Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Nanopore approaches for single-molecule temporal omics: promises and challenges

Abstract

The great molecular heterogeneity within single cells demands omics analysis from a single-molecule perspective. Moreover, considering the perpetual metabolism and communication within cells, it is essential to determine the time-series changes of the molecular library, rather than obtaining data at only one time point. Thus, there is an urgent need to develop a single-molecule strategy for this omics analysis to elucidate the biosystem heterogeneity and temporal dynamics. In this Perspective, we explore the potential application of nanopores for single-molecule temporal omics to characterize individual molecules beyond mass, in both a single-molecule and high-throughput manner. Accordingly, recent advances in nanopores available for single-molecule temporal omics are reviewed from the view of single-molecule mass identification, revealing single-molecule heterogeneity and illustrating temporal evolution. Furthermore, we discuss the primary challenges associated with using nanopores for single-molecule temporal omics in complex biological samples, and present the potential strategies and notes to respond to these challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recent advances in the spatial and temporal study of omics analysis.
Fig. 2: Single-molecule mass identification at the single-unit level using nanopores.
Fig. 3: Revealing the heterogeneity within the same molecules via confinement, the chemical environment and the interactions inside nanopores.
Fig. 4: Recording and illustrating the temporal evolution of multiple species in real time.
Fig. 5: Integration of protein nanopores and nanopipettes for single-cell temporal omics.

Similar content being viewed by others

References

  1. Hood, L. A personal view of molecular technology and how it has changed biology. J. Proteome Res. 1, 399–409 (2002).

    CAS  PubMed  Google Scholar 

  2. Oliver, S. G., Winson, M. K., Kell, D. B. & Baganz, F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 16, 373–378 (1998).

    CAS  PubMed  Google Scholar 

  3. Bosscher, K. D., Desmet, S. J., Clarisse, D., Estébanez-Perpiña, E. & Brunsveld, L. Nuclear receptor crosstalk–defining the mechanisms for therapeutic innovation. Nat. Rev. Endocrinol. 16, 363–377 (2020).

    PubMed  Google Scholar 

  4. Zhang, Y., Murugesan, P., Huang, K. & Cai, H. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat. Rev. Cardiol. 17, 170–194 (2020).

    CAS  PubMed  Google Scholar 

  5. Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014).

    CAS  PubMed  Google Scholar 

  6. Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    CAS  PubMed  Google Scholar 

  8. Newgard, C. B. Metabolomics and metabolic diseases: where do we stand? Cell Metab. 25, 43–56 (2017).

    CAS  PubMed  Google Scholar 

  9. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. Maitre, L. et al. Multi-omics signatures of the human early life exposome. Nat. Commun. 13, 7024 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011).

    CAS  PubMed  Google Scholar 

  12. Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dueck, H., Eberwine, J. & Kim, J. Variation is function: are single cell differences functionally important? Bioessays 38, 172–180 (2016).

    PubMed  Google Scholar 

  14. Redit, C., Cha, S. & Ai, N. Single-cell proteomics: challenges and prospects. Nat. Methods 20, 317–318 (2023).

    Google Scholar 

  15. Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18, 35–45 (2018).

    CAS  PubMed  Google Scholar 

  16. Lawson, D. A., Kessenbrock, K., Davis, R. T., Pervolarakis, N. & Werb, Z. Tumour heterogeneity and metastasis at single-cell resolution. Nat. Cell Biol. 20, 1349–1360 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lewis, S. M. et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 18, 997–1012 (2021).

    CAS  PubMed  Google Scholar 

  18. Bressan, D., Battistoni, G. & Hannon, G. J. The dawn of spatial omics. Science 381, eabq4964 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sempionatto, J. R., Lasalde-Ramírez, J. A., Mahato, K., Wang, J. & Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022).

    PubMed  PubMed Central  Google Scholar 

  20. Wu, V. H. et al. Profound phenotypic and epigenetic heterogeneity of the HIV-1-infected CD4+ T cell reservoir. Nat. Immunol. 24, 359–370 (2023).

