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ECLiPSE: a versatile classification technique 
for structural and morphological analysis 
of 2D and 3D single-molecule localization 
microscopy data

Siewert Hugelier    1  , Qing Tang1, Hannah Hyun-Sook Kim    1,2, 
Melina Theoni Gyparaki3,7, Charles Bond1,4, Adriana Naomi Santiago-Ruiz    1,2, 
Sílvia Porta5 & Melike Lakadamyali    1,6 

Single-molecule localization microscopy (SMLM) has gained widespread 
use for visualizing the morphology of subcellular organelles and structures 
with nanoscale spatial resolution. However, analysis tools for automatically 
quantifying and classifying SMLM images have lagged behind. Here we 
introduce Enhanced Classification of Localized Point clouds by Shape 
Extraction (ECLiPSE), an automated machine learning analysis pipeline 
specifically designed to classify cellular structures captured through 
two-dimensional or three-dimensional SMLM. ECLiPSE leverages a 
comprehensive set of shape descriptors, the majority of which are directly 
extracted from the localizations to minimize bias during the characterization 
of individual structures. ECLiPSE has been validated using both unsupervised 
and supervised classification on datasets, including various cellular 
structures, achieving near-perfect accuracy. We apply two-dimensional 
ECLiPSE to classify morphologically distinct protein aggregates relevant for 
neurodegenerative diseases. Additionally, we employ three-dimensional 
ECLiPSE to identify relevant biological differences between healthy and 
depolarized mitochondria. ECLiPSE will enhance the way we study cellular 
structures across various biological contexts.

Cells are compartmentalized into various structural units including 
membrane-bound and membraneless subcellular organelles, cytoskel-
etal structures and supramolecular protein assemblies. Each of these 
organizational units possesses unique and complex structural and mor-
phological properties that span a range of length scales to match their 
function. The distinct morphology of organelles help adapt them to 
specific functions, and can change in response to cellular needs as well 
as in disease states1. Similarly, aggregation of proteins into solid inclu-
sions with specific morphological properties is a hallmark of several 
neurodegenerative diseases2. Therefore, techniques to characterize 

and classify subcellular compartments on the basis of their structural 
and morphological properties are invaluable in studying both cell 
physiology and pathology.

Recent advancements in super-resolution microscopy have revolu-
tionized our ability to visualize the intricate morphological features of 
subcellular compartments and organelles at nanoscale spatial resolu-
tion3. Super-resolution microscopy can capture subtle changes in the 
morphology and structure of these subcellular components, which 
were once inaccessible due to the diffraction limit of light. For this 
purpose, single-molecule localization microscopy (SMLM) techniques 
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structures and the specific descriptors that provide the highest degree 
of separation can vary depending on each biological application. To 
address this, we have incorporated an automated variable selection 
step (Supplementary Note 1 and Supplementary Fig. 1), which can be 
used to automatically select the most informative descriptors that 
distinguish between different groups in the data without prior knowl-
edge of what these descriptors are (Fig. 1d). If information on group 
identity is not available, data compression algorithms such as principal 
component analysis (PCA) could be used to extract such information. 
Once the shape descriptors are calculated and optionally undergo 
variable selection, the data can be explored in the PCA-space using 
these quantitative features (Fig. 1e). This approach offers a preliminary 
visual representation of the extent to which datasets are separated 
within the PCA space and can uncover subpopulations within the data. 
Additionally, information about distinct groups can be employed to 
color code the data points, revealing their degree of separation. The 
final step is the classification (Fig. 1f) using many machine learning 
models including supervised models (for example, K-nearest neigh-
bors, random forest, partial least squares for discrimination, logistic 
regression for discrimination and so on) and unsupervised models 
(for example, partial or agglomerative hierarchical clustering). Model 
training and validation is performed independently from one another 
by selecting different subsets of the full dataset (Supplementary Note 
2). The training and validation process can be performed multiple 
times and the best performing model(s) is (are) then automatically 
selected to predict the class membership of new data that the user 
provides. Detailed information on the unsupervised and supervised 
classification models and hyperparameters used in this work can be 
found in Supplementary Note 2, Supplementary Figs. 2–4 and Sup-
plementary Tables 3 and 4.

Two-dimensional ECLiPSE validation and benchmarking
We first validated our approach using ground truth 2D SMLM datasets 
of five distinct structures including organelles (lysosomes and mito-
chondria), cytoskeletal filaments (microtubules), supramolecular 
assemblies (NPC, data that were reused from a previously published 
dataset)18 and aggregates of the tau protein (Supplementary Fig. 5 
and Methods). Performing variable selection on this dataset largely 
reduced the variance between members of the same class, as shown by 
the exploratory PCA analysis, but did not substantially improve class 
separation (Fig. 1e and Supplementary Video 1). We then trained several 
types of machine learning models using a limited subset of training 
data (approximately 550 samples per group) and subsequently made 
predictions using ground truth data that had been excluded from the 
training dataset. The best results were achieved with the random forest 
classifier with an average prediction accuracy of 97.1 ± 0.1% across all 
categories (the prediction accuracy is the average percentage of cor-
rectly classified data over all classes; Fig. 1f). The error in the prediction 
represents the standard deviation over all prediction models, each 
trained on a different subset of training data, to quantify the robust-
ness of the machine learning training step. The small standard devia-
tion indicates that the results are robust regardless of the choice of 
the training dataset and given this robustness, the number of models 
can be drastically reduced in practice. Additionally, the low standard 
deviations across different classification methods (Supplementary 
Figs. 3 and 4) also further indicate the robustness of the developed 
descriptors for the biological quantification.

The largest confusion in the prediction was between lysosomes 
and mitochondria (94.0 ± 1.2% and 94.8 ± 0.9%, respectively) as these 
classes are morphologically more similar to each other than to the other 
classes. We thus selected these two classes for a side-by-side compari-
son of our approach to the previously developed ASAP (Supplementary 
Note 3, Supplementary Figs. 6 and 7 and Supplementary Tables 5 and 
6). Since ASAP does not provide an automatic model selection, we used 
the classification method included as default setting (discriminant 

have been widely adopted by the cell biology community as they do 
not require highly specialized microscope hardware4. However, the 
development of analysis tools to accurately classify individual sub-
cellular structures into distinct categories on the basis of shape and 
morphology has not kept pace with advancements in super-resolution 
microscopy, particularly in the context of SMLM. This is because SMLM 
data consist of point clouds rather than pixelated intensity-based 
images, which is less compatible with traditional image processing 
and analysis techniques.

Current tools employ template-based or template-free strate-
gies to classify and align super-resolution data of highly symmetric, 
self-similar and frequently simplistic structures, such as the nuclear 
pore complex (NPC), to facilitate single-particle averaging for the 
purpose of accurately describing the structure of interest5–10. How-
ever, these methods do not explicitly ascertain the morphological 
characteristics of unique structures, leading to the recent develop-
ment of tools, such as SEgmentation and MORphological fingErprint-
ing (SEMORE)11, which combines both geometric and kinetics-based 
descriptors in its analysis. Alternative tools, such as Localization Model 
Fit (LocMoFit), depend on model fitting with predefined and often 
basic geometric models to achieve the structure-matching and extract 
basic quantitative properties12. LocMoFit enables the extraction of a 
number of geometric features that are included in the model, such 
as size and symmetry angle, to determine the degree of variability 
among individual structures. Although this method is valuable, it can 
only quantify a small number of parameters and has not been utilized 
to classify structures into distinct categories as it relies on analyzing 
structures that are identical or highly similar. Recently, an automated 
structure analysis program (ASAP) was developed to quantify and clas-
sify structures based on a limited number of geometric shape descrip-
tors13. ASAP was applied to SMLM images of NPCs, endocytic vesicles 
and Bax protein pores, all of which assemble into small (~100 nm) and 
simple structures resembling either rods, arcs or circles. Although 
ASAP represents an important improvement in the structural classifi-
cation of super-resolution data, one of its drawbacks is that it requires 
rendering the SMLM point cloud data into pixelated images followed 
by thresholding and binarization, which may introduce artifacts and 
cause the loss of important information. Furthermore, the limited 
number of shape descriptors in ASAP makes it less applicable to struc-
tures with complex shapes and larger sizes. To fill the gaps in advanced 
classification tools, we developed an analysis pipeline called Enhanced 
Classification of Localized Point clouds by Shape Extraction (ECLiPSE) 
that expands the toolbox for classifying structures in two-dimensional 
(2D) and three-dimensional (3D) SMLM data. ECLiPSE does not require 
user input in its default settings, which are robust for most applications 
and can accurately describe and classify structures of different sizes 
and complexity. This includes organelles with distinct morphologies, 
cytoskeletal filaments and diverse protein aggregates.

Results
Two-dimensional ECLiPSE pipeline
The workflow of ECLiPSE is shown in Fig. 1. After data acquisition and 
segmentation of super-resolution data, which can be done using exist-
ing techniques and packages (for example, Voronoi tessellation or 
DBScan14–17; Fig. 1a,b), the first step in ECLiPSE involves calculating 
68 (2D data) or 69 (3D data) (see below) shape descriptors, of which 
the majority is extracted directly from the point cloud data (Fig. 1c, 
2D descriptors). The shape descriptors include geometric proper-
ties, boundary properties, skeleton properties, texture properties, 
Hu moments and fractal properties (Supplementary Tables 1 and 2 for 
2D and 3D properties, respectively). We note that for all visualization 
purposes in this manuscript (except Fig. 1c), the localizations were 
rendered into intensity-based images, but calculations were done on 
the raw, unprocessed localizations. It is important to note that not every 
shape descriptor is equally effective at distinguishing between various 
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analysis). Moreover, given that ASAP requires pixelated images, we also 
tested how its performance depends on the image rendering param-
eters, in particular the width of the rendering point spread function 
(PSF) and binary image threshold (Supplementary Fig. 6). The accuracy 
of the ASAP prediction was dependent on both parameters as expected 
(Supplementary Fig. 7), and these parameters must therefore be manu-
ally optimized to achieve maximal results. Additionally, a full study on 
the influence of these parameters on ASAP classification accuracy for 
all available methods was performed. Surprisingly, it revealed that the 
relationship between rendering PSF width and prediction accuracy was 
model dependent. Sometimes, a larger rendering PSF size led to more 
accurate predictions, but for other classification methods, smaller 
PSF sizes resulted in superior performance (Supplementary Table 5). 
Moreover, upon comparing ASAP with ECLiPSE using their default set-
tings, ECLiPSE demonstrated a superior average prediction accuracy 
by 6.1% over ASAP, and ECLiPSE also performed better than the best 
average prediction accuracy achieved in the optimized study presented 
in Supplementary Table 5. A similar result was also obtained when utiliz-
ing the validation dataset including all five classes (Fig. 1g, left), where 
the difference in average prediction accuracy is 3.4%, with a maximum 
difference in prediction accuracy of 13.5% for the more heterogeneous 
mitochondria class. Furthermore, with ASAP (Supplementary Table 5), 
a notable disparity in prediction accuracy was observed across various 

classification methods, whereas this inconsistency was not present 
when employing ECLiPSE (Supplementary Fig. 3). These results dem-
onstrate several advantages of our approach over existing tools: the 
ability to use the unbiased raw point cloud data, automated variable 
selection and automated model selection. These collectively provide 
improved performance and robustness over previous state-of-the-art 
methods. Importantly, this improved performance does not come at 
the expense of computational load, as the speed of ECLiPSE and ASAP 
were comparable, with the descriptor calculation in ECLiPSE being 
roughly 10% faster than ASAP on the example data included in the 
manuscript (see Supplementary Note 3 for a step-by-step comparison 
between ECLiPSE and ASAP).

Distinct tau and TDP-43 aggregate classes quantified using 2D 
ECLiPSE
We next applied our approach to two biological applications, acquired 
using 2D SMLM: clearance of tau protein aggregates (Fig. 2a–e) and 
detection of TAR DNA-binding protein 43 (TDP-43) proteinopathy 
morphotypes (Fig. 2f–i). Both applications represent aggregation of 
proteins into insoluble inclusions that play a role in several neurode-
generative diseases19. Tau is a neuronal microtubule associated pro-
tein, which undergoes aberrant posttranslational modifications and 
aggregation in several tauopathies, including frontotemporal dementia 
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Fig. 1 | The analysis pipeline of ECLiPSE to quantify super-resolution 
microscopy data as point clouds applied to the validation data. a, A schematic 
representation of the SMLM data acquisition process (t is time). b, Segmentation 
of the localizations into individual clusters (applied to a region of interest of 
the lysosome data using a maximum Voronoi area of 684 nm2 and a minimum 
of 25 localizations and subsequent filtering of lysosomes with an area less than 
0.123 µm2 or greater than 0.479 µm2; green: low density and blue: high density). 
c, Feature extraction from segmented point cloud clusters generate descriptors 
including geometric, boundary, skeleton and so on. d, Example distributions of 
features that adequately or poorly separate the different classes in the validation 
data, as determined by automatic variable selection (28/67 descriptors that 

provide clear class separation). e, Data exploration using PCA with and without 
variable selection. f, Optimized classification results for the validation data 
(97.1 ± 0.1% accuracy), obtained by the random forest classifier (100 best models 
out of 1,000 generated models). g, Difference confusion matrices between 
ECLiPSE (logistic regression, no variable selection) and ASAP (10 nm rendering 
precision, 1.5 × 105 threshold, discriminant classifier). Left: validation data (96.9% 
versus 93.5% accuracy for ECLiPSE and ASAP, respectively). Right: tau aggregation 
data (92.9% versus 80.6% accuracy for ECLiPSE and ASAP, respectively). The blue 
values represent superior results for ECLiPSE (that is, positive diagonal values and 
negative off-diagonal values), whereas red values represent inferior results for 
ECLiPSE (that is, negative diagonal values and positive off-diagonal values).
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with Parkinsonism linked to chromosome 17 (FTDP-17), Pick’s disease 
and Alzheimer’s disease20. It has been shown that these tau inclusions 
are morphologically diverse and disease specific (for example, neu-
rofibrillary tangles (NFTs) in Alzheimer’s disease and Pick’s bodies 
in Pick’s disease)21. Recent work suggests that there are molecularly 
and structurally distinct disease-specific tau strains in which the tau 
protofilaments assume a distinct fold that leads to disease-specific tau 
aggregation21–24. However, the relationship between the molecular sig-
natures (for example, posttranslational modifications) of tau proteins, 
the tau protofilament structure and the morphology of the resulting 
tau aggregates is not clearly understood. Using SMLM, we previously 
showed that tau forms morphologically diverse aggregates in an FTDP-
17 engineered cell model25. These aggregates were broadly categorized 
into four classes based on visual inspection: linear fibrils, branched 
fibrils, preneurofibrillary tangles (pre-NFTs) and NFTs25 (Fig. 2a and 

Supplementary Fig. 8). Interestingly, these aggregate classes were 
enriched with hyperphosphorylation marks on distinct tau residues 
(phospho-Ser202/205 for linear fibrils and NFTs, and phospho-Thr231 
for branched fibrils)25. An unbiased classification of these tau aggre-
gates is crucial for obtaining insights into the progression of tau pathol-
ogy. However, this task is particularly challenging due to the irregular 
and highly diverse morphological features of these aggregates. The 
automated, high-throughput and unbiased classification of these pre-
viously identified tau aggregates is crucial for obtaining insights into 
the progression of tau pathology. We elected to use supervised clas-
sification for this purpose given the morphological complexity and het-
erogeneity of tau aggregates (unsupervised classification results gave 
unsatisfactory results; Supplementary Fig. 2b). We therefore manually 
annotated a small subset of the data (~15% of the data used in the train-
ing/validation step) into the four classes mentioned above based on 
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their morphology and size. We then trained and validated ECLiPSE on 
these preannotated data, which showed that ECLiPSE accurately dis-
criminates between members of the four different tau morphological 
classes (Fig. 2b,c). The average prediction accuracy was 89.8 ± 0.4%, 
which is remarkably high given the high complexity and morphological 
similarity among the different tau aggregate structures. Additionally, 
we compared ECLiPSE and ASAP on this complex dataset and found 
that, at default settings for both methods, ECLiPSE yielded a 12.3% 
increase in overall prediction power relative to ASAP when accounting 
for all aggregate classes (Fig. 1g, right and Supplementary Table 6). 
Notably, ECLiPSE demonstrated an impressive 17.7% improvement in 
prediction accuracy for some of the most challenging comparisons 
(Supplementary Table 6). Once again, these results underscore the 
robustness of our approach in handling challenging biological data 
where the morphology of structures is complex and spans a broad 
size scale. To determine the contribution of the automated variable 
selection to the high performance, we repeated the prediction without 
variable selection and found that this step indeed improved the average 
prediction accuracy by 1.5% (Supplementary Fig. 9).

Following this validation, we next examined data in which we 
induced tau degradation. To do so, we inhibited the expression of solu-
ble tau by removing doxycycline (Dox) in the QBI-293 (Clone 4.1) cells 
(Fig. 2d and Methods). We observed a decrease in total tau amounts 
and tau aggregates at days 1–10 after removing Dox (Fig. 2d and Sup-
plementary Fig. 10), which is consistent with previous biochemical 
analysis26. Previous work had shown that this loss corresponds to tau 
degradation mediated by both the proteasome and autophagy path-
ways, but it remains unclear how the different tau aggregate classes are 
cleared over time. Using ECLiPSE, we predicted the number of the four 
morphological tau aggregate classes at different time points following 
Dox removal, which allowed us to determine the timing of degradation 
of these different classes (Fig. 2e). It is important to note that we used 
the classification models that were already trained above for predicting 
tau aggregate classes in this new dataset, without the need for further 
manual annotation and training. In general, the classification models are 
trained for a specific biological application and can be applied to new 
data acquired on a different microscope without retraining, as long as 
the underlying biology is similar and the acquired data is pointillist in 
nature. For the clearance of tau aggregates, interestingly, we found that 
while branched fibrils, pre-NFTs and NFTs showed a rapid and consistent 
decay starting at day 1 after Dox removal, linear fibrils persisted up to day 
5 displaying more delayed degradation kinetics (Fig. 2e). These results 
suggest that it may be more challenging to clear linear fibrils compared 
with other morphological tau aggregate classes. Alternatively, it is pos-
sible that other aggregate classes are broken down into linear fibrils, 
resulting in their accumulation over time. Since both autophagy and 
proteasome pathways are involved in tau aggregate clearance26, in the 
future, this approach would be useful to determine whether specific 
pathways clear distinct classes of tau aggregates and the mechanisms 
of why the linear fibrils have a delayed degradation kinetics.

Finally, we used our approach to discriminate between brain- 
derived TDP-43 strains, obtained from two patients with frontotem-
poral lobular degeneration with TDP-43 immunoreactive pathology 
(FTLD-TDP). In normal conditions, TDP-43 is found in the nucleus and 
plays an important role in RNA regulation27. In pathology, changes in 
cleavage and posttranslational modifications of TDP-43 lead to its 
cytoplasmic accumulation and aggregation into inclusions, similar 
to tau27. Previous work has demonstrated that extracts derived from 
the postmortem brain samples of individuals with FTLD-TDP can seed 
morphologically distinct TDP-43 aggregates in both animal and cell 
models28. This finding supports the existence of distinct TDP-43 strains 
that possess unique seeding and spreading properties, which is highly 
relevant to understanding the pathophysiology of the disease. How-
ever, previous work has relied on low resolution images and simple 
geometric measurements (for example, circularity) to distinguish 

between ‘globular-like’ versus ‘wisp-like’ TDP-43 aggregates seeded 
by these different strains. Manual measurements and classification of 
low-resolution images can be a slow and subjective process. While this 
approach is useful, super-resolution information is needed to precisely 
visualize and quantify the morphology of TDP-43 aggregates and 
robustly classify them. We thus aimed to apply ECLiPSE to determine 
if this approach could detect morphologically distinct TDP-43 aggre-
gates in cell models. TDP-43 extracted from two distinct postmortem 
FTLD-TDP brains was used to seed TDP-43 aggregates in cell models. 
The resulting aggregates were acquired using 2D SMLM (Fig. 2f,g, 
Supplementary Fig. 11 and Methods). Visual inspection confirmed 
that one strain led to the formation of more globular-like aggregates 
(Fig. 2f,g, strain A and Supplementary Fig. 11a), whereas the other strain 
predominantly seeded aggregated that resembled linear fibrils, previ-
ously described as wisps (Fig. 2f, g, strain B and Supplementary Fig. 11b). 
Extracting shape descriptors enabled us to further confirm these dif-
ferences in morphology using PCA analysis (Fig. 2h). Finally, we applied 
the machine learning classification on the clustered localization data 
of aggregates from the two TDP-43 strains not included in the training 
data and showed that ECLiPSE predicts the distinct morphologies with 
very high accuracy (89.9 ± 0.6%) (Fig. 2i). Furthermore, upon examining 
the aggregates that were accurately or inaccurately classified (Supple-
mentary Fig. 12a), it became evident that the ‘misidentified’ aggregates 
of one strain exhibited morphological features characteristic of the 
other strain, and vice versa. We can therefore conclude that although 
a strain primarily seeds aggregates with a specific morphological 
trait, a considerable proportion of the seeded aggregates still exhibits 
morphological similarities to the other strain even when the strains are 
derived from two distinct postmortem FTLD-TDP brains. In the future, 
application of ECLiPSE to classify the presence of morphologically 
distinct protein aggregates in postmortem brain tissue can enable link-
ing aggregate morphology to patient-specific proteinopathy strains.

Three-dimensional ECLiPSE pipeline and validation
While 2D SMLM imaging is straightforward and suitable for most appli-
cations, organelles and other subcellular assemblies are often 3D in 
nature. The ability to use 3D morphological features to classify these 
structures can potentially improve classification and prediction accu-
racy. We therefore also extended ECLiPSE to the analysis of 3D SMLM 
data by extending the shape descriptors to 3D (Supplementary Table 2). 
To validate 3D ECLiPSE, we acquired 3D SMLM images of lysosomes and 
mitochondria (Fig. 3a). The mitochondria were measured either with or 
without prior treatment with antimycin and oligomycin A, which leads 
to depolarization of mitochondria and subsequent changes to mito-
chondrial morphology. In particular, mitochondria became rounded 
up and lost their elongated morphology in response to this treatment. 
We chose this application as mitochondrial membrane potential is 
crucial for energy storage during oxidative phosphorylation and loss 
of mitochondrial membrane potential is deleterious for mitochondrial 
function, which can be indicative of various pathologies29,30.

Once the 3D descriptors were calculated on these organelles and 
variable selection was performed, PCA was used to explore the data, 
followed by supervised classification (Fig. 3b,c, left: lysosomes versus 
healthy mitochondria and right: healthy versus depolarized mitochon-
dria, and Supplementary Videos 2 and 3). Whereas the 2D classification 
of the lysosome and mitochondria still carried a small degree of confu-
sion between these organelles, the 3D quantitative features represented 
in the PCA space showed a much larger degree of separation, which was 
also reflected in the high classification accuracy obtained (98.6 ± 0.1%). 
This validates the robust quantification of 3D SMLM data using 3D 
ECLiPSE. Furthermore, when the mitochondria were compared with 
one another, there was a certain degree of overlap between the two 
groups in the PCA space as the treatment was relatively gentle. Never-
theless, an average classification accuracy of 75.8 ± 0.6% was obtained, 
further validating the use of ECLiPSE for 3D SMLM data. Representative 
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images of wrongly classified mitochondria for either group are shown 
in Supplementary Fig. 12b. Additionally, using the automatic variable 
selection step of ECLiPSE (Supplementary Fig. 1c, right), biological 
properties were identified that showed clear differences between these 
mitochondria with or without treatment as well as properties that were 
conserved after treatment (Fig. 3d). For example, the number of locali-
zations and mean surface boundary curvature did not change upon 
treatment whereas major axis and sphericity decreased as expected 
from mitochondria becoming rounded upon treatment.

To showcase an alternative approach for classifying these three 
organelles all together, the results of a hierarchical classification 
approach are reported in Supplementary Fig. 13, demonstrating the 
strength of the 3D ECLiPSE quantification to discriminate between 
morphologically similar lysosomes and depolarized mitochondria. 
Generally speaking, this hierarchical classification approach is a useful 
strategy when there is substantial overlap between some groups in the 
data but not others, which is the case for this combined dataset as shown 
by the exploratory PCA analysis (Supplementary Fig. 13a and Video 
4). More detailed information can be found in Supplementary Note 2.

Discussion
We have developed a robust feature extraction and classification 
pipeline for structures and organelles in both 2D and 3D SMLM data. 
ECLiPSE works on point cloud data and is compatible with any SMLM 
modality. Importantly, ECLiPSE does not require user input and can 
be run using default settings giving satisfactory and robust results 
for most applications. Furthermore, it has comparable speed to exist-
ing methods for classifying structures in SMLM data, while providing 
superior performance. However, care should be taken to ensure the 
high quality of the individual organelles/structures used by ECLiPSE 

as issues, such as incomplete labeling, insufficient image acquisition 
or improper segmentation can affect classification performance, espe-
cially when working with small datasets. Moreover, when ECLiPSE is 
employed for supervised classification rather than as an exploratory 
tool (that is, unsupervised classification to discover groupings in the 
data), a training dataset is required to build the models, which may 
necessitate manual annotation of a limited subset of the available data.

We envision that ECLiPSE will be broadly applicable for classify-
ing aggregation of proteins in neurodegenerative diseases to deter-
mine patient-specific aggregation prone protein strains, determining 
changes in organelle morphology in disease states or in response to 
drug treatment, classifying cell type-specific cytoskeletal architec-
ture and other supramolecular assemblies. In the future, ECLiPSE 
can be expanded to include assigning pseudo-time stamps to protein 
aggregates or other biological structures based on their evolving 
morphological properties. Additionally, ECLiPSE can be adapted to 
generate pseudo-multicolor super-resolution images by color coding 
spatially distinct structures within single-color images. The classifica-
tion step of ECLiPSE can be further expanded to include class modeling 
to provide a metric for assessing how well a new sample belongs to an 
existing class based on its similarity to the modeled classes. This addi-
tion will further increase robustness and allow identifying low-quality, 
nonrepresentative or novel samples. Finally, the descriptor calculation 
step of ECLiPSE can be expanded to enhance compatibility with cellular 
structures that encompass multiple scales of spatial information within 
the same structure (for example, chromatin structures).

Overall, we have developed a versatile toolbox for the structural 
and morphological characterization of super-resolution microscopy 
data, offering broad applicability and numerous potential applications 
and future directions.
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Fig. 3 | Biological applications with ECLiPSE in 3D SMLM. a, Representative 
images for 3D data color coded according to depth using the color scale bar 
(lysosomes (left), healthy mitochondria (middle) and depolarized mitochondria 
(right)). The insets show zoomed-in 3D views of the regions within the white boxes. 
b, Data exploration using PCA after feature extraction using ECLiPSE shows a 
clear separation between lysosomes and mitochondria (left), but a nonnegligent 
amount of similarities between healthy and depolarized mitochondria (right).  
c, The classification results using the partial least squares classifier on the variable 
selected lysosome versus mitochondria data (left; 98.6 ± 0.1% accuracy) and 
the random forest classifier on the variable selected healthy versus depolarized 
mitochondria (right; 75.8 ± 0.6% accuracy). d, The quantification of four 

biological properties of healthy and depolarized mitochondria indicating that 
two nonvariable selected properties do not show significant differences (number 
of localizations and boundary surface curvature (two left-most graphs)) and two 
variable selected properties show significant differences (major axis and sphericity 
(two right-most graphs)). For classification in c, only the results obtained by the 
100 best models out of 1,000 generated models is shown. Lysosomes: n = 11 cells 
(three biological replicates); healthy mitochondria: n = 16 cells (four biological 
replicates); depolarized mitochondria: n = 9 cells (three biological replicates). In d 
the black line represents the median of the shown biological property and 1% upper 
and lower values were removed only for visualization purposes. P values were 
calculated using a two-sided Wilcoxon rank sum test.

http://www.nature.com/naturemethods


Nature Methods | Volume 21 | October 2024 | 1909–1915 1915

Article https://doi.org/10.1038/s41592-024-02414-3

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgments, peer review information; details of author contribu-
tions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02414-3.

