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Single-molecule localization microscopy (SMLM) has gained widespread

use for visualizing the morphology of subcellular organelles and structures
with nanoscale spatial resolution. However, analysis tools for automatically
quantifying and classifying SMLM images have lagged behind. Here we
introduce Enhanced Classification of Localized Point clouds by Shape
Extraction (ECLiPSE), an automated machine learning analysis pipeline
specifically designed to classify cellular structures captured through
two-dimensional or three-dimensional SMLM. ECLiPSE leverages a
comprehensive set of shape descriptors, the majority of which are directly
extracted from the localizations to minimize bias during the characterization
ofindividual structures. ECLiPSE has been validated using both unsupervised
and supervised classification on datasets, including various cellular
structures, achieving near-perfect accuracy. We apply two-dimensional
ECLiPSE to classify morphologically distinct protein aggregates relevant for
neurodegenerative diseases. Additionally, we employ three-dimensional
ECLiPSE to identify relevant biological differences between healthy and
depolarized mitochondria. ECLiPSE will enhance the way we study cellular
structures across various biological contexts.

Cells are compartmentalized into various structural units including
membrane-bound and membraneless subcellular organelles, cytoskel-
etal structures and supramolecular protein assemblies. Each of these
organizational units possesses unique and complex structural and mor-
phological properties that spanarange of length scales to match their
function. The distinct morphology of organelles help adapt them to
specific functions, and canchangein response to cellular needs as well
asindisease states'. Similarly, aggregation of proteinsinto solid inclu-
sions with specific morphological properties is a hallmark of several
neurodegenerative diseases’. Therefore, techniques to characterize

and classify subcellular compartments on the basis of their structural
and morphological properties are invaluable in studying both cell
physiology and pathology.

Recentadvancementsinsuper-resolution microscopy have revolu-
tionized our ability to visualize the intricate morphological features of
subcellular compartments and organelles at nanoscale spatial resolu-
tion®. Super-resolution microscopy can capture subtle changesin the
morphology and structure of these subcellular components, which
were once inaccessible due to the diffraction limit of light. For this
purpose, single-molecule localization microscopy (SMLM) techniques
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have been widely adopted by the cell biology community as they do
not require highly specialized microscope hardware®. However, the
development of analysis tools to accurately classify individual sub-
cellular structures into distinct categories on the basis of shape and
morphology has not kept pace with advancements in super-resolution
microscopy, particularly in the context of SMLM. This is because SMLM
data consist of point clouds rather than pixelated intensity-based
images, which is less compatible with traditional image processing
and analysis techniques.

Current tools employ template-based or template-free strate-
gies to classify and align super-resolution data of highly symmetric,
self-similar and frequently simplistic structures, such as the nuclear
pore complex (NPC), to facilitate single-particle averaging for the
purpose of accurately describing the structure of interest®'°. How-
ever, these methods do not explicitly ascertain the morphological
characteristics of unique structures, leading to the recent develop-
ment of tools, such as SEgmentationand MORphological fingErprint-
ing (SEMORE)", which combines both geometric and kinetics-based
descriptorsinitsanalysis. Alternative tools, such as Localization Model
Fit (LocMoFit), depend on model fitting with predefined and often
basic geometric models to achieve the structure-matching and extract
basic quantitative properties'?. LocMoFit enables the extraction of a
number of geometric features that are included in the model, such
as size and symmetry angle, to determine the degree of variability
amongindividual structures. Although this method is valuable, it can
only quantify asmall number of parameters and has not been utilized
to classify structures into distinct categories as it relies on analyzing
structures thatare identical or highly similar. Recently, an automated
structure analysis program (ASAP) was developed to quantify and clas-
sify structures based onalimited number of geometric shape descrip-
tors". ASAP was applied to SMLM images of NPCs, endocytic vesicles
and Bax protein pores, all of which assemble into small (-100 nm) and
simple structures resembling either rods, arcs or circles. Although
ASAP represents animportantimprovementinthe structural classifi-
cation of super-resolution data, one of its drawbacks is that it requires
rendering the SMLM point cloud data into pixelated images followed
by thresholding and binarization, which may introduce artifacts and
cause the loss of important information. Furthermore, the limited
number of shape descriptorsin ASAP makes it less applicable to struc-
tures with complex shapes and larger sizes. Tofill the gapsin advanced
classificationtools, we developed an analysis pipeline called Enhanced
Classification of Localized Point clouds by Shape Extraction (ECLiPSE)
thatexpands the toolbox for classifying structures in two-dimensional
(2D) and three-dimensional (3D) SMLM data. ECLiPSE does not require
user inputinits default settings, which are robust for most applications
and can accurately describe and classify structures of different sizes
and complexity. Thisincludes organelles with distinct morphologies,
cytoskeletal filaments and diverse protein aggregates.

Results

Two-dimensional ECLiPSE pipeline

The workflow of ECLiPSE is shown in Fig. 1. After data acquisition and
segmentation of super-resolution data, which canbe done using exist-
ing techniques and packages (for example, Voronoi tessellation or
DBScan'"; Fig. 1a,b), the first step in ECLiPSE involves calculating
68 (2D data) or 69 (3D data) (see below) shape descriptors, of which
the majority is extracted directly from the point cloud data (Fig. 1c,
2D descriptors). The shape descriptors include geometric proper-
ties, boundary properties, skeleton properties, texture properties,
Humoments and fractal properties (Supplementary Tables1and 2 for
2D and 3D properties, respectively). We note that for all visualization
purposes in this manuscript (except Fig. 1c), the localizations were
rendered into intensity-based images, but calculations were done on
theraw, unprocessed localizations. Itisimportant to note that not every
shapedescriptoris equally effective at distinguishing between various

structures and the specific descriptors that provide the highest degree
of separation can vary depending on each biological application. To
address this, we have incorporated an automated variable selection
step (Supplementary Note 1and Supplementary Fig. 1), which can be
used to automatically select the most informative descriptors that
distinguish between different groups in the data without prior knowl-
edge of what these descriptors are (Fig. 1d). If information on group
identity is not available, data compression algorithms such as principal
componentanalysis (PCA) could be used to extract suchinformation.
Once the shape descriptors are calculated and optionally undergo
variable selection, the data can be explored in the PCA-space using
these quantitative features (Fig. 1e). Thisapproach offers a preliminary
visual representation of the extent to which datasets are separated
withinthe PCA space and can uncover subpopulations within the data.
Additionally, information about distinct groups can be employed to
color code the data points, revealing their degree of separation. The
final step is the classification (Fig. 1f) using many machine learning
models including supervised models (for example, K-nearest neigh-
bors, random forest, partial least squares for discrimination, logistic
regression for discrimination and so on) and unsupervised models
(forexample, partial or agglomerative hierarchical clustering). Model
training and validationis performed independently from one another
by selecting different subsets of the full dataset (Supplementary Note
2). The training and validation process can be performed multiple
times and the best performing model(s) is (are) then automatically
selected to predict the class membership of new data that the user
provides. Detailed information on the unsupervised and supervised
classification models and hyperparameters used in this work can be
found in Supplementary Note 2, Supplementary Figs. 2-4 and Sup-
plementary Tables 3 and 4.

Two-dimensional ECLiPSE validation and benchmarking
Wefirst validated our approach using ground truth 2D SMLM datasets
of five distinct structures including organelles (lysosomes and mito-
chondria), cytoskeletal filaments (microtubules), supramolecular
assemblies (NPC, data that were reused from a previously published
dataset)'® and aggregates of the tau protein (Supplementary Fig. 5
and Methods). Performing variable selection on this dataset largely
reduced the variance between members of the same class, as shown by
the exploratory PCA analysis, but did not substantially improve class
separation (Fig.1e and Supplementary Video1). We then trained several
types of machine learning models using a limited subset of training
data (approximately 550 samples per group) and subsequently made
predictions using ground truth data that had been excluded from the
training dataset. The best results were achieved with the random forest
classifier with an average prediction accuracy of 97.1 + 0.1% across all
categories (the prediction accuracy is the average percentage of cor-
rectly classified dataover all classes; Fig. 1f). The error in the prediction
represents the standard deviation over all prediction models, each
trained on a different subset of training data, to quantify the robust-
ness of the machine learning training step. The small standard devia-
tion indicates that the results are robust regardless of the choice of
the training dataset and given this robustness, the number of models
can be drastically reduced in practice. Additionally, the low standard
deviations across different classification methods (Supplementary
Figs. 3 and 4) also further indicate the robustness of the developed
descriptors for the biological quantification.

The largest confusion in the prediction was between lysosomes
and mitochondria (94.0 £ 1.2% and 94.8 + 0.9%, respectively) as these
classes are morphologically more similarto each otherthanto the other
classes. We thus selected these two classes for aside-by-side compari-
sonofourapproachtothe previously developed ASAP (Supplementary
Note 3, Supplementary Figs. 6 and 7 and Supplementary Tables 5and
6).Since ASAP does not provide an automatic model selection, we used
the classification method included as default setting (discriminant
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Fig. 1| The analysis pipeline of ECLiPSE to quantify super-resolution
microscopy data as point clouds applied to the validation data. a, A schematic
representation of the SMLM dataacquisition process (¢t is time). b, Segmentation
of thelocalizations into individual clusters (applied to a region of interest of

the lysosome data using a maximum Voronoi area of 684 nm?and a minimum
of25localizations and subsequent filtering of lysosomes with an area less than
0.123 pm?or greater than 0.479 pm?; green: low density and blue: high density).
¢, Feature extraction from segmented point cloud clusters generate descriptors
including geometric, boundary, skeleton and so on. d, Example distributions of
features that adequately or poorly separate the different classes in the validation
data, as determined by automatic variable selection (28/67 descriptors that

provide clear class separation). e, Data exploration using PCA with and without
variable selection. f, Optimized classification results for the validation data

(97.1£ 0.1% accuracy), obtained by the random forest classifier (100 best models
out of 1,000 generated models). g, Difference confusion matrices between
ECLIPSE (logistic regression, no variable selection) and ASAP (10 nm rendering
precision, 1.5 x 10° threshold, discriminant classifier). Left: validation data (96.9%
versus 93.5% accuracy for ECLIPSE and ASAP, respectively). Right: tau aggregation
data (92.9% versus 80.6% accuracy for ECLiPSE and ASAP, respectively). The blue
values represent superior results for ECLiPSE (that is, positive diagonal values and
negative off-diagonal values), whereas red values represent inferior results for
ECLIPSE (that s, negative diagonal values and positive off-diagonal values).

analysis). Moreover, given that ASAP requires pixelated images, we also
tested how its performance depends on the image rendering param-
eters, in particular the width of the rendering point spread function
(PSF) and binaryimage threshold (Supplementary Fig. 6). The accuracy
ofthe ASAP predictionwas dependent onboth parameters as expected
(Supplementary Fig.7), and these parameters must therefore be manu-
ally optimized to achieve maximal results. Additionally, a full study on
theinfluence of these parameters on ASAP classification accuracy for
allavailable methods was performed. Surprisingly, it revealed that the
relationship between rendering PSF width and predictionaccuracy was
model dependent. Sometimes, alarger rendering PSF size led to more
accurate predictions, but for other classification methods, smaller
PSF sizes resulted in superior performance (Supplementary Table 5).
Moreover, upon comparing ASAP with ECLiPSE using their default set-
tings, ECLiPSE demonstrated a superior average prediction accuracy
by 6.1% over ASAP, and ECLiPSE also performed better than the best
average predictionaccuracy achieved in the optimized study presented
inSupplementary Table 5. Asimilar result was also obtained when utiliz-
ing the validation datasetincludingall five classes (Fig. 1g, left), where
the differencein average predictionaccuracy is 3.4%, with amaximum
differencein predictionaccuracy of13.5% for the more heterogeneous
mitochondriaclass. Furthermore, with ASAP (Supplementary Table 5),
anotabledisparity in prediction accuracy was observed across various

classification methods, whereas this inconsistency was not present
when employing ECLiPSE (Supplementary Fig. 3). These results dem-
onstrate several advantages of our approach over existing tools: the
ability to use the unbiased raw point cloud data, automated variable
selection and automated model selection. These collectively provide
improved performance and robustness over previous state-of-the-art
methods. Importantly, thisimproved performance does not come at
the expense of computationalload, asthe speed of ECLiPSE and ASAP
were comparable, with the descriptor calculation in ECLiPSE being
roughly 10% faster than ASAP on the example data included in the
manuscript (see Supplementary Note 3 for astep-by-step comparison
between ECLiPSE and ASAP).

Distinct tau and TDP-43 aggregate classes quantified using 2D

ECLiPSE

We next applied our approach to two biological applications, acquired
using 2D SMLM: clearance of tau protein aggregates (Fig. 2a-e) and
detection of TAR DNA-binding protein 43 (TDP-43) proteinopathy
morphotypes (Fig. 2f-i). Both applications represent aggregation of
proteins into insoluble inclusions that play a role in several neurode-
generative diseases'”. Tau is a neuronal microtubule associated pro-
tein, which undergoes aberrant posttranslational modifications and
aggregationinseveral tauopathies, including frontotemporal dementia
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10 days shows a visual reduction of tau aggregate cluster sizes over time.

e, Tauaggregate species prediction on the total dataset demonstrates the

rapid decrease in branched fibrils, pre-NFTs and NFTs after Dox removal,

whereas linear fibrils show delayed degradation kinetics. FOV, field of view.

f, Four representative 2D SMLM images of cells containing two different patient
specific TDP-43 strains. g, Representative clusters of the two patient specific
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TDP-43 strains. h, Data exploration using PCA indicates that a nonnegligible
subset of the data clusters are similar between the two patient-specific strains.

i, Classification results obtained (89.9 + 0.6% accuracy) using the partial least
squares classifier on the nonvariable selected TDP-43 data. For classificationin
candi, only the results obtained by the 100 best models out of 1,000 generated
models are shown. For a-e: +Dox control, n =29 cells; day 1 - Dox, n = 27 cells; day
2 -Dox, n=27 cells; day — 3Dox, n =27 cells; day 4 — Dox, n = 29 cells; day 5 - Dox,
n=27cells;day 10 — Dox, n = 28 cells; all three biological replicates. The bar plots
inerepresent mean *s.d. of the prediction of the 100 best models as shownin c.
For f-istrain A:n =15 cells (three biological replicates) and strain B: n =19 cells
(three biological replicates).

with Parkinsonism linked to chromosome 17 (FTDP-17), Pick’s disease
and Alzheimer’s disease®. It has been shown that these tau inclusions
are morphologically diverse and disease specific (for example, neu-
rofibrillary tangles (NFTs) in Alzheimer’s disease and Pick’s bodies
in Pick’s disease)”. Recent work suggests that there are molecularly
and structurally distinct disease-specific tau strains in which the tau
protofilaments assume a distinct fold that leads to disease-specific tau
aggregation”**, However, the relationship between the molecular sig-
natures (for example, posttranslational modifications) of tau proteins,
the tau protofilament structure and the morphology of the resulting
tau aggregatesis not clearly understood. Using SMLM, we previously
showed that tau forms morphologically diverse aggregatesinan FTDP-
17 engineered cell model”. These aggregates were broadly categorized
into four classes based on visual inspection: linear fibrils, branched
fibrils, preneurofibrillary tangles (pre-NFTs) and NFTs* (Fig. 2a and

Supplementary Fig. 8). Interestingly, these aggregate classes were
enriched with hyperphosphorylation marks on distinct tau residues
(phospho-Ser202/205 for linear fibrils and NFTs, and phospho-Thr231
for branched fibrils)”. An unbiased classification of these tau aggre-
gatesis crucial for obtaining insightsinto the progression of tau pathol-
ogy. However, this taskis particularly challenging due to theirregular
and highly diverse morphological features of these aggregates. The
automated, high-throughput and unbiased classification of these pre-
viously identified tau aggregates is crucial for obtaining insights into
the progression of tau pathology. We elected to use supervised clas-
sification for this purpose given the morphological complexity and het-
erogeneity of tau aggregates (unsupervised classification results gave
unsatisfactory results; Supplementary Fig. 2b). We therefore manually
annotated asmallsubset of the data (-15% of the data used in the train-
ing/validation step) into the four classes mentioned above based on
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their morphology and size. We then trained and validated ECLiPSE on
these preannotated data, which showed that ECLiPSE accurately dis-
criminates between members of the four different tau morphological
classes (Fig. 2b,c). The average prediction accuracy was 89.8 + 0.4%,
whichisremarkably high given the high complexity and morphological
similarity among the different tau aggregate structures. Additionally,
we compared ECLiPSE and ASAP on this complex dataset and found
that, at default settings for both methods, ECLiPSE yielded a12.3%
increasein overall prediction power relative to ASAP when accounting
for all aggregate classes (Fig. 1g, right and Supplementary Table 6).
Notably, ECLiPSE demonstrated an impressive 17.7% improvement in
prediction accuracy for some of the most challenging comparisons
(Supplementary Table 6). Once again, these results underscore the
robustness of our approach in handling challenging biological data
where the morphology of structures is complex and spans a broad
size scale. To determine the contribution of the automated variable
selectionto the high performance, we repeated the prediction without
variable selection and found that this stepindeed improved the average
prediction accuracy by 1.5% (Supplementary Fig. 9).

Following this validation, we next examined data in which we
induced tau degradation. To do so, we inhibited the expression of solu-
ble tau by removing doxycycline (Dox) in the QBI-293 (Clone 4.1) cells
(Fig. 2d and Methods). We observed a decrease in total tau amounts
and tau aggregates at days 1-10 after removing Dox (Fig. 2d and Sup-
plementary Fig. 10), which is consistent with previous biochemical
analysis®. Previous work had shown that this loss corresponds to tau
degradation mediated by both the proteasome and autophagy path-
ways, butit remains unclear how the different tau aggregate classes are
cleared over time. Using ECLiPSE, we predicted the number of the four
morphologicaltau aggregate classes at different time points following
Doxremoval, whichallowed us to determine the timing of degradation
of these different classes (Fig. 2e). It isimportant to note that we used
the classification models that were already trained above for predicting
tau aggregate classes in this new dataset, without the need for further
manual annotation and training. In general, the classificationmodels are
trained for a specific biological application and can be applied to new
dataacquired on a different microscope without retraining, as long as
the underlying biology is similar and the acquired data is pointillist in
nature. For the clearance of tau aggregates, interestingly, we found that
while branched fibrils, pre-NFTs and NFTs showed arapid and consistent
decay starting at day1after Dox removal, linear fibrils persisted up to day
Sdisplaying more delayed degradation kinetics (Fig. 2e). These results
suggest thatit may be more challenging to clear linear fibrils compared
with other morphological tau aggregate classes. Alternatively, itis pos-
sible that other aggregate classes are broken down into linear fibrils,
resulting in their accumulation over time. Since both autophagy and
proteasome pathways are involved in tau aggregate clearance®, in the
future, this approach would be useful to determine whether specific
pathways clear distinct classes of tau aggregates and the mechanisms
of why the linear fibrils have a delayed degradation kinetics.

Finally, we used our approach to discriminate between brain-
derived TDP-43 strains, obtained from two patients with frontotem-
poral lobular degeneration with TDP-43 immunoreactive pathology
(FTLD-TDP).Innormal conditions, TDP-43is found in the nucleus and
plays an important role in RNA regulation?. In pathology, changes in
cleavage and posttranslational modifications of TDP-43 lead to its
cytoplasmic accumulation and aggregation into inclusions, similar
to tau”. Previous work has demonstrated that extracts derived from
the postmortembrainsamples of individuals with FTLD-TDP can seed
morphologically distinct TDP-43 aggregates in both animal and cell
models®, This finding supports the existence of distinct TDP-43 strains
that possess unique seeding and spreading properties, whichis highly
relevant to understanding the pathophysiology of the disease. How-
ever, previous work has relied on low resolution images and simple
geometric measurements (for example, circularity) to distinguish

between ‘globular-like’ versus ‘wisp-like’ TDP-43 aggregates seeded
by these different strains. Manual measurements and classification of
low-resolutionimages can be aslow and subjective process. While this
approachisuseful, super-resolutioninformationis needed to precisely
visualize and quantify the morphology of TDP-43 aggregates and
robustly classify them. We thus aimed to apply ECLiPSE to determine
if this approach could detect morphologically distinct TDP-43 aggre-
gates in cellmodels. TDP-43 extracted from two distinct postmortem
FTLD-TDP brains was used to seed TDP-43 aggregates in cell models.
The resulting aggregates were acquired using 2D SMLM (Fig. 2f,g,
Supplementary Fig. 11 and Methods). Visual inspection confirmed
that one strain led to the formation of more globular-like aggregates
(Fig.2f,g, strain Aand Supplementary Fig. 11a), whereas the other strain
predominantly seeded aggregated that resembled linear fibrils, previ-
ously described as wisps (Fig. 2f, g, strain Band Supplementary Fig. 11b).
Extracting shape descriptors enabled us to further confirm these dif-
ferencesin morphology using PCA analysis (Fig. 2h). Finally, we applied
the machine learning classification on the clustered localization data
of aggregates from the two TDP-43 strains notincluded in the training
dataand showed that ECLiPSE predicts the distinct morphologies with
very highaccuracy (89.9 + 0.6%) (Fig. 2i). Furthermore, upon examining
the aggregates that were accurately orinaccurately classified (Supple-
mentary Fig.12a), itbecame evident that the ‘misidentified’ aggregates
of one strain exhibited morphological features characteristic of the
other strain, and vice versa. We can therefore conclude that although
a strain primarily seeds aggregates with a specific morphological
trait, aconsiderable proportion of the seeded aggregates still exhibits
morphological similarities to the other straineven when the strains are
derived fromtwo distinct postmortem FTLD-TDP brains. In the future,
application of ECLiPSE to classify the presence of morphologically
distinct protein aggregates in postmortembrain tissue can enable link-
ing aggregate morphology to patient-specific proteinopathy strains.

Three-dimensional ECLiPSE pipeline and validation

While 2D SMLM imaging is straightforward and suitable for most appli-
cations, organelles and other subcellular assemblies are often 3D in
nature. The ability to use 3D morphological features to classify these
structures can potentially improve classification and predictionaccu-
racy. We therefore also extended ECLiPSE to the analysis of 3D SMLM
databy extending the shape descriptors to 3D (Supplementary Table 2).
Tovalidate 3D ECLiPSE, we acquired 3D SMLM images of lysosomes and
mitochondria (Fig. 3a). The mitochondria were measured either with or
without prior treatment with antimycin and oligomycin A, which leads
to depolarization of mitochondria and subsequent changes to mito-
chondrial morphology. In particular, mitochondria became rounded
up and lost their elongated morphology in response to this treatment.
We chose this application as mitochondrial membrane potential is
crucial for energy storage during oxidative phosphorylation and loss
of mitochondrial membrane potential is deleterious for mitochondrial
function, which can be indicative of various pathologies®**°.

Once the 3D descriptors were calculated on these organelles and
variable selection was performed, PCA was used to explore the data,
followed by supervised classification (Fig. 3b,c, left: lysosomes versus
healthy mitochondriaand right: healthy versus depolarized mitochon-
dria, and Supplementary Videos 2and 3). Whereas the 2D classification
ofthelysosome and mitochondriastill carried a small degree of confu-
sionbetween these organelles, the 3D quantitative features represented
inthe PCA space showed amuch larger degree of separation, which was
alsoreflectedin the high classificationaccuracy obtained (98.6 + 0.1%).
This validates the robust quantification of 3D SMLM data using 3D
ECLiPSE. Furthermore, when the mitochondria were compared with
one another, there was a certain degree of overlap between the two
groupsinthe PCA space as the treatment was relatively gentle. Never-
theless, an average classification accuracy of 75.8 + 0.6% was obtained,
further validating the use of ECLiPSE for 3D SMLM data. Representative
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Fig. 3 | Biological applications with ECLiPSE in 3D SMLM. a, Representative
images for 3D data color coded according to depth using the color scale bar
(lysosomes (left), healthy mitochondria (middle) and depolarized mitochondria
(right)). The insets show zoomed-in 3D views of the regions within the white boxes.
b, Data exploration using PCA after feature extraction using ECLiPSE shows a
clear separation between lysosomes and mitochondria (left), but a nonnegligent
amount of similarities between healthy and depolarized mitochondria (right).

¢, The classification results using the partial least squares classifier on the variable
selected lysosome versus mitochondria data (left; 98.6 + 0.1% accuracy) and

the random forest classifier on the variable selected healthy versus depolarized
mitochondria (right; 75.8 + 0.6% accuracy). d, The quantification of four
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biological properties of healthy and depolarized mitochondriaindicating that

two nonvariable selected properties do not show significant differences (number
oflocalizations and boundary surface curvature (two left-most graphs)) and two
variable selected properties show significant differences (major axis and sphericity
(tworight-most graphs)). For classificationin c, only the results obtained by the
100 best models out 0of 1,000 generated models is shown. Lysosomes: n =11 cells
(three biological replicates); healthy mitochondria: n =16 cells (four biological
replicates); depolarized mitochondria: n =9 cells (three biological replicates). Ind
theblack line represents the median of the shown biological property and 1% upper
and lower values were removed only for visualization purposes. Pvalues were
calculated using a two-sided Wilcoxon rank sum test.

images of wrongly classified mitochondria for either group are shown
in Supplementary Fig. 12b. Additionally, using the automatic variable
selection step of ECLiPSE (Supplementary Fig. 1c, right), biological
properties wereidentified that showed clear differences between these
mitochondriawith or without treatment as well as properties that were
conserved after treatment (Fig. 3d). For example, the number of locali-
zations and mean surface boundary curvature did not change upon
treatment whereas major axis and sphericity decreased as expected
from mitochondriabecoming rounded upon treatment.

To showcase an alternative approach for classifying these three
organelles all together, the results of a hierarchical classification
approach are reported in Supplementary Fig. 13, demonstrating the
strength of the 3D ECLiPSE quantification to discriminate between
morphologically similar lysosomes and depolarized mitochondria.
Generally speaking, this hierarchical classification approachis a useful
strategy when thereis substantial overlap between some groupsinthe
databutnotothers, whichis the case for this combined dataset asshown
by the exploratory PCA analysis (Supplementary Fig. 13a and Video
4).More detailed information can be found in Supplementary Note 2.

Discussion

We have developed a robust feature extraction and classification
pipeline for structures and organelles in both 2D and 3D SMLM data.
ECLiPSE works on point cloud data and is compatible with any SMLM
modality. Importantly, ECLiPSE does not require user input and can
be run using default settings giving satisfactory and robust results
for most applications. Furthermore, it has comparable speed to exist-
ing methods for classifying structures in SMLM data, while providing
superior performance. However, care should be taken to ensure the
high quality of the individual organelles/structures used by ECLiPSE

asissues, such as incomplete labeling, insufficient image acquisition
orimproper segmentation can affect classification performance, espe-
cially when working with small datasets. Moreover, when ECLiPSE is
employed for supervised classification rather than as an exploratory
tool (thatis, unsupervised classification to discover groupings in the
data), a training dataset is required to build the models, which may
necessitate manual annotation of alimited subset of the available data.

We envision that ECLiPSE will be broadly applicable for classify-
ing aggregation of proteins in neurodegenerative diseases to deter-
mine patient-specific aggregation prone protein strains, determining
changes in organelle morphology in disease states or in response to
drug treatment, classifying cell type-specific cytoskeletal architec-
ture and other supramolecular assemblies. In the future, ECLiPSE
can be expanded to include assigning pseudo-time stamps to protein
aggregates or other biological structures based on their evolving
morphological properties. Additionally, ECLiPSE can be adapted to
generate pseudo-multicolor super-resolutionimages by color coding
spatially distinct structures within single-colorimages. The classifica-
tion step of ECLiPSE canbe further expanded toinclude class modeling
to provide ametric for assessing how well a new sample belongs to an
existing class based onits similarity to the modeled classes. This addi-
tionwill furtherincrease robustness and allow identifying low-quality,
nonrepresentative or novel samples. Finally, the descriptor calculation
step of ECLiPSE canbe expanded to enhance compatibility with cellular
structures thatencompass multiple scales of spatial information within
the same structure (for example, chromatin structures).

Overall, we have developed a versatile toolbox for the structural
and morphological characterization of super-resolution microscopy
data, offering broad applicability and numerous potential applications
and future directions.
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Methods
A full list of the reagents, the supplier and the article number can be
found in Supplementary Datal.

Two-dimensional sample preparation

Aggregates of tau protein. Stable human embryonic kidney-derived
QBI-293 cells (Clone 4.1°%; kindly provided by Virginia M.-Y. Lee, Uni-
versity of Pennsylvania) expressing full-length human tau T40 (2N4R)
carrying the P301L mutation with agreen fluorescent protein (GFP) tag
were grown in Dulbecco’s modified Eagle medium (DMEM) supple-
mented with10% (vol/vol) tetracycline-screened fetal bovine serum, 1%
(vol/vol) sodium pyruvate (10 mM), 1% (vol/vol) antibiotic-antimycotic
and 20 mM L-glutamine, 5 pg ml™ blasticidin, 200 pg ml™ zeocin and
maintained in an incubator at 37 °C with 5% CO,. Clone 4.1 was con-
tinuously maintained in media containing 100 ng mI™ Dox (Dox+), or
Dox was removed from the culture media for several days to perform
experiments (day 1 - Dox, day 2 - Dox and so on) and then fixed. Cells
were then incubated with stabilizing buffer (modified tryptone soya
broth: 50 mM of PIPES, 5 mM of egtazic acid, 5 mM of MgSO,. 7H,0 and
90 mM of KOH in distilled water, pH 7) for 3 min and then methanol (ice
cold) was added for 3 min. After that, cells were washed with modified
tryptone soya broth twice, followed by blocking for 1 h using 4% (wt/
vol) bovine serum albumin (BSA) in phosphate buffer saline (PBS).
They were thenimmunostained with GFP VHH nanobody, recombinant
binding protein conjugated with Alexa Fluor 647in 4% (wt/vol) BSAand
0.2% (vol/vol) Triton X-100 in PBS.

NPC. U-2 OS genome-edited Nup96-mEGPF cells (clone 195, 300174,
CLS Cell Lines Service) were grown at 37 °C with 5% CO, in DMEM, to
which MEM nonessential amino acid, GlutaMAX and 10% (vol/vol) PBS
was added. The cells were then fixed in PBS containing 4% (vol/vol)
paraformaldehyde for 25 min and blocked for 1 h using 3% BSA and
0.2% (vol/vol) Triton X-100 in PBS. The cells were then immunostained
with GFP VHH nanobody, recombinant binding protein conjugated with
Alexa Fluor 647, and then washed for four times using washing buffer
consisting of 0.2% (vol/vol) blocking buffer and 0.05% (vol/vol) Triton
X-100in PBS for 10 min.
NPC data have previously been used by Bohrer et al.’s,

Microtubules. BSC-1cells (CCL-26, American Type Culture Collection
(ATCC)) were permeabilized for 10-30 s in buffer containing 80 mM
PIPES-KOH pH7.1,1 mM egtazicacid,1 mM MgCl,, 0.5% (vol/vol) Triton
X-100 and 10% (vol/vol) glycerol, followed by fixation in PBS contain-
ing 3% (vol/vol) paraformaldehyde and 0.1% (vol/vol) glutaraldehyde
at 37 °C for 10 min. The fixed cells were washed twice with PBS before
incubationwith 0.1% (wt/vol) sodium borohydride for 7 minat 25 °Cand
washed again three times with PBS. Cells were incubated with block-
ing buffer consisting of PBS containing 10% (vol/vol) donkey serum,
0.2% (vol/vol) Triton X-100 and 0.05 mg ml sonicated salmon sperm
single-stranded DNA before incubation with mouse anti-acetylated
a-tubulin antibody at 1:100 dilution in blocking buffer for 1 h at 25°C
orovernightat4 °C. The excess antibody was removed by three washes
in 1x wash buffer before incubating with docking-strand-conjugated
secondary anti-mouse antibody (docking strand 1) at 1:100 dilution
in antibody incubation buffer for 1 h at 25 °C. The excess secondary
antibody was removed by three washes with 1x wash buffer and twice
with PBS.

Lysosomes. HeLa cells (CRM-CCL-2, ATCC) were fixed in PBS con-
taining 4% (vol/vol) paraformaldehyde warmed to 37 °C for 20 min
at 25 °C. Fixed cells were washed three times with PBS, followed by
permeabilization in 0.1% (vol/vol) saponin in PBS. Cells were then
incubated in blocking buffer consisting of PBS containing 10% (vol/vol)
donkey serum, 0.1% (vol/vol) saponin and 0.05 mg ml™ sonicated
salmon sperm single-stranded DNA for 1 h at 25 °C before incubation

with mouse anti-LAMP2 at 1:100 dilution in blocking buffer for 1 h at
25°C. The excess antibody was removed by three washes in 1x wash
buffer before incubating with docking strand-conjugated secondary
anti-mouse antibody (docking strand 1) at 1:100 dilution in antibody
incubation buffer for 1 h at 25 °C. The excess secondary antibody was
removed by three washes with 1x wash buffer and twice with PBS.

Mitochondria. Cos-7 cells (CRL-1651, ATCC) were fixed in PBS contain-
ing4% (vol/vol) paraformaldehyde warmed to 37 °C for 20 min at 25 °C.
Fixed cells were washed three times with PBS, followed by permeabili-
zationin 0.2% (vol/vol) Triton X-100 in PBS. Cells were thenincubated
in blocking buffer consisting of PBS containing 10% (vol/vol) donkey
serum, 0.2% (vol/vol) Triton X-100 and 0.05 mg ml™sonicated salmon
spermsingle-stranded DNA for 1 h at 25 °Cbefore incubation with rab-
bit anti-Tom20 at 1:100 dilution in blocking buffer for 1 h at 25°C or
overnight at 4 °C. The excess antibody was removed by three washes
in 1x wash buffer before incubating with docking strand-conjugated
secondary anti-rabbit antibody (docking strand 2) at 1:25or 1:100 dilu-
tioninantibody incubation buffer for1hat25°C. The excess secondary
antibody was removed by three washes with 1x wash buffer and twice
with PBS.

TDP-43. Brain seeds. Human postmortem brains were obtained from
the University of Pennsylvania Center for Neurodegenerative Disease
Research Brain Bank™. All necessary written informed consent forms
were obtained from the patients or their next of kin and confirmed at
the time of death. Sarkosyl-insoluble TDP-43 protein from the frozen
frontal cortex of patients with FTLD-TDP was prepared as follows**:
1% (vol/vol) Triton X-100 high salt buffer was used to extract the gray
matter from the frontal cortex (frozen) and then myelin was removed to
createapellet. This pellet was then treated with benzonase before being
extracted with 2% (vol/vol) sarkosyl-high salt buffer** and subsequently
washed and resuspended using Dulbecco’s phosphate-buffered saline
(dPBS) by sonication (QSonica). Finally, toremove large protein debris,
the sarkosyl-insoluble fraction was spun at 5,000g for 5 min at 4 °C.

Brain-derived TDP-43 extracts from FTLD-TDP cases used in the
present study have been characterized previously by Portaetal., 2021
(cases 4 and 12)*.

Cellular TDP-43 aggregation assay. iGFP-NLSm cells (clone #6.B7;
generated from QBI-293A cells, source QBI-293A: #AES0506, Quan-
tum) were plated on coated poly-D-lysine chambered coverglass Nunc
Labtek 11 (16,000 cells per well) and transduced after 24 h with 0.5 pg
brain-derived TDP-43 extracts (100-300 pg TDP-43 per well)*®*,
Briefly, brainextracts were sonicated and diluted with dPBS and mixed
with single-use tubes of BioPORTER as a protein delivery reagent2,
Protein-bioporter complexes were added to the cellsand incubated for
4 h. Cellswere placed back on fresh medium in presence of 1.0 pg mi™
Dox and cultured for 3 additional days.

Immunocytochemistry. Toremove cytoplasmic soluble proteins and vis-
ualize the formation of phosphorylated TDP-43 aggregates, transduced
iGFP-NLSmwere fixed in 4% paraformaldehyde containing 1% (vol/vol)
Triton X-100 for 15 min at room temperature. After blocking, cells were
incubated with the mAb phospho-specific p409-410 antibody (1:5,000)
overnight at 4 °C. After three washes with dPBS, cells were incubated
with Alexa Fluor 405-Alexa Fluor 647 conjugated anti-rabbit secondary
antibody at1:100 dilutionin4% BSA in PBS for 1 hat room temperature
in the dark. Stained cells were rinsed with PBS containing 2% BSA and
0.5% (vol/vol) Triton X-100 and then subsequently kept in PBS at 4 °C.

Three-dimensional sample preparation

Lysosomes. Hel a cells (#CRM-CCL-2, ATCC) were fixed and permea-
bilized as described above. This was followed by blocking in blocking
buffer consisting of PBS containing 10% (vol/vol) donkey serum and
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0.1% (vol/vol) saponin for 1 h at 25 °C before incubation with mouse
anti-LAMP2 at 1:100 dilution in the same blocking buffer for 1 h at
25°C. Then, the excess antibody was removed by three washes in 1x
wash buffer before incubating with Alexa Fluor 405-Alexa Fluor 647
conjugated anti-mouse antibody at1:100 dilutioninantibody incuba-
tion buffer for 1 h at 25 °C. The excess secondary antibody was then
finally removed by three washes with 1x wash buffer and twice with PBS.

Mitochondria. HelLa cells (#CRM-CCL-2, ATCC) were either treated
with 10 pM antimycin A and 10 pM oligomycin A for the depolarized
mitochondria, or with the vehicle control (0.02% (vol/vol) ethanol
and 0.1% (vol/vol) DMSO) in DMEM media, supplemented with 10%
(vol/vol) fetal bovine serum, 1x antibiotic-antimycotic, 1x GlutaMAX
and 1 mM sodium pyruvate for 3 h at 37 °C. After, the cells were fixed
and permeabilized as described above. This was followed by blocking
in blocking buffer consisting of PBS containing 10% (vol/vol) donkey
serumand 0.1% (vol/vol) saponin for1hat 25 °Cbefore incubation with
rabbit anti-Tom20 at 1:100 dilution in the same blocking buffer for1h
at25°C.Then, the excess antibody was removed by three washesin1 x
wash buffer before incubating with Alexa Fluor 405-Alexa Fluor 647
conjugated anti-rabbit antibody at 1:100 dilution in antibody incuba-
tion buffer for 1 h at 25 °C. The excess secondary antibody was then
finally removed by three washes with1x wash buffer and twice with PBS.

Two-dimensional and 3D SMLM imaging

Microscope system. All data acquisitions were performed on the
Oxford Nanoimager microscope equipped with a100x oilimmersion
objective (numerical aperture 1.45) and 405, 488, 561 and 640 nm
lasers, 498-551 nm and 576-620 nm band-pass filters in channel 1,
666-705-839 nm band-pass filters in channel 2 and a Hamamatsu
Flash 4 V3 scientific complementary metal-oxide-semiconductor
(sCMOS) camera.

For 3D image acquisition, the 3D astigmatism lens was engaged
during acquisition. Before each measurement, TetraSpeck micro-
spheres wereimaged to establishacalibration curve of the z positions
(insteps of 10 nm).

STORM imaging. The STORM imaging buffer used contained 50 mM
Tris, 10 mM NacCl, 0.5 mg ml glucose oxidase, 40 pg ml™ catalase, 10%
(wt/vol) glucose and 30 mM cysteamine (stock, 77 mg ml™ of 360 mM
HCl)atpH7.5.

This buffer was used to image the 2D aggregates of tau protein
data, the 2D NPC data, the 3D lysosome data and the 3D healthy and
depolarized mitochondria data.

DNA-PAINT imaging. ATTO-655 (2D microtubules), Cy3B (2D lys-
osomes) or Cy3 (2D mitochondria) conjugated Imager 1(P) strands
were added to the imaging chamber at 0.5 nM concentration inimag-
ing buffer.

Image acquisition. The2D aggregates of tau.Images were collected at
HiLoillumination angle with a15 ms exposure time for 50,000 frames
at27 °Cwith constant laser power.

Two-dimensional NPC.Images were collected at HiLo illumination angle
with a10 ms exposure time for 40,000 frames at 30 °C with constant
laser power.

Two-dimensional microtubules. Images were collected at HiLo illumi-
nation angle with a100 ms exposure time for 10,000 frames at 30 °C
with constant laser power.

Two-dimensional lysosomes. Images were collected at HiLo illumina-
tionangle with a100 ms exposure time for 25,000 frames at 30 °C with
constant laser power.

Two-dimensional mitochondria.lmages were collected at HiLoillumina-
tion angle with a10 ms exposure time for 50,000 frames at 30 °C with
constant laser power.

Two-dimensional TDP-43.Images were collected at HiLo illumination
angle with a15 ms exposure time for 25,000 frames at 30 °C with con-
stant laser power.

Three-dimensional lysosomes.Images were collected in 3D mode with a
10 ms exposure time for 25,000 frames at 30 °C with constant 405 nm
and 640 nm laser power.

Three-dimensional healthy and depolarized mitochondria.Images were
collectedin 3D mode with a10 ms exposure time for 25,000 frames at
30 °Cwith constant 405 nm and 640 nm laser power.

Data analysis

ECLiPSE data requirements. ECLiPSE was implemented in MATLAB
(MathWorks) and requires that the datais pointillisticin nature (that s,
alist of x/y coordinates (2D data, in pixels or nm) or x/y/z coordinates
(3D data, innm)). Additionally, ECLiPSE requires that the datais already
segmented into individual organelles (using your preferred method,
such as Voronoi segmentation) and organized as a cell variable. An
example of how the datashould be organizedis available as the example
dataset (and accompanying example script).

For morphological and structural property quantification of the
SMLM data, these are the only requirements. However, if ECLiPSE is
used to classify the data into different groups, it requires the pres-
ence of structure (for example, different organelle types or different
treatment types and so on) and that this structure can be captured by
the ECLiPSE descriptors. Many descriptors are calculated by ECLiPSE,
allowing to cover many possibilities, but ECLiPSE also allows to extract
only therelevant descriptors using theincluded variable selection step.

Two-dimensional localization. The localizations of all 2D image acqui-
sitions were generated and drift corrected using the Nanoimager oper-
ating and analysis software (Oxford Nanoimager v1.18.3.15066). No
additional postprocessing was performed for the 2D data, except for
the 2D microtubule data, where localizations beyond 30 nm precision
(xandy)and outside the10-150 nm PSF width (o,,,) range were removed
from downstream analysis.

Three-dimensional localization. The localizations of the 3D images
was done using the spline-PSF fitter (v201217)*, after establishing a
calibration curve on the TetraSpeck microspheres for the z-position
using the same spline-PSF fitter. Unreliable and noisy localizations
were then removed from consideration by applying the following
filters: z-position between —450 and 450 nm (determined to corre-
spond to the reliable z-range according to the calibration curve), PSF
width (o,,) between 50 and 700 nm, photon intensity higher than
700 photons and localization precision (xand y) below 65 nm. Addition-
ally, the localizations for which the algorithm did not converge (that s,
exceeded the maximum number of iterations) and/or the fit of the PSF
was not reliable (relative log-likelihood <-2) were removed.

Two-dimensional clustering with Voronoi segmentation. All Voro-
noi segmentation was performed using a custom-made MATLAB code
(https://github.com/melikelakadamyali/StormAnalysisSoftware ref. 34).

Aggregatesoftau. Tau aggregate localizations were Voronoi segmented
and clustered based on a maximum Voronoi area of 410 nm?and a
minimum of five localizations. Clusters with less than 500 localizations
were additionally filtered and removed from the analysis to investigate
only the larger tau aggregate species (corresponding to larger linear
fibrils, branched fibrils, pre-NFTs and NFTs).
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NPC.NPClocalizations were Voronoi segmented and clustered based
on a maximum of 821 nm?Voronoi area and a minimum of 75 localiza-
tions. Clusters with an area smaller than 0.011 pm? and greater than
0.023 um?were discarded as nonspecific background clusters or clus-
tering artifacts.

Microtubules. Microtubule localizations were Voronoi segmented
and clustered based on a maximum Voronoi area of 5,475.6 nm? and
a minimum of five localizations. Clusters with an area smaller than
0.041 um? were discarded as nonspecific background clusters. Sec-
tions of microtubules were selected as regions of interest only from
well-separated single microtubules.

Lysosomes.Lysosome localizations were Voronoisegmented and clus-
tered based on amaximum Voronoi area ranging from 342 to 684 nm?
and a minimum of 25 localizations. Lysosome clusters with and area
less than 0.123 pm? and greater than 0.479 pm? were discarded as
nonspecific background clusters or clustering artifacts.

Mitochondria. Mitochondria localizations were Voronoi segmented
and clustered based on a maximum Voronoi area ranging from 178
to 2,738 nm? and a minimum of 25 localizations. Mitochondria clus-
ters with an area less than 0.274 um? and greater than 1.03 pm? were
discarded as nonspecific background clusters or clustering artifacts.

TDP-43. The phosphorylated TDP-43 localizations were Voronoi seg-
mented and clustered based on a maximum Voronoi area of 684 nm?
(strain A) and 1.37 pm? (strain B) and a minimum of 10 localizations.
Additionally, clusters withanarea smaller than 0.05 pm*were excluded
from the data analysis.

Three-dimensional clustering with Voronoi segmentation. All
3D Voronoi segmentation was performed using Point Cloud Analyst
(v0.10.0)".

Lysosomes. Lysosome localizations were Voronoi segmented following
the construction of 3D Voronoi polygons from the localizations. The
cut distance was set at 60.0, with a minimum area of 10 and the mini-
mum number of localizations was set at 500. Once the clusters were
segmented, the data were filtered by only retaining the clusters with
avolume between 10%° and 10® nm?, to remove incompletely labeled
lysosomes and multiple lysosomes that were spatially too close to be
distinguishable from one another.

Healthy and depolarized mitochondria. Mitochondria localizations were
Voronoisegmented following the construction of 3D Voronoi polygons
fromthelocalizations. The cut distance was set at 50.0 withaminimum
areaof10 and the minimum number of localizations was set at 500. Once
the clusters were segmented, the data werefiltered by keeping only the
clusters with avolume between 5.5 x 10’ and 10° nm? to remove incom-
pletely labeled mitochondria and mitochondrial networks that were
improperly segmented so that properties can be calculated of single
mitochondria. Note that both healthy and depolarized mitochondria
datawere analyzed in the same way to ensure a fair assessment.

Datasets. Two-dimensionalvalidation data. The validation dataset was
constructed by combining 1,190 tau, 1,660 NPCs, 1,328 microtubules,
1,106 lysosome and 1,181 mitochondria structures. The tau structures
wererandomly selected from the manually annotated branched fibrils
class of the tau aggregate data.

Two-dimensional aggregates of tau data. This dataset consists of data
that originate from three biological replicates for each of the imaged
days in the degradation process. The total number of data are as fol-
lows: 11,263 clusters for +Dox control (29 cells), 7,461 clusters for day

1-Dox (27 cells), 7,517 clusters for day 2 - Dox (27 cells), 3,583 clusters
forday 3 - Dox (27 cells), 1,981 clusters for day 4 - Dox (29 cells), 1,865
clusters for day 5 — Dox (27 cells) and 288 clusters for day 10 — Dox
(28 cells). To construct the dataset for classification model training,
a subset of the data (representing ~30% of the data from these days)
from the +Dox control, day 1- Dox and day 2 - Dox imaging days was
manually annotated. To avoid bias in this process, the data were rand-
omized and the personannotating was blinded fromthe origins of the
data. After annotation, 963 linear fibrils, 5,218 branched fibrils, 1,098
pre-NFTs and 1,350 NFTs were identified.

TDP-43data. The TDP-43 datawere constructed by combining the data
from the two different strains of TDP-43 (strain A and strain B). The
total number of clusters was 900 (15 fields of view) and 694 (19 fields
of view), respectively.

Three-dimensional lysosome versus mitochondria data. This dataset
consists of segmented and clustered data of lysosomes and mitochon-
dria, all imaged using 3D STORM. The total number of clusters was
5,424 clusters (11 cells) for the lysosomes and 1,939 clusters (16 cells)
for the mitochondria.

Three-dimensional healthy versus depolarized mitochondria data.
This dataset consists of segmented and clustered data of healthy or
depolarized mitochondria (thatis, treated with10 pM antimycin A and
10 pMoligomycin A), allimaged using 3D STORM. The total number of
clusters was 1,939 clusters (16 cells) for the healthy mitochondria and
3,413 clusters (9 cells) for the depolarized mitochondria.

Statistical analysis. The statistical test performed in Fig. 3d and Sup-
plementary Fig. 10 is a two-sided Wilcoxon rank sum test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All datasets used to validate and showcase ECLiPSE are publicly avail-
able via figshare at https://doi.org/10.6084/m9.figshare.26499379
(ref.35). Statistical source data for Fig. 3d are provided with this paper.
Additionally, an example dataset of the 2D and 3D validation data on
which the ECLiPSE can be tested is provided with the source code
via https://github.com/LakGroup/ECLiPSE (ref. 36). Source data are
provided with this paper.

Code availability
The source code, example scripts and documentation of ECLiPSE can
be found at https://github.com/LakGroup/ECLiPSE (ref. 36).
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Population characteristics The gender of the brain-derived TDP-43 extracts from FTLD-TDP cases used in the present study correspond to cases #4 and
#12 in Supplementary Table 1 of https://doi.org:10.1111/nan.12732.
Case #4: Age at onset = 50; Age at death =55
Case #12: Age at onset = 62; Age at death = 65

Recruitment No recruitment was performed.

Ethics oversight Human postmortem brains were obtained from the University of Pennsylvania, CNDR Brain Bank. All necessary written

informed consent forms were obtained from the patients or their next of kin at the time of death.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size Sample-size calculation was not performed as it was not applicable. The sample size for the different data used in the manuscript was
determined in different ways:
- Validation data: the data were acquired to get at least 1000 clusters for each biological structure.
- Tau aggregates application: three biological replicates were acquired for each time point with ~10 cells per replicate.
- TDP-43 data: at least three biological replicates were acquired with a minimum of 15 fields of view per strain.
- 3D lysosomes: three biological replicates were acquired with a minimum of three fields of view per replicate.
- 3D healthy and depolarized mitochondria: three biological replicates were acquired with at least three fields of view per replicate.
These strategies ensured that a sufficiently large sample size was obtained to include representative structures of the entire population (as
confirmed by the PCA plots included in the manuscript).

Data exclusions  For the TDP-43 data, clusters smaller than 0.05 um? were discarded and for Tau data clusters containing fewer than 500 localizations were
discarded.
For the 3D mitochondria data, the focus lied upon identifying single mitochondria, and not mitochondrial networks, so these were removed
from consideration.

Replication All attempts at replication of acquired data were successful (at least three biological replicates with at least three cells per biological replicate
were acquired).
All attempts at replication of the analyses are summarized in the manuscript. Variable selection was performed 250 times (for each method
independently) and classification was repeated 1000 models on randomly selected subsets of each data set. The findings are robust as
reported in the manuscript and are a main conclusion in this work.

Randomization  No randomization was needed for the validation data set, the TDP-43 data set, and the 3D data sets. These data were continued to be
acquired until an appropriate amount was obtained (see above).
For the Tau aggregates data, manual class allocation was performed to get the ground truth training data. This data set includes data from
+Dox control, Day 1 -Dox, and Day 2 -Dox. The manual annotation was performed by an expert after fully randomizing the data from all
biological replicates and fields of views for these time points.

Blinding During the manual annotation process of the Tau aggregates data, the expert doing the annotation was blinded to any information that could
potentially bias the decision. No information on time point, replicate, etc. was provided and data was fully randomized beforehand.




During the acquisition of the TDP-43 data, the person preparing the samples and acquiring the data were blinded to the information about
the specific strains.
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Plants

Antibodies

Antibodies used GFP VHH nanobody, recombinant binding protein (#GT-250, Chromotek)
mouse anti-acetylated a-tubulin antibody (#48389, Abcam)
mouse anti-LAMP2 (sc18822, Santa Cruz)
docking-strand-conjugated secondary anti-mouse antibody (Docking strand 1, part of DNA-PAINT Kit #2102, Massive Photonics)
rabbit anti-Tom20 (11802-1-AP, Proteintech)
docking-strand-conjugated secondary anti-rabbit antibody (Docking strand 2; part of DNA-PAINT Kit #2102, Massive Photonics)
mAb phospho-specific p409-410 antibody (1:5,000, 80007-1-RR, Proteintech)
anti-rabbit secondary antibody (Jackson Biolabs) in-house conjugated with Alexa Fluor 405-Alexa Fluor 647
anti-mouse secondary antibody (Jackson Biolabs) in-house conjugated with Alexa Fluor 405-Alexa Fluor 647

Validation The indicated manufacturers performed validations for their respective antibodies. No additional testing was done as they were used
to demonstrate the analysis software described in this work.

Validation performed by the manufacturer:

- GFP VHH nanobody: Fluorescent specifity determined by Nano-Trap (https://www.ptglab.com/products/pictures/pdf/
Fluorescent_Specificity_by_Nano-Trap_190222.pdf)

- mouse anti-acetylated a-tubulin antibody: the antibody was validated by Western Blotting.

- mouse anti-LAMP2: he antibody was validated by Western Blotting.

- rabbit anti-Tom20: The antibody was validated by Western Blotting, ImmunoPrecipitation, InmunoHistoChemistry, and
ImmunoFluorescence.

- mAb phospho-specific p409-410 antibody: the antibody was validated by Western Blotting and ImmunoHistoChemistry.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) QBI-293 cells (Clone 4.1; doi:10.1074/jbc.M115.712083) expressing full length human tau T40 (2N4R) carrying the P301L
mutation with a GFP tag (kindly provided by Virginia M.-Y. Lee, University of Pennsylvania)
U-2 OS genome-edited Nup96-mEGPF cells (clone 195, 300174, CLS Cell Lines Service)
BSC-1 cells (#CCL-26, ATCC)
Hela cells (#CRM-CCL-2, ATCC)
Cos-7 cells (#CRL-1651, ATCC)
iGFP-NLSm cells (clone #6.B7; generated from QBI-293A cells, source QBI-293A: #AES0506, Quantum)

Authentication None of cell lines were further authenticated.

Mycoplasma contamination BSC-1, Hela, Cos-7, and iGFP-NLSm cells were tested for mycoplasma contamination at the time of data acquisition and
tested negative.

QBI-293 and U-2 OS cells were not tested for mycoplasma contamination at the time of data acquisition.

Commonly misidentified lines  no commonly misidentified cell lines were used.
(See ICLAC register)
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