K.R., J.A.H., S.D. and M.D.J.; Writing—original draft: K.R., J.A.H., S.D. and M.D.J.; Writing—review and editing: K.R., J.A.H., S.D. and M.D.J. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kai Rejeski.

Ethics declarations

Competing interests

K.R.: Kite/Gilead: research funding, consultancy, honoraria and travel support; Novartis: honoraria; BMS/Celgene: consultancy, honoraria; Pierre-Fabre: travel support. J.A.H.: research funding: Allovir, Geovax, Takeda and Gilead; consultancy: Allovir, CSL Behring, Geovax, Karius, Gilead and Moderna. S.D.: research funding: Kite Pharma/Gilead, Novartis and Kyverna Therapeutics; advisory board/consulting: Kite Pharmaceuticals/Gilead Pharma, Bristol Myers Squibb, Incyte, Adaptive Biotechnologies. M.D.J.: Kite/Gilead: consultancy/advisory, research funding; Novartis: consultancy/advisory; Incyte: research funding; Lilly: research funding. None of these competing interests were related to the financing of this study.

Peer review

Peer review information

Nature Medicine thanks Roch Houot, Marco Ruella and Jay Spiegel for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Supplementary Tables 1 and 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rejeski, K., Hill, J.A., Dahiya, S. et al. Noncanonical and mortality-defining toxicities of CAR T cell therapy. Nat Med 31, 2132–2146 (2025). https://doi.org/10.1038/s41591-025-03813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41591-025-03813-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing