The release of the first telomere-to-telomere (T2T) human genome sequence marks a milestone for human genomics research and holds promise of complete genomes for evolutionary genomic studies. Here we describe the advances that this new human genome assembly represents and explore the potential insights that the complete genome sequence could bring to evolutionary genomics. We also discuss the potential challenges to be faced in applying this new sequencing strategy to a broad spectrum of extant species.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
SoMaCX: a complex generative genome modeling framework
BMC Genomics Open Access 29 September 2025
-
A refined analysis of Neanderthal-introgressed sequences in modern humans with a complete reference genome
Genome Biology Open Access 17 February 2025
-
Comprehensive evaluation and guidance of structural variation detection tools in chicken whole genome sequence data
BMC Genomics Open Access 16 October 2024
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

Change history
22 June 2022
A Correction to this paper has been published: https://doi.org/10.1038/s41592-022-01551-x
References
Nurk, S. et al. Science 376, 44–53 (2022).
Lander, E. S. et al. Nature 409, 860–921 (2001).
Venter, J. C. et al. Science 291, 1304–1351 (2001).
Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Nat. Rev. Genet. 21, 597–614 (2020).
Aganezov, S. et al. Science 376, eabl3533 (2022).
Altemose, N. et al. Science 376, eabl4178 (2022).
Gershman, A. et al. Science 376, eabj5089 (2022).
Hoyt, S. J. et al. Science 376, eabk3112 (2022).
Vollger, M. R. et al. Science 376, eabj6965 (2022).
Logsdon, G. A. et al. Nature 593, 101–107 (2021).
Mao, Y. et al. Nature 594, 77–81 (2021).
Li, H. Bioinformatics 30, 2843–2851 (2014).
Qi, J., Chen, Y., Copenhaver, G. P. & Ma, H. Proc. Natl Acad. Sci. USA 111, 10007–10012 (2014).
Rhie, A. et al. Nature 592, 737–746 (2021).
Lawniczak, M. K. et al. Proc. Natl Acad. Sci. USA 119, e2115639118 (2022).
Wolffe, A. P. & Matzke, M. A. Science 286, 481–486 (1999).
O’Neill, R. J., Eldridge, M. D. & Metcalfe, C. J. J. Hered. 95, 375–381 (2004).
Bodega, B. & Orlando, V. Curr. Opin. Cell Biol. 31, 67–73 (2014).
Kidwell, M. G. & Lisch, D. R. Evolution 55, 1–24 (2001).
Kashi, Y. & King, D. G. Trends Genet. 22, 253–259 (2006).
Soltis, P. S., Marchant, D. B., Van de Peer, Y. & Soltis, D. E. Curr. Opin. Genet. Dev. 35, 119–125 (2015).
Xia, B. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.09.14.460388 (2021).
Smith, G. P. Science 191, 528–535 (1976).
Rieseberg, L. H. Trends Ecol. Evol. 16, 351–358 (2001).
Raskina, O., Barber, J. C., Nevo, E. & Belyayev, A. Cytogenet. Genome Res. 120, 351–357 (2008).
Fuller, Z. L., Koury, S. A., Phadnis, N. & Schaeffer, S. W. Mol. Ecol. 28, 1283–1301 (2019).
Ventura, M., Archidiacono, N. & Rocchi, M. Genome Res. 11, 595–599 (2001).
Carbone, L. et al. Nature 513, 195–201 (2014).
Vollger, M. R. et al. Nat. Methods 16, 88–94 (2019).
Jarvis, E. D. et al. Preprint at bioRxiv https://doi.org/10.1101/2022.03.06.483034 (2022).
Yang, C. et al. Nature 594, 227–233 (2021).
Zhou, Y. et al. Nature 592, 756–762 (2021).
Chen, S. et al. Nat. Genet. 46, 253–260 (2014).
Wang, Z. et al. J. Genet. Genomics 49, 109–119 (2022).
Armstrong, J. et al. Nature 587, 246–251 (2020).
Zhou, F. et al. Nat. Genet. 48, 740–746 (2016).
Meyer, A. et al. Nature 590, 284–289 (2021).
Wang, K. et al. Cell 184, 1362–1376.e1318 (2021).
Pellicer, J., Hidalgo, O., Dodsworth, S. & Leitch, I. J. Genes (Basel) 9, 88 (2018).
Navarro Gonzalez, J. et al. Nucleic Acids Res. 49(D1), D1046–D1057 (2021).
Miga, K. H. & Wang, T. Annu. Rev. Genomics Hum. Genet. 22, 81–102 (2021).
Li, H. Bioinformatics 34, 3094–3100 (2018).
Ren, J. & Chaisson, M. J. P. PLOS Comput. Biol. 17, e1009078 (2021).
Feng, S. et al. Nature 587, 252–257 (2020).
Boomsma, J. J. et al. Myrmecol. News 25, 61–66 (2017).
Lewin, H. A. et al. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).
Jebb, D. et al. Nature 583, 578–584 (2020).
Wu, D.-D. et al. Zool. Res. 43, 147–149 (2022).
Stiller, J. & Zhang, G. Diversity (Basel) 11, 115 (2019).
Formenti, G. et al. Trends Ecol. Evol. 37, 197 (2022).
Acknowledgements
We acknowledge valuable comments from Glennis A. Logsdon (University of Washington School of Medicine). This work was supported by International Partnership Program of Chinese Academy of Sciences (no. 152453KYSB20170002) and a Villum Investigator Grant (no. 25900) from the Villum Foundation to G.Z.
Author information
Authors and Affiliations
Contributions
Y.M. and G.Z. conceived the project. Y.M. and G.Z. contributed to the writing.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Mao, Y., Zhang, G. A complete, telomere-to-telomere human genome sequence presents new opportunities for evolutionary genomics. Nat Methods 19, 635–638 (2022). https://doi.org/10.1038/s41592-022-01512-4
Published:
Issue date:
DOI: https://doi.org/10.1038/s41592-022-01512-4
This article is cited by
-
A refined analysis of Neanderthal-introgressed sequences in modern humans with a complete reference genome
Genome Biology (2025)
-
SoMaCX: a complex generative genome modeling framework
BMC Genomics (2025)
-
Toward improving multiomic research in understudied cereals
Nature Genetics (2025)
-
Integrated analysis of the complete sequence of a macaque genome
Nature (2025)
-
Comprehensive evaluation and guidance of structural variation detection tools in chicken whole genome sequence data
BMC Genomics (2024)