Nanopore direct RNA sequencing (DRS) reads continuous native RNA strands. Early adopters have used this technology to document nucleotide modifications and 3′ polyadenosine tails on RNA strands without added chemistry steps. Individual strands ranging in length from 70 to 26,000 nucleotides have been sequenced. In our opinion, broader acceptance of nanopore DRS by molecular biologists and cell biologists will be accelerated by higher basecall accuracy and lower RNA input requirements.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Regulatory roles of RNA modifications in plant development and fruit ripening
aBIOTECH Open Access 08 August 2025
-
Nanopore detection of single-nucleotide RNA mutations and modifications with programmable nanolatches
Nature Nanotechnology Open Access 27 June 2025
-
Biological roles of enhancer RNA m6A modification and its implications in cancer
Cell Communication and Signaling Open Access 30 May 2025
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


References
Garalde, D. R. et al. Nat. Methods 15, 201–206 (2018).
Viehweger, A. et al. Genome Res. 29, 1545–1554 (2019).
Wongsurawat, T. et al. Front. Microbiol. 10, 260 (2019).
Kim, D. et al. Cell 181, 914–921 (2020).
Ugolini, C. et al. Nucleic Acids Res. 50, 3475–3489 (2022).
Workman, R. E. et al. Nat. Methods 16, 1297–1305 (2019).
Thomas, N. K. et al. ACS Nano 15, 16642–16653 (2021).
Rousseau-Gueutin, M. et al. Gigascience 9, giaa137 (2020).
Grünberger, F., Ferreira-Cerca, S. & Grohmann, D. RNA 28, 400–417 (2022).
Mulroney, L. et al. RNA 28, 162–176 (2022).
Sereika, M. et al. Nat. Methods 19, 823–826 (2022).
Li, R. et al. Genome Res. 30, 287–298 (2020).
Loman, N. J., Quick, J. & Simpson, J. T. Nat. Methods 12, 733–735 (2015).
Li, H. Bioinformatics 34, 3094–3100 (2018).
Tudek, A. et al. Nat. Commun. 12, 4951 (2021).
Pust, M.-M., Davenport, C. F., Wiehlmann, L. & Tümmler, B. J. Bacteriol. 204, e0041821 (2022).
Grünberger, F. et al. Preprint at bioRxiv https://doi.org/10.1101/2019.12.18.880849 (2020).
Vo, J. M. et al. RNA 27, 1497–1511 (2021).
Drexler, H. L. et al. Nat. Protoc. 16, 1343–1375 (2021).
Furlan, M. et al. RNA Biol. 18, 31–40 (2021).
Abebe, J. S., Verstraten, R. & Depledge, D. P. mBio 13, e0370221 (2022).
White, L. K., Strugar, S. M., MacFadden, A. & Hesselberth, J. R. Preprint at bioRxiv https://doi.org/10.1101/2022.05.29.493267 (2022).
Smith, A. M., Jain, M., Mulroney, L., Garalde, D. R. & Akeson, M. PLoS ONE 14, e0216709 (2019).
Begik, O. et al. Nat. Biotechnol. 39, 1278–1291 (2021).
Leger, A. et al. Nat. Commun. 12, 7198 (2021).
Parker, M. T. et al. eLife 9, e49658 (2020).
Gao, Y. et al. Genome Biol. 22, 22 (2021).
Nguyen, T. A. et al. Nat. Methods 19, 833–844 (2022).
Huang, S. et al. Genome Biol. 22, 330 (2021).
Bailey, A. D. et al. eLife 11, e76562 (2022).
Tavakoli, S. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.11.03.467190 (2022).
Fleming, A. M., Mathewson, N. J. & Burrows, C. J. ACS Cent. Sci. 7, 1707–1717 (2021).
Pagliuca, F. W. et al. Cell 159, 428–439 (2014).
Miller, R. M. et al. Genome Biol. 23, 69 (2022).
Rogers, E. M. Diffusion of Innovations 5th edn (Simon and Schuster, 2003).
Viscardi, M. J. & Arribere, J. A. BMC Genomics 23, 530 (2022).
Pratanwanich, P. N. et al. Nat. Biotechnol. 39, 1394–1402 (2021).
Parker, M. T., Barton, G. J. & Simpson, G. G. Preprint at bioRxiv https://doi.org/10.1101/2021.06.15.448494 (2021).
Acknowledgements
M.J., H.E.O. and R.A.S. were supported by NIH grant HG010053.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
M.A. holds options in ONT and is a paid consultant to ONT. H.E.O. and M.J. received reimbursement for travel, accommodation and conference fees to speak at events organized by ONT.
Rights and permissions
About this article
Cite this article
Jain, M., Abu-Shumays, R., Olsen, H.E. et al. Advances in nanopore direct RNA sequencing. Nat Methods 19, 1160–1164 (2022). https://doi.org/10.1038/s41592-022-01633-w
Published:
Issue date:
DOI: https://doi.org/10.1038/s41592-022-01633-w
This article is cited by
-
De novo basecalling of RNA modifications at single molecule and nucleotide resolution
Genome Biology (2025)
-
Biological roles of enhancer RNA m6A modification and its implications in cancer
Cell Communication and Signaling (2025)
-
Direct profiling of non-adenosines in poly(A) tails of endogenous and therapeutic mRNAs with Ninetails
Nature Communications (2025)
-
Nanopore detection of single-nucleotide RNA mutations and modifications with programmable nanolatches
Nature Nanotechnology (2025)
-
Demultiplexing and barcode-specific adaptive sampling for nanopore direct RNA sequencing
Nature Communications (2025)