Supplementary Figure 10: High-resolution 19F-13C TROSY facilitates the detection of minor conformations.

Low-population cross-peaks in the 19F-13C TROSY spectrum of MBP are shown in green circles. These resonances are likely to have originated from rotamers of 3-19F13C Tyr due to (1) rotation along the Cγ–Cβ bond or (2) rotation along the phenolic Cζ–O bond, which determines the proximity of the hydroxyl hydrogen atom to the fluorine atom. Similarly, slow flipping of the hydroxyl group around the phenolic Cζ–O bond between an intra-residue O-H-F and an inter-residue H-bonding configuration can produce two sets of resonances of unequal intensity. Such rotamers of 3-19F Tyr have been previously observed by X-ray crystallography (J. Mol. Biol. 281, 323–339; 1998). In a few instances, for the very strong cross-peaks, we observed a minor conformation that corresponds to the non-TROSY component along the 13C dimension; this is marked by a red solid rectangle. The non-TROSY component can be recognized by its 19F resonance frequency, which is identical to that of its TROSY counterpart with a 13C frequency separation of ~240 Hz, corresponding to the 1JFC coupling constant.