References
1.	 Heald, R. & Cohen-Fix, O. Morphology and function of membrane- 

bound organelles. Curr. Opin. Cell Biol. 26, 79–86 (2014).
2.	 Soto, C. & Pritzkow, S. Protein misfolding, aggregation, and 

conformational strains in neurodegenerative diseases. Nat. 
Neurosci. 21, 1332–1340 (2018).

3.	 Bond, C., Santiago-Ruiz, A. N., Tang, Q. & Lakadamyali, M. 
Technological advances in super-resolution microscopy to study 
cellular processes. Mol. Cell 82, 315–332 (2022).

4.	 Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. 
Methods Primers 1, 39 (2021).

5.	 Broeken, J. et al. Resolution improvement by 3D particle 
averaging in localization microscopy. Methods Appl. Fluoresc. 3, 
014003 (2015).

6.	 Heydarian, H. et al. 3D particle averaging and detection of 
macromolecular symmetry in localization microscopy. Nat. 
Commun. 12, 2847 (2021).

7.	 Heydarian, H. et al. Template-free 2D particle fusion in localization 
microscopy. Nat. Methods 15, 781–784 (2018).

8.	 Loschberger, A. et al. Super-resolution imaging visualizes the 
eightfold symmetry of gp210 proteins around the nuclear pore 
complex and resolves the central channel with nanometer 
resolution. J. Cell Sci. 125, 570–575 (2012).

9.	 Schnitzbauer, J. et al. Correlation analysis framework for 
localization-based superresolution microscopy. Proc. Natl Acad. 
Sci. USA 115, 3219–3224 (2018).

10.	 Huijben, T. A. P. M. et al. Detecting structural heterogeneity in 
single-molecule localization microscopy data. Nat. Commun. 12, 
3791 (2021).

11.	 Bender, S. W. B., Dreisler, M. W., Zhang, M., Kæstel-Hansen, J. 
& Hatzakis, N. S. SEMORE: SEgmentation and MORphological 
fingErprinting by machine learning automates super-resolution 
data analysis. Nat. Commun. 15, 1763 (2024).

12.	 Wu, Y.-L. et al. Maximum-likelihood model fitting for quantitative 
analysis of SMLM data. Nat. Methods 20, 139–148 (2023).

13.	 Danial, J. S. H. & Garcia-Saez, A. J. Quantitative analysis of super- 
resolved structures using ASAP. Nat. Methods 16, 711–714 (2019).

14.	 Andronov, L., Orlov, I., Lutz, Y., Vonesch, J.-L. & Klaholz, B. P. 
ClusterViSu, a method for clustering of protein complexes by 
Voronoi tessellation in super-resolution microscopy. Sci. Rep. 6, 
24084 (2016).

15.	 Lagache, T. et al. Mapping molecular assemblies with 
fluorescence microscopy and object-based spatial statistics. Nat. 
Commun. 9, 698 (2018).

16.	 Levet, F. et al. SR-Tesseler: a method to segment and quantify 
localization-based super-resolution microscopy data. Nat. 
Methods 12, 1065–1071 (2015).

17.	 Levet, F. & Sibarita, J.-B. PoCA: a software platform for point cloud 
data visualization and quantification. Nat. Methods https://doi.org/ 
10.1038/s41592-023-01811-4 (2023).

18.	 Bohrer, C. H. et al. A pairwise distance distribution correction 
(DDC) algorithm to eliminate blinking-caused artifacts in SMLM. 
Nat. Methods 18, 669–677 (2021).

19.	 Ross, C. A. & Poirier, M. A. Protein aggregation and 
neurodegenerative disease. Nat. Med. 10, S10–S17  
(2004).

20.	 Lee, V. M., Goedert, M. & Trojanowski, J. Q. Neurodegenerative 
tauopathies. Annu. Rev. Neurosci. 24, 1121–1159 (2001).

21.	 Chung, D.-E. C., Roemer, S., Petrucelli, L. & Dickson, D. W. Cellular 
and pathological heterogeneity of primary tauopathies. Mol. 
Neurodegener. 16, 57 (2021).

22.	 Falcon, B. et al. Structures of filaments from Pick’s disease reveal 
a novel tau protein fold. Nature 561, 137–140 (2018).

23.	 Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from 
Alzheimer’s disease. Nature 547, 185–190 (2017).

24.	 Scheres, S. H., Zhang, W., Falcon, B. & Goedert, M. Cryo-EM 
structures of tau filaments. Curr. Opin. Struct. Biol. 64, 17–25 
(2020).

25.	 Gyparaki, M. T. et al. Tau forms oligomeric complexes on 
microtubules that are distinct from tau aggregates. Proc. Natl 
Acad. Sci. USA 118, e2021461118 (2021).

26.	 Guo, J. L. et al. The dynamics and turnover of tau aggregates 
in cultured cells: insights into therapies for tauopathies. J. Biol. 
Chem. 291, 13175–13193 (2016).

27.	 de Boer, E. M. J. et al. TDP-43 proteinopathies: a new wave of 
neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry 92, 
86–95 (2020).

28.	 Porta, S. et al. Distinct brain-derived TDP-43 strains from FTLD-TDP 
subtypes induce diverse morphological TDP-43 aggregates 
and spreading patterns in vitro and in vivo. Neuropathol. Appl. 
Neurobiol. 47, 1033–1049 (2021).

29.	 Wang, W., Zhao, F., Ma, X., Perry, G. & Zhu, X. Mitochondria 
dysfunction in the pathogenesis of Alzheimer’s disease: recent 
advances. Mol. Neurodegener. 15, 30 (2020).

30.	 Zorova, L. D. et al. Mitochondrial membrane potential. Anal. 
Biochem. 552, 50–59 (2018).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International License, 
which permits any non-commercial use, sharing, distribution and 
reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if you modified the licensed 
material. You do not have permission under this licence to share 
adapted material derived from this article or parts of it. The images 
or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit 
line to the material. If material is not included in the article’s Creative 
Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

1Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 2Biochemistry and Molecular Biophysics 
Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 3Department of Biology, School of Arts and Sciences, 
University of Pennsylvania, Philadelphia, PA, USA. 4Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, 
Philadelphia, PA, USA. 5Center for Neurodegenerative Disease Research, Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman 
School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 6Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.  
7Present address: Vertex Pharmaceuticals, New York, NY, USA.  e-mail: siewert.hugelier@pennmedicine.upenn.edu; melikel@pennmedicine.upenn.edu

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02414-3
https://doi.org/10.1038/s41592-023-01811-4
https://doi.org/10.1038/s41592-023-01811-4
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:siewert.hugelier@pennmedicine.upenn.edu
mailto:melikel@pennmedicine.upenn.edu


Nature Methods

Article https://doi.org/10.1038/s41592-024-02414-3

Methods
A full list of the reagents, the supplier and the article number can be 
found in Supplementary Data 1.

Two-dimensional sample preparation
Aggregates of tau protein. Stable human embryonic kidney-derived 
QBI-293 cells (Clone 4.126; kindly provided by Virginia M.-Y. Lee, Uni-
versity of Pennsylvania) expressing full-length human tau T40 (2N4R) 
carrying the P301L mutation with a green fluorescent protein (GFP) tag 
were grown in Dulbecco’s modified Eagle medium (DMEM) supple-
mented with 10% (vol/vol) tetracycline-screened fetal bovine serum, 1% 
(vol/vol) sodium pyruvate (10 mM), 1% (vol/vol) antibiotic–antimycotic 
and 20 mM l-glutamine, 5 µg ml−1 blasticidin, 200 µg ml−1 zeocin and 
maintained in an incubator at 37 °C with 5% CO2. Clone 4.1 was con-
tinuously maintained in media containing 100 ng ml−1 Dox (Dox+), or 
Dox was removed from the culture media for several days to perform 
experiments (day 1 − Dox, day 2 − Dox and so on) and then fixed. Cells 
were then incubated with stabilizing buffer (modified tryptone soya 
broth: 50 mM of PIPES, 5 mM of egtazic acid, 5 mM of MgSO4. 7H2O and 
90 mM of KOH in distilled water, pH 7) for 3 min and then methanol (ice 
cold) was added for 3 min. After that, cells were washed with modified 
tryptone soya broth twice, followed by blocking for 1 h using 4% (wt/
vol) bovine serum albumin (BSA) in phosphate buffer saline (PBS). 
They were then immunostained with GFP VHH nanobody, recombinant 
binding protein conjugated with Alexa Fluor 647 in 4% (wt/vol) BSA and 
0.2% (vol/vol) Triton X-100 in PBS.

NPC. U-2 OS genome-edited Nup96-mEGPF cells (clone 195, 300174, 
CLS Cell Lines Service) were grown at 37 °C with 5% CO2 in DMEM, to 
which MEM nonessential amino acid, GlutaMAX and 10% (vol/vol) PBS 
was added. The cells were then fixed in PBS containing 4% (vol/vol) 
paraformaldehyde for 25 min and blocked for 1 h using 3% BSA and  
0.2% (vol/vol) Triton X-100 in PBS. The cells were then immunostained 
with GFP VHH nanobody, recombinant binding protein conjugated with 
Alexa Fluor 647, and then washed for four times using washing buffer 
consisting of 0.2% (vol/vol) blocking buffer and 0.05% (vol/vol) Triton 
X-100 in PBS for 10 min.

NPC data have previously been used by Bohrer et al.18.

Microtubules. BSC-1 cells (CCL-26, American Type Culture Collection 
(ATCC)) were permeabilized for 10–30 s in buffer containing 80 mM 
PIPES–KOH pH 7.1, 1 mM egtazic acid, 1 mM MgCl2, 0.5% (vol/vol) Triton 
X-100 and 10% (vol/vol) glycerol, followed by fixation in PBS contain-
ing 3% (vol/vol) paraformaldehyde and 0.1% (vol/vol) glutaraldehyde 
at 37 °C for 10 min. The fixed cells were washed twice with PBS before 
incubation with 0.1% (wt/vol) sodium borohydride for 7 min at 25 °C and 
washed again three times with PBS. Cells were incubated with block-
ing buffer consisting of PBS containing 10% (vol/vol) donkey serum, 
0.2% (vol/vol) Triton X-100 and 0.05 mg ml−1 sonicated salmon sperm 
single-stranded DNA before incubation with mouse anti-acetylated 
α-tubulin antibody at 1:100 dilution in blocking buffer for 1 h at 25 °C 
or overnight at 4 °C. The excess antibody was removed by three washes 
in 1× wash buffer before incubating with docking-strand-conjugated 
secondary anti-mouse antibody (docking strand 1) at 1:100 dilution 
in antibody incubation buffer for 1 h at 25 °C. The excess secondary 
antibody was removed by three washes with 1× wash buffer and twice 
with PBS.

Lysosomes. HeLa cells (CRM-CCL-2, ATCC) were fixed in PBS con-
taining 4% (vol/vol) paraformaldehyde warmed to 37 °C for 20 min 
at 25 °C. Fixed cells were washed three times with PBS, followed by 
permeabilization in 0.1% (vol/vol) saponin in PBS. Cells were then 
incubated in blocking buffer consisting of PBS containing 10% (vol/vol)  
donkey serum, 0.1% (vol/vol) saponin and 0.05 mg ml−1 sonicated 
salmon sperm single-stranded DNA for 1 h at 25 °C before incubation 

with mouse anti-LAMP2 at 1:100 dilution in blocking buffer for 1 h at 
25 °C. The excess antibody was removed by three washes in 1× wash 
buffer before incubating with docking strand-conjugated secondary 
anti-mouse antibody (docking strand 1) at 1:100 dilution in antibody 
incubation buffer for 1 h at 25 °C. The excess secondary antibody was 
removed by three washes with 1× wash buffer and twice with PBS.

Mitochondria. Cos-7 cells (CRL-1651, ATCC) were fixed in PBS contain-
ing 4% (vol/vol) paraformaldehyde warmed to 37 °C for 20 min at 25 °C. 
Fixed cells were washed three times with PBS, followed by permeabili-
zation in 0.2% (vol/vol) Triton X-100 in PBS. Cells were then incubated 
in blocking buffer consisting of PBS containing 10% (vol/vol) donkey 
serum, 0.2% (vol/vol) Triton X-100 and 0.05 mg ml−1 sonicated salmon 
sperm single-stranded DNA for 1 h at 25 °C before incubation with rab-
bit anti-Tom20 at 1:100 dilution in blocking buffer for 1 h at 25 °C or 
overnight at 4 °C. The excess antibody was removed by three washes 
in 1× wash buffer before incubating with docking strand-conjugated 
secondary anti-rabbit antibody (docking strand 2) at 1:25 or 1:100 dilu-
tion in antibody incubation buffer for 1 h at 25 °C. The excess secondary 
antibody was removed by three washes with 1× wash buffer and twice 
with PBS.

TDP-43. Brain seeds. Human postmortem brains were obtained from 
the University of Pennsylvania Center for Neurodegenerative Disease 
Research Brain Bank31. All necessary written informed consent forms 
were obtained from the patients or their next of kin and confirmed at 
the time of death. Sarkosyl-insoluble TDP-43 protein from the frozen 
frontal cortex of patients with FTLD-TDP was prepared as follows32: 
1% (vol/vol) Triton X-100 high salt buffer was used to extract the gray 
matter from the frontal cortex (frozen) and then myelin was removed to 
create a pellet. This pellet was then treated with benzonase before being 
extracted with 2% (vol/vol) sarkosyl–high salt buffer32 and subsequently 
washed and resuspended using Dulbecco’s phosphate-buffered saline 
(dPBS) by sonication (QSonica). Finally, to remove large protein debris, 
the sarkosyl-insoluble fraction was spun at 5,000g for 5 min at 4 °C.

Brain-derived TDP-43 extracts from FTLD-TDP cases used in the 
present study have been characterized previously by Porta et al., 2021 
(cases 4 and 12)28.

Cellular TDP-43 aggregation assay. iGFP-NLSm cells (clone #6.B7; 
generated from QBI-293A cells, source QBI-293A: #AES0506, Quan-
tum) were plated on coated poly-d-lysine chambered coverglass Nunc 
Labtek II (16,000 cells per well) and transduced after 24 h with 0.5 µg 
brain-derived TDP-43 extracts (100–300 pg TDP-43 per well)28,32. 
Briefly, brain extracts were sonicated and diluted with dPBS and mixed 
with single-use tubes of BioPORTER as a protein delivery reagent28,32. 
Protein–bioporter complexes were added to the cells and incubated for 
4 h. Cells were placed back on fresh medium in presence of 1.0 μg ml−1 
Dox and cultured for 3 additional days.

Immunocytochemistry. To remove cytoplasmic soluble proteins and vis-
ualize the formation of phosphorylated TDP-43 aggregates, transduced 
iGFP-NLSm were fixed in 4% paraformaldehyde containing 1% (vol/vol) 
Triton X-100 for 15 min at room temperature. After blocking, cells were 
incubated with the mAb phospho-specific p409-410 antibody (1:5,000) 
overnight at 4 °C. After three washes with dPBS, cells were incubated 
with Alexa Fluor 405–Alexa Fluor 647 conjugated anti-rabbit secondary 
antibody at 1:100 dilution in 4% BSA in PBS for 1 h at room temperature 
in the dark. Stained cells were rinsed with PBS containing 2% BSA and 
0.5% (vol/vol) Triton X-100 and then subsequently kept in PBS at 4 °C.

Three-dimensional sample preparation
Lysosomes. HeLa cells (#CRM-CCL-2, ATCC) were fixed and permea-
bilized as described above. This was followed by blocking in blocking 
buffer consisting of PBS containing 10% (vol/vol) donkey serum and 
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0.1% (vol/vol) saponin for 1 h at 25 °C before incubation with mouse 
anti-LAMP2 at 1:100 dilution in the same blocking buffer for 1 h at 
25 °C. Then, the excess antibody was removed by three washes in 1× 
wash buffer before incubating with Alexa Fluor 405–Alexa Fluor 647 
conjugated anti-mouse antibody at 1:100 dilution in antibody incuba-
tion buffer for 1 h at 25 °C. The excess secondary antibody was then 
finally removed by three washes with 1× wash buffer and twice with PBS.

Mitochondria. HeLa cells (#CRM-CCL-2, ATCC) were either treated 
with 10 µM antimycin A and 10 µM oligomycin A for the depolarized 
mitochondria, or with the vehicle control (0.02% (vol/vol) ethanol 
and 0.1% (vol/vol) DMSO) in DMEM media, supplemented with 10% 
(vol/vol) fetal bovine serum, 1× antibiotic–antimycotic, 1× GlutaMAX 
and 1 mM sodium pyruvate for 3 h at 37 °C. After, the cells were fixed 
and permeabilized as described above. This was followed by blocking 
in blocking buffer consisting of PBS containing 10% (vol/vol) donkey 
serum and 0.1% (vol/vol) saponin for 1 h at 25 °C before incubation with 
rabbit anti-Tom20 at 1:100 dilution in the same blocking buffer for 1 h 
at 25 °C. Then, the excess antibody was removed by three washes in 1 × 
wash buffer before incubating with Alexa Fluor 405–Alexa Fluor 647 
conjugated anti-rabbit antibody at 1:100 dilution in antibody incuba-
tion buffer for 1 h at 25 °C. The excess secondary antibody was then 
finally removed by three washes with 1× wash buffer and twice with PBS.

Two-dimensional and 3D SMLM imaging
Microscope system. All data acquisitions were performed on the 
Oxford Nanoimager microscope equipped with a 100× oil immersion 
objective (numerical aperture 1.45) and 405, 488, 561 and 640 nm 
lasers, 498–551 nm and 576–620 nm band-pass filters in channel 1, 
666–705–839 nm band-pass filters in channel 2 and a Hamamatsu 
Flash 4 V3 scientific complementary metal–oxide–semiconductor 
(sCMOS) camera.

For 3D image acquisition, the 3D astigmatism lens was engaged 
during acquisition. Before each measurement, TetraSpeck micro-
spheres were imaged to establish a calibration curve of the z positions 
(in steps of 10 nm).

STORM imaging. The STORM imaging buffer used contained 50 mM 
Tris, 10 mM NaCl, 0.5 mg ml−1 glucose oxidase, 40 µg ml−1 catalase, 10% 
(wt/vol) glucose and 30 mM cysteamine (stock, 77 mg ml−1 of 360 mM 
HCl) at pH 7.5.

This buffer was used to image the 2D aggregates of tau protein 
data, the 2D NPC data, the 3D lysosome data and the 3D healthy and 
depolarized mitochondria data.

DNA-PAINT imaging. ATTO-655 (2D microtubules), Cy3B (2D lys-
osomes) or Cy3 (2D mitochondria) conjugated Imager 1(P) strands 
were added to the imaging chamber at 0.5 nM concentration in imag-
ing buffer.

Image acquisition. The 2D aggregates of tau. Images were collected at 
HiLo illumination angle with a 15 ms exposure time for 50,000 frames 
at 27 °C with constant laser power.

Two-dimensional NPC. Images were collected at HiLo illumination angle 
with a 10 ms exposure time for 40,000 frames at 30 °C with constant 
laser power.

Two-dimensional microtubules. Images were collected at HiLo illumi-
nation angle with a 100 ms exposure time for 10,000 frames at 30 °C 
with constant laser power.

Two-dimensional lysosomes. Images were collected at HiLo illumina-
tion angle with a 100 ms exposure time for 25,000 frames at 30 °C with 
constant laser power.

Two-dimensional mitochondria. Images were collected at HiLo illumina-
tion angle with a 10 ms exposure time for 50,000 frames at 30 °C with 
constant laser power.

Two-dimensional TDP-43. Images were collected at HiLo illumination 
angle with a 15 ms exposure time for 25,000 frames at 30 °C with con-
stant laser power.

Three-dimensional lysosomes. Images were collected in 3D mode with a 
10 ms exposure time for 25,000 frames at 30 °C with constant 405 nm 
and 640 nm laser power.

Three-dimensional healthy and depolarized mitochondria. Images were 
collected in 3D mode with a 10 ms exposure time for 25,000 frames at 
30 °C with constant 405 nm and 640 nm laser power.

Data analysis
ECLiPSE data requirements. ECLiPSE was implemented in MATLAB 
(MathWorks) and requires that the data is pointillistic in nature (that is, 
a list of x/y coordinates (2D data, in pixels or nm) or x/y/z coordinates 
(3D data, in nm)). Additionally, ECLiPSE requires that the data is already 
segmented into individual organelles (using your preferred method, 
such as Voronoi segmentation) and organized as a cell variable. An 
example of how the data should be organized is available as the example 
dataset (and accompanying example script).

For morphological and structural property quantification of the 
SMLM data, these are the only requirements. However, if ECLiPSE is 
used to classify the data into different groups, it requires the pres-
ence of structure (for example, different organelle types or different 
treatment types and so on) and that this structure can be captured by 
the ECLiPSE descriptors. Many descriptors are calculated by ECLiPSE, 
allowing to cover many possibilities, but ECLiPSE also allows to extract 
only the relevant descriptors using the included variable selection step.

Two-dimensional localization. The localizations of all 2D image acqui-
sitions were generated and drift corrected using the Nanoimager oper-
ating and analysis software (Oxford Nanoimager v1.18.3.15066). No 
additional postprocessing was performed for the 2D data, except for 
the 2D microtubule data, where localizations beyond 30 nm precision 
(x and y) and outside the 10–150 nm PSF width (σx/y) range were removed 
from downstream analysis.

Three-dimensional localization. The localizations of the 3D images 
was done using the spline-PSF fitter (v201217)33, after establishing a 
calibration curve on the TetraSpeck microspheres for the z-position 
using the same spline–PSF fitter. Unreliable and noisy localizations 
were then removed from consideration by applying the following 
filters: z-position between −450 and 450 nm (determined to corre-
spond to the reliable z-range according to the calibration curve), PSF 
width (σx/y) between 50 and 700 nm, photon intensity higher than  
700 photons and localization precision (x and y) below 65 nm. Addition-
ally, the localizations for which the algorithm did not converge (that is, 
exceeded the maximum number of iterations) and/or the fit of the PSF 
was not reliable (relative log-likelihood <−2) were removed.

Two-dimensional clustering with Voronoi segmentation. All Voro-
noi segmentation was performed using a custom-made MATLAB code 
(https://github.com/melikelakadamyali/StormAnalysisSoftware ref. 34).

Aggregates of tau. Tau aggregate localizations were Voronoi segmented 
and clustered based on a maximum Voronoi area of 410 nm2 and a 
minimum of five localizations. Clusters with less than 500 localizations 
were additionally filtered and removed from the analysis to investigate 
only the larger tau aggregate species (corresponding to larger linear 
fibrils, branched fibrils, pre-NFTs and NFTs).
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NPC. NPC localizations were Voronoi segmented and clustered based 
on a maximum of 821 nm2 Voronoi area and a minimum of 75 localiza-
tions. Clusters with an area smaller than 0.011 µm2 and greater than 
0.023 µm2 were discarded as nonspecific background clusters or clus-
tering artifacts.

Microtubules. Microtubule localizations were Voronoi segmented 
and clustered based on a maximum Voronoi area of 5,475.6 nm2 and 
a minimum of five localizations. Clusters with an area smaller than 
0.041 µm2 were discarded as nonspecific background clusters. Sec-
tions of microtubules were selected as regions of interest only from 
well-separated single microtubules.

Lysosomes. Lysosome localizations were Voronoi segmented and clus-
tered based on a maximum Voronoi area ranging from 342 to 684 nm2 
and a minimum of 25 localizations. Lysosome clusters with and area 
less than 0.123 µm2 and greater than 0.479 µm2 were discarded as 
nonspecific background clusters or clustering artifacts.

Mitochondria. Mitochondria localizations were Voronoi segmented 
and clustered based on a maximum Voronoi area ranging from 178 
to 2,738 nm2 and a minimum of 25 localizations. Mitochondria clus-
ters with an area less than 0.274 µm2 and greater than 1.03 µm2 were 
discarded as nonspecific background clusters or clustering artifacts.

TDP-43. The phosphorylated TDP-43 localizations were Voronoi seg-
mented and clustered based on a maximum Voronoi area of 684 nm2 
(strain A) and 1.37 µm2 (strain B) and a minimum of 10 localizations. 
Additionally, clusters with an area smaller than 0.05 µm2 were excluded 
from the data analysis.

Three-dimensional clustering with Voronoi segmentation. All 
3D Voronoi segmentation was performed using Point Cloud Analyst 
(v0.10.0)17.

Lysosomes. Lysosome localizations were Voronoi segmented following 
the construction of 3D Voronoi polygons from the localizations. The 
cut distance was set at 60.0, with a minimum area of 10 and the mini-
mum number of localizations was set at 500. Once the clusters were 
segmented, the data were filtered by only retaining the clusters with 
a volume between 106.5 and 108 nm3, to remove incompletely labeled 
lysosomes and multiple lysosomes that were spatially too close to be 
distinguishable from one another.

Healthy and depolarized mitochondria. Mitochondria localizations were 
Voronoi segmented following the construction of 3D Voronoi polygons 
from the localizations. The cut distance was set at 50.0 with a minimum 
area of 10 and the minimum number of localizations was set at 500. Once 
the clusters were segmented, the data were filtered by keeping only the 
clusters with a volume between 5.5 × 107 and 109 nm3 to remove incom-
pletely labeled mitochondria and mitochondrial networks that were 
improperly segmented so that properties can be calculated of single 
mitochondria. Note that both healthy and depolarized mitochondria 
data were analyzed in the same way to ensure a fair assessment.

Datasets. Two-dimensional validation data. The validation dataset was 
constructed by combining 1,190 tau, 1,660 NPCs, 1,328 microtubules, 
1,106 lysosome and 1,181 mitochondria structures. The tau structures 
were randomly selected from the manually annotated branched fibrils 
class of the tau aggregate data.

Two-dimensional aggregates of tau data. This dataset consists of data 
that originate from three biological replicates for each of the imaged 
days in the degradation process. The total number of data are as fol-
lows: 11,263 clusters for +Dox control (29 cells), 7,461 clusters for day 

1 − Dox (27 cells), 7,517 clusters for day 2 − Dox (27 cells), 3,583 clusters 
for day 3 − Dox (27 cells), 1,981 clusters for day 4 − Dox (29 cells), 1,865 
clusters for day 5 − Dox (27 cells) and 288 clusters for day 10 − Dox  
(28 cells). To construct the dataset for classification model training, 
a subset of the data (representing ~30% of the data from these days) 
from the +Dox control, day 1 − Dox and day 2 − Dox imaging days was 
manually annotated. To avoid bias in this process, the data were rand-
omized and the person annotating was blinded from the origins of the 
data. After annotation, 963 linear fibrils, 5,218 branched fibrils, 1,098 
pre-NFTs and 1,350 NFTs were identified.

TDP-43 data. The TDP-43 data were constructed by combining the data 
from the two different strains of TDP-43 (strain A and strain B). The 
total number of clusters was 900 (15 fields of view) and 694 (19 fields 
of view), respectively.

Three-dimensional lysosome versus mitochondria data. This dataset 
consists of segmented and clustered data of lysosomes and mitochon-
dria, all imaged using 3D STORM. The total number of clusters was 
5,424 clusters (11 cells) for the lysosomes and 1,939 clusters (16 cells) 
for the mitochondria.

Three-dimensional healthy versus depolarized mitochondria data. 
This dataset consists of segmented and clustered data of healthy or 
depolarized mitochondria (that is, treated with 10 µM antimycin A and 
10 µM oligomycin A), all imaged using 3D STORM. The total number of 
clusters was 1,939 clusters (16 cells) for the healthy mitochondria and 
3,413 clusters (9 cells) for the depolarized mitochondria.

Statistical analysis. The statistical test performed in Fig. 3d and Sup-
plementary Fig. 10 is a two-sided Wilcoxon rank sum test.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used to validate and showcase ECLiPSE are publicly avail-
able via figshare at https://doi.org/10.6084/m9.figshare.26499379 
(ref. 35). Statistical source data for Fig. 3d are provided with this paper. 
Additionally, an example dataset of the 2D and 3D validation data on 
which the ECLiPSE can be tested is provided with the source code 
via https://github.com/LakGroup/ECLiPSE (ref. 36). Source data are 
provided with this paper.

Code availability
The source code, example scripts and documentation of ECLiPSE can 
be found at https://github.com/LakGroup/ECLiPSE (ref. 36).
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