Mass spectrometry-based proteomics provides broad and quantitative detection of the proteome, but its results are mostly presented as protein lists. Artificial intelligence approaches will exploit prior knowledge from literature and harmonize fragmented datasets to enable mechanistic and functional interpretation of proteomics experiments.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout

References
Neely, B. A. et al. J. Proteome Res. 22, 681–696 (2023).
Burbano de Lara, S. et al. Mol. Syst. Biol. 20, 187–216 (2024).
Wu, P. et al. Mol. Cell. Proteomics 18, 1893–1898 (2019).
Listgarten, J. Nat. Biotechnol. 42, 371–373 (2024).
Türei, D., Korcsmáros, T. & Saez-Rodriguez, J. Nat. Methods 13, 966–967 (2016).
Valenzuela-Escárcega, M. A. et al. Database (Oxford) 2018, bay098 (2018).
Gyori, B. M., Bachman, J. A. & Kolusheva, D. In BioCreative VII Challenge Evaluation Workshop, Virtual Workshop 249–253 (2021).
Bachman, J. A., Gyori, B. M. & Sorger, P. K. Mol. Syst. Biol. 19, e11325 (2023).
Hoyt, C. T. et al. Sci. Data 9, 714 (2022).
Callahan, T. J. et al. Sci. Data 11, 363 (2024).
Cui, H. et al. Nat. Methods https://doi.org/10.1038/s41592-024-02201-0 (2024).
Kitano, H. NPJ Syst. Biol. Appl. 7, 29 (2021).
Tang, C. et al. Nat. Rev. Elec. Eng. 1, 199–207 (2024).
Messeri, L. & Crockett, M. J. Nature 627, 49–58 (2024).
Kustatscher, G. et al. Nat. Methods 19, 774–779 (2022).
Acknowledgements
B.M.G. is supported by award HR00112220036 under the DARPA ASKEM and ARPA-H BDF programs. O.V. is supported by National Institutes of Health award NIAR01AG078755.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Gyori, B.M., Vitek, O. Beyond protein lists: AI-assisted interpretation of proteomic investigations in the context of evolving scientific knowledge. Nat Methods 21, 1387–1389 (2024). https://doi.org/10.1038/s41592-024-02324-4
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41592-024-02324-4
This article is cited by
-
Mass-spectrometry-based proteomics: from single cells to clinical applications
Nature (2025)
-
Embedding AI in biology
Nature Methods (2024)