    CAS  PubMed  Google Scholar 

  21. Ocaranza, M. P. et al. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat. Rev. Cardiol. 17, 116–129 (2019).

    Google Scholar 

  22. Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 15, 346–366 (2019).

    PubMed  PubMed Central  Google Scholar 

  23. Wilson, M. R., Satapathy, S. & Vendruscolo, M. Extracellular protein homeostasis in neurodegenerative diseases. Nat. Rev. Neurol. 19, 235–245 (2023).

    PubMed  Google Scholar 

  24. Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–53 (2012). The authors developed a motor protein assistant strategy to experimentally overcome major hurdles to accessing DNA sequencing with nanopore.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cao, C. et al. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nat. Nanotechnol. 11, 713–718 (2016).

    CAS  PubMed  Google Scholar 

  27. Sutherland, T. C. et al. Structure of peptides investigated by nanopore analysis. Nano Lett. 4, 1273–1277 (2004).

    CAS  Google Scholar 

  28. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single–amino acid resolution using nanopores. Science 374, 1509–1513 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Steffensen, M. B., Rotem, D. & Bayley, H. Single-molecule analysis of chirality in a multicomponent reaction network. Nat. Chem. 6, 603–607 (2014).

    CAS  PubMed  Google Scholar 

  30. Qing, Y., Ionescu, S. A., Pulcu, G. S. & Bayley, H. Directional control of a processive molecular hopper. Science 361, 908–912 (2018).

    CAS  PubMed  Google Scholar 

  31. Kowalczyk, S. W. et al. Single-molecule transport across an individual biomimetic nuclear pore complex. Nat. Nanotechnol. 6, 433–438 (2011).

    CAS  PubMed  Google Scholar 

  32. Burns, J. R., Seifert, A., Fertig, N. & Howorka, S. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat. Nanotechnol. 11, 152–156 (2016).

    CAS  PubMed  Google Scholar 

  33. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Robertson, J. W. F. et al. Single-molecule mass spectrometry in solution using a solitary nanopore. Proc. Natl Acad. Sci. USA 104, 8207–8211 (2007). The authors proposed the concept of single-molecule MS by using nanopore.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, K. et al. Unambiguous discrimination of all 20 proteinogenic amino acids and their modifications by nanopore. Nat. Methods 21, 92–101 (2024).

    CAS  PubMed  Google Scholar 

  36. Kang, X., Cheley, S., Guan, X. & Bayley, H. Stochastic detection of enantiomers. J. Am. Chem. Soc. 128, 10684–10685 (2006). This work first illustrated the ability of nanopores to distinguish the enantiomers of chiral molecules at the single-molecule level.

    CAS  PubMed  Google Scholar 

  37. Ensslen, T., Sarthak, K., Aksimentiev, A. & Behrends, J. C. Resolving isomeric posttranslational modifications using a biological nanopore as a sensor of molecular shape. J. Am. Chem. Soc. 144, 16060–16068 (2022). A description of an engineered nanopore for revealing the single-molecule heterogeneity of posttranslational modifications on peptides.

    CAS  PubMed  Google Scholar 

  38. Nova, I. C. et al. Detection of phosphorylation post-translational modifications along single peptides with nanopores. Nat. Biotechnol. 42, 710–714 (2024).

    CAS  PubMed  Google Scholar 

  39. Jiang, J. et al. Protein nanopore reveals the renin–angiotensin system crosstalk with single-amino-acid resolution. Nat. Chem. 15, 578–586 (2023). This article obtained the temporal evolution processes of a series of native peptides at the sub-minute resolution without sampling and disturbing the system.

    CAS  PubMed  Google Scholar 

  40. Ying, Y. L. et al. Nanopore-based technologies beyond DNA sequencing. Nat. Nanotechnol. 17, 1136–1146 (2022).

    CAS  PubMed  Google Scholar 

  41. Thakur, A. K. & Movileanu, L. Real-time measurement of protein–protein interactions at single-molecule resolution using a biological nanopore. Nat. Biotechnol. 37, 96–101 (2018).

