Nanopore direct RNA sequencing (DRS) reads continuous native RNA strands. Early adopters have used this technology to document nucleotide modifications and 3′ polyadenosine tails on RNA strands without added chemistry steps. Individual strands ranging in length from 70 to 26,000 nucleotides have been sequenced. In our opinion, broader acceptance of nanopore DRS by molecular biologists and cell biologists will be accelerated by higher basecall accuracy and lower RNA input requirements.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A dual context-aware basecaller for nanopore direct RNA sequencing
Nature Communications Open Access 21 January 2026
-
Genomic language model mitigates chimera artifacts in nanopore direct RNA sequencing
Nature Communications Open Access 19 January 2026
-
Comprehensive mapping of RNA modification dynamics and crosstalk via deep learning and nanopore direct RNA-sequencing
Nature Communications Open Access 14 January 2026
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout


References
Garalde, D. R. et al. Nat. Methods 15, 201–206 (2018).
Viehweger, A. et al. Genome Res. 29, 1545–1554 (2019).
Wongsurawat, T. et al. Front. Microbiol. 10, 260 (2019).
Kim, D. et al. Cell 181, 914–921 (2020).
Ugolini, C. et al. Nucleic Acids Res. 50, 3475–3489 (2022).
Workman, R. E. et al. Nat. Methods 16, 1297–1305 (2019).
Thomas, N. K. et al. ACS Nano 15, 16642–16653 (2021).
Rousseau-Gueutin, M. et al. Gigascience 9, giaa137 (2020).
Grünberger, F., Ferreira-Cerca, S. & Grohmann, D. RNA 28, 400–417 (2022).
Mulroney, L. et al. RNA 28, 162–176 (2022).
Sereika, M. et al. Nat. Methods 19, 823–826 (2022).
Li, R. et al. Genome Res. 30, 287–298 (2020).
Loman, N. J., Quick, J. & Simpson, J. T. Nat. Methods 12, 733–735 (2015).
Li, H. Bioinformatics 34, 3094–3100 (2018).
Tudek, A. et al. Nat. Commun. 12, 4951 (2021).
Pust, M.-M., Davenport, C. F., Wiehlmann, L. & Tümmler, B. J. Bacteriol. 204, e0041821 (2022).
Grünberger, F. et al. Preprint at bioRxiv https://doi.org/10.1101/2019.12.18.880849 (2020).
Vo, J. M. et al. RNA 27, 1497–1511 (2021).
Drexler, H. L. et al. Nat. Protoc. 16, 1343–1375 (2021).
Furlan, M. et al. RNA Biol. 18, 31–40 (2021).
Abebe, J. S., Verstraten, R. & Depledge, D. P. mBio 13, e0370221 (2022).
White, L. K., Strugar, S. M., MacFadden, A. & Hesselberth, J. R. Preprint at bioRxiv https://doi.org/10.1101/2022.05.29.493267 (2022).
Smith, A. M., Jain, M., Mulroney, L., Garalde, D. R. & Akeson, M. PLoS ONE 14, e0216709 (2019).
Begik, O. et al. Nat. Biotechnol. 39, 1278–1291 (2021).
Leger, A. et al. Nat. Commun. 12, 7198 (2021).
Parker, M. T. et al. eLife 9, e49658 (2020).
Gao, Y. et al. Genome Biol. 22, 22 (2021).
Nguyen, T. A. et al. Nat. Methods 19, 833–844 (2022).
Huang, S. et al. Genome Biol. 22, 330 (2021).
Bailey, A. D. et al. eLife 11, e76562 (2022).
Tavakoli, S. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.11.03.467190 (2022).
Fleming, A. M., Mathewson, N. J. & Burrows, C. J. ACS Cent. Sci. 7, 1707–1717 (2021).
Pagliuca, F. W. et al. Cell 159, 428–439 (2014).
Miller, R. M. et al. Genome Biol. 23, 69 (2022).
Rogers, E. M. Diffusion of Innovations 5th edn (Simon and Schuster, 2003).
Viscardi, M. J. & Arribere, J. A. BMC Genomics 23, 530 (2022).
Pratanwanich, P. N. et al. Nat. Biotechnol. 39, 1394–1402 (2021).
Parker, M. T., Barton, G. J. & Simpson, G. G. Preprint at bioRxiv https://doi.org/10.1101/2021.06.15.448494 (2021).
Acknowledgements
M.J., H.E.O. and R.A.S. were supported by NIH grant HG010053.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
M.A. holds options in ONT and is a paid consultant to ONT. H.E.O. and M.J. received reimbursement for travel, accommodation and conference fees to speak at events organized by ONT.
Rights and permissions
About this article
Cite this article
Jain, M., Abu-Shumays, R., Olsen, H.E. et al. Advances in nanopore direct RNA sequencing. Nat Methods 19, 1160–1164 (2022). https://doi.org/10.1038/s41592-022-01633-w
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41592-022-01633-w
This article is cited by
-
Comprehensive mapping of RNA modification dynamics and crosstalk via deep learning and nanopore direct RNA-sequencing
Nature Communications (2026)
-
Genomic language model mitigates chimera artifacts in nanopore direct RNA sequencing
Nature Communications (2026)
-
A dual context-aware basecaller for nanopore direct RNA sequencing
Nature Communications (2026)
-
The potential of mRNA markers in body fluids and personal source analysis based on the QNome nanopore sequencing
International Journal of Legal Medicine (2026)
-
mRNA vaccines: immunogenicity and quality characteristics
Journal of Nanobiotechnology (2025)