    Google Scholar 

  42. Ho, B., Baryshnikova, A. & Brown, G. W. Unification of protein abundance datasets yields a quantitative Saccharomyces cerevisiae proteome. Cell Syst. 6, 192–205 (2018).

    CAS  PubMed  Google Scholar 

  43. Deng, Y., Bai, Z. & Fan, R. Microtechnologies for single-cell and spatial multi-omics. Nat. Rev. Bioeng. 1, 769–784 (2023).

    CAS  Google Scholar 

  44. Jeong, H. et al. Functional analysis of structural variants in single cells using Strand-seq. Nat. Biotechnol. 41, 832–844 (2023).

    CAS  PubMed  Google Scholar 

  45. Lu, T., Ang, C. E. & Zhuang, X. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell 185, 4448–4464 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rappez, L. et al. SpaceM reveals metabolic states of single cells. Nat. Methods 18, 799–805 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39, 825–835 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Oehler, S. et al. A DNA-encoded chemical library based on chiral 4-amino-proline enables stereospecific isozyme-selective protein recognition. Nat. Chem. 15, 1431–1443 (2023).

    CAS  PubMed  Google Scholar 

  49. Xie, N. et al. Neoantigens: promising targets for cancer therapy. Signal Transduct. Target. Ther. 8, 9 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rosenberger, F. A. et al. Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome. Nat. Methods 20, 1530–1536 (2023). This work demonstrated the ability of MS technology to identify 1,700 proteins from a single-cell shape on a tissue slice with spatial annotation.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mergner, J. et al. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 579, 409–414 (2020).

    CAS  PubMed  Google Scholar 

  52. Grabarics, M. et al. Mass spectrometry-based techniques to elucidate the sugar code. Chem. Rev. 122, 7840–7908 (2022).

    CAS  PubMed  Google Scholar 

  53. Talaga, D. S. & Li, J. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131, 9287–9297 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Reiner, J. E., Kasianowicz, J. J., Nablo, B. J. & Robertson, J. W. F. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Proc. Natl Acad. Sci. USA 107, 12080–12085 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Baaken, G. et al. High-resolution size-discrimination of single nonionic synthetic polymers with a highly charged biological nanopore. ACS Nano 9, 6443–6449 (2015).

    CAS  PubMed  Google Scholar 

  56. Balijepalli, A. et al. Quantifying short-lived events in multistate ionic current measurements. ACS Nano 8, 1547–1553 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 38, 176–181 (2020).

    CAS  PubMed  Google Scholar 

  58. Wang, J. et al. Direct quantification of damaged nucleotides in oligonucleotides using an aerolysin single molecule interface. ACS Cent. Sci. 6, 76–82 (2020).

    PubMed  PubMed Central  Google Scholar 

  59. Piguet, F. et al. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nat. Commun. 9, 966 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Xia, B. et al. Mapping the acetylamino and carboxyl groups on glycans by engineered α-hemolysin nanopores. J. Am. Chem. Soc. 145, 18812–18824 (2023).

    CAS  PubMed  Google Scholar 

  61. Yu, L. et al. Unidirectional single-file transport of full-length proteins through a nanopore. Nat. Biotechnol. 41, 1130–1139 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nivala, J., Marks, D. B. & Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat. Biotechnol. 31, 247–50 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sauciuc, A., Morozzo della Rocca, B., Tadema, M. J., Chinappi, M. & Maglia, G. Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01954-x (2023). A description of enhanced electroosmotic flow inside nanopores for facilitating the translocation of full-length proteins.

    Article  PubMed  Google Scholar 

  64. Martin-Baniandres, P. et al. Enzyme-less nanopore detection of post-translational modifications within long polypeptides. Nat. Nanotechnol. 18, 1335–1340 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bakshloo, M. A. et al. Nanopore-based protein identification. J. Am. Chem. Soc. 144, 2716–2725 (2022).

    Google Scholar 

  66. Li, M. Y. et al. Unveiling the heterogenous dephosphorylation of DNA using an aerolysin nanopore. ACS Nano 14, 12571–12578 (2020).

    CAS  PubMed  Google Scholar 

  67. Wang, Y. et al. Identification of nucleoside monophosphates and their epigenetic modifications using an engineered nanopore. Nat. Nanotechnol. 17, 976–983 (2022).

    CAS  PubMed  Google Scholar 

  68. Rosen, C. B., Rodriguez-Larrea, D. & Bayley, H. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat. Biotechnol. 32, 179–181 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang, G., Voet, A. & Maglia, G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat. Commun. 10, 835 (2019).

    PubMed  PubMed Central  Google Scholar 

  70. Niu, H. et al. Direct mapping of tyrosine sulfation states in native peptides by nanopore. Nat. Chem. Biol. https://doi.org/10.1038/s41589-024-01734-x (2024).

  71. Tinoco, I. & Gonzalez, R. L. Biological mechanisms, one molecule at a time. Genes Dev. 25, 1205–1231 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lu, H. P., Xun, L. & Xie, X. S. Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998).

    CAS  PubMed  Google Scholar 

  73. Zhou, X. et al. Differentiating enantiomers by directional rotation of ions in a mass spectrometer. Science 383, 612–618 (2024).

    CAS  PubMed  Google Scholar 

  74. Versloot, R. C. A. et al. Seeing the invisibles: detection of peptide enantiomers, diastereomers, and isobaric ring formation in lanthipeptides using nanopores. J. Am. Chem. Soc. 145, 18355–18365 (2023).

    Google Scholar 

  75. Wang, J. et al. Identification of single amino acid chiral and positional isomers using an electrostatically asymmetric nanopore. J. Am. Chem. Soc. 144, 15072–15078 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, M. Y. et al. Revisiting the origin of nanopore current blockage for volume difference sensing at the atomic level. JACS Au 1, 967–976 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, S. et al. T232K/K238Q aerolysin nanopore for mapping adjacent phosphorylation sites of a single Tau peptide. Small Methods 4, 2000014 (2020).

    CAS  Google Scholar 

  78. Galenkamp, N. S., Biesemans, A. & Maglia, G. Directional conformer exchange in dihydrofolate reductase revealed by single-molecule nanopore recordings. Nat. Chem. 12, 481–488 (2020).

    CAS  PubMed  Google Scholar 

  79. Grosberg, A. Y. & Rabin, Y. DNA capture into a nanopore: interplay of diffusion and electrohydrodynamics. J. Chem. Phys. 133, 165102 (2010).

    PubMed  Google Scholar 

  80. Nomidis, S. K., Hooyberghs, J., Maglia, G. & Carlon, E. DNA capture into the ClyA nanopore: diffusion-limited versus reaction-limited processes. J. Phys. Condens. Matter 30, 304001 (2018).

    PubMed  Google Scholar 

  81. Hu, Z. L., Li, M. Y., Liu, S. C., Ying, Y. L. & Long, Y. T. A lithium-ion-active aerolysin nanopore for effectively trapping long single-stranded DNA. Chem. Sci. 10, 354–358 (2019).

    CAS  PubMed  Google Scholar 

  82. Sheng, Y., Zhou, K., Liu, L. & Wu, H. A nanopore sensing assay resolves cascade reactions in a multienzyme system. Angew. Chem. Int. Ed. Engl. 61, e202200866 (2022).

    CAS  PubMed  Google Scholar 

  83. Niu, H., Li, M. Y., Ying, Y. L. & Long, Y. T. An engineered third electrostatic constriction of aerolysin to manipulate heterogeneously charged peptide transport. Chem. Sci. 13, 2456–2461 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009). This article used cyclodextrin as a molecular adaptor of nanopores to demonstrate the accurate identification of four nucleotides and discrimination of single-group differences.

    CAS  PubMed  Google Scholar 

  85. Xin, K. et al. 3D blockage mapping for identifying familial point mutations in single amyloid‐β peptides with a nanopore. Angew. Chem. Int. Ed. Engl. 61, e202209970 (2022).

    CAS  PubMed  Google Scholar 

  86. Li, X., Ying, Y. L., Fu, X., Wan, Y. & Long, Y. T. Single‐molecule frequency fingerprint for ion interaction networks in a confined nanopore. Angew. Chem. Int. Ed. Engl. 60, 24582–24587 (2021).

    CAS  PubMed  Google Scholar 

  87. Wei, Z. X. et al. Learning shapelets for improving single-molecule nanopore sensing. Anal. Chem. 91, 10033–10039 (2019).

    CAS  PubMed  Google Scholar 

  88. Ideker, T., Dutkowski, J. & Hood, L. Boosting signal-to-noise in complex biology: prior knowledge is power. Cell 144, 860–863 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    CAS  PubMed  Google Scholar 

  90. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

    CAS  PubMed  Google Scholar 

  91. Lederer, A. R. & Manno, G. L. The emergence and promise of single-cell temporal-omics approaches. Curr. Opin. Biotech. 63, 70–78 (2020).

    CAS  PubMed  Google Scholar 

  92. Chen, W. et al. Live-seq enables temporal transcriptomic recording of single cells. Nature 608, 733–740 (2022). This work obtained the time-resolved transcriptomics from a single living cell.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Nadappuram, B. P. et al. Nanoscale tweezers for single-cell biopsies. Nat. Nanotechnol. 14, 80–88 (2019).

    CAS  PubMed  Google Scholar 

  94. Faller, M., Niederweis, M. & Schulz, G. E. The structure of a mycobacterial outer-membrane channel. Science 303, 1189–1192 (2004).

    CAS  PubMed  Google Scholar 

  95. Goyal, P. et al. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516, 250–253 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, M. et al. Real-time detection of 20 amino acids and discrimination of pathologically relevant peptides with functionalized nanopore. Nat. Methods https://doi.org/10.1038/s41592-024-02208-7 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lucas, F. L. R. et al. Automated electrical quantification of vitamin B1 in a bodily fluid using an engineered nanopore sensor. Angew. Chem. Int. Ed. Engl. 60, 22849–22855 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Greive, S. J., Bacri, L., Cressiot, B. & Pelta, J. Identification of conformational variants for bradykinin biomarker peptides from a biofluid using a nanopore and machine learning. ACS Nano 18, 539–550 (2023).

    PubMed  Google Scholar 

  99. Marcuccio, F. et al. Single-cell nanobiopsy enables multigenerational longitudinal transcriptomics of cancer cells. Sci. Adv. 10, eadl0515 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Leitao, S. M. et al. Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds. Nat. Nanotechnol. 18, 1078–1084 (2023).

    CAS  PubMed  Google Scholar 

  101. White, R. J. et al. Single ion-channel recordings using glass nanopore membranes. J. Am. Chem. Soc. 129, 11766–11775 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (22334006 to Y.-T.L., 22304077 to J.J., 22027806 to Y.-T.L. and 22125403 to R.T.).

Author information

Authors and Affiliations

Authors

Contributions

M.-Y.L. and J.J. contributed equally to this work. M.-Y.L., J.J. and Y.-T.L. researched data and wrote the manuscript. M.-Y.L., J.-G.L. and Y.-L.Y. designed the figures. M.-Y.L., J.J., H.N., R.T. and Y.-T.L. contributed substantially to the discussion of the content of the paper.

Corresponding authors

Correspondence to Meng-Yin Li or Yi-Tao Long.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Yansheng Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Arunima Singh, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Table 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MY., Jiang, J., Li, JG. et al. Nanopore approaches for single-molecule temporal omics: promises and challenges. Nat Methods 22, 241–253 (2025). https://doi.org/10.1038/s41592-024-02492-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-024-02492-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing