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Cell2fate infers RNA velocity modules to 
improve cell fate prediction
 

Alexander Aivazidis1, Fani Memi    1, Vitalii Kleshchevnikov    1, Sezgin Er    2, 
Brian Clarke    3, Oliver Stegle    1,3,4   & Omer Ali Bayraktar    1 

RNA velocity exploits the temporal information contained in spliced and 
unspliced RNA counts to infer transcriptional dynamics. Existing velocity 
models often rely on coarse biophysical simplifications or numerical 
approximations to solve the underlying ordinary differential equations 
(ODEs), which can compromise accuracy in challenging settings, such as 
complex or weak transcription rate changes across cellular trajectories. 
Here we present cell2fate, a formulation of RNA velocity based on a 
linearization of the velocity ODE, which allows solving a biophysically 
more accurate model in a fully Bayesian fashion. As a result, cell2fate 
decomposes the RNA velocity solutions into modules, providing a 
biophysical connection between RNA velocity and statistical dimensionality 
reduction. We comprehensively benchmark cell2fate in real-world settings, 
demonstrating enhanced interpretability and power to reconstruct complex 
dynamics and weak dynamical signals in rare and mature cell types. Finally, 
we apply cell2fate to the developing human brain, where we spatially map 
RNA velocity modules onto the tissue architecture, connecting the spatial 
organization of tissues with temporal dynamics of transcription.

The concept of ‘RNA velocity’, which involves inferring transcrip-
tional dynamics from spliced and unspliced counts in single-cell RNA 
sequencing (scRNA-seq), has displayed notable potential1–4. The first 
implementations of RNA velocity models1–3 have undergone an evo-
lution of conceptual and technical refinements, including improved 
parameter inference5–7 as well as the use of numerical approaches6,8–10 
to solve the underlying differential equations. However, these existing 
refinements are bound to tradeoffs between either introducing coarse 
biophysical approximations1–3,5,7,11,12 or relying on extensive numerical 
approximations6,8–10. Hence, the fundamental challenge remains to 
define a mathematically sound framework that allows for capturing 
realistic transcriptional dynamics while retaining computational and 
numerical tractability.

To address the aforementioned limitations, we present cell2fate, 
a fully Bayesian model of RNA velocity based on a more realistic bio-
physical model of complex transcription dynamics. Cell2fate employs 
linearization to decompose differential equations describing complex 

transcriptional patterns, such as transcriptional boosts, into tractable 
components that can be solved analytically. By doing so, the model is at 
the same time expressive, interpretable and computationally efficient. 
The approach to decompose the velocity problem into components 
also provides a connection between RNA velocity and dimensionality 
reduction using a biophysical solution.

We assess and benchmark cell2fate in the context of different 
real-world settings, demonstrating its ability to capture complex 
dynamics and weak dynamical signals in rare and mature cell types. 
Finally, we show how cell2fate can be combined with spatial transcrip-
tomics, thereby connecting transcriptional dynamics to their spatial 
tissue environment.

Results
The cell2fate model
Cell2fate builds on established concepts for RNA velocity1,2, employing 
a dynamical model to explain variation in spliced (s) and unspliced (u) 
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distribution structure to account for dependencies between model 
parameters (Methods). The software implementation comes with 
guidelines and heuristics to determine hyperparameters such as the 
number of modules (Methods), and it builds on scvi-tools15 to facilitate 
its integration in existing workflows.

Improved predictions of cell fates and transcription rates
To benchmark the performance of cell2fate, we compared the model 
to existing RNA velocity methods by assessing the consistency of esti-
mated cell fate trajectories with prior knowledge. Briefly, we consid-
ered the cross-boundary directional correctness (CBDir) metric to 
benchmark alternative models, thereby scoring the consistency of 
transition probabilities at the boundary between cell clusters with 
known transitions3 (Methods).

We considered ten RNA velocity methods spanning different 
model classes and approaches for parameter inference (Table 1 and 
Methods). All methods were applied to five scRNA-seq datasets, includ-
ing widely used benchmark datasets such as the developing mouse 
dentate gyrus16 and pancreas17 (Supplementary Fig. 1). To test the ability 
of different methods to resolve complex transcriptional dynamics, 
we also examined mouse erythroid maturation18 and human bone 
marrow19: two datasets that feature multiple transcriptional boosts 
across cellular trajectories12. Finally, we considered a mouse bone 
marrow dataset with markedly low unique molecular identifier (UMI) 
counts1, thereby assessing the extent to which these models cope with 
low-coverage data.

On average, across all five datasets, cell2fate achieved the best 
CBDir scores. More importantly, cell2fate inferred the correct direc-
tionality of cell fate transitions in all datasets, whereas all other meth-
ods, with the notable exception of pyroVelocity_model2, inferred 
reverse-order dynamics in at least one benchmark setting (correspond-
ing to negative CBDir values). Inspecting the benchmarking results, we 
could attribute the performance of cell2fate to overcoming two major 
challenges as elaborated below.

First, cell2fate provided sufficient statistical power to identify cor-
rect velocity flows from subtle transcriptional dynamics. For example, 
in the mouse dentate gyrus dataset, other methods failed to resolve 
the late maturation trajectory of granule neurons, thus incorrectly 
inferring that mature cells transitioned into their immature counter-
parts (Fig. 2b, blue inset boxes and Supplementary Fig. 2). The same 
result was observed when applying CellRank20 to the velocity estimates 
instead of uniform manifold approximation and projection (UMAP), 
indicating that only cell2fate could resolve the trajectory toward 
mature granule neurons (Supplementary Figs. 3 and 4).

Second, cell2fate correctly reconstructs complex transcriptional 
dynamics. In the mouse erythroid maturation datasets, the model 
resolved the correct cell trajectories, whereas other models tended to 
perform poorly (Fig. 2c and Supplementary Fig. 5). Previous analysis18, 
based on the visual inspection of spliced and unspliced counts across 
manually annotated cell clusters, has provided evidence that mouse 
erythroid lineage formation features many ‘multi-rate kinetic’ genes 
such as Hba-x and Nudt4 that display coordinated changes in tran-
scription rates across the cell maturation trajectory18. Consistently, 
cell2fate recapitulated the stepwise transcriptional rate boosts in 
these multi-rate kinetic genes18 (Fig. 2d, turquoise line). By contrast, 
other methods, such as pyroVelocity_model2, can only predict a single 
nonzero transcription rate, due to their simpler underlying dynami-
cal model (Fig. 2d, green line), results that we again confirmed using 
CellRank (Supplementary Figs. 6 and 7).

As an alternative metric to CBDir, we also assessed concordance of 
the estimated time differences between clusters with prior knowledge 
(Supplementary Table 8), and we compared time outputs to known 
developmental ages of different mouse samples (Supplementary Figs. 8 
and 9); these alternative metrics and benchmarks confirmed the per-
formance benefits of cell2fate. Notably, granule neuron subclusters 

read counts for individual genes and cells (Fig. 1a), which can be defined 
in two coupled ODEs:

dug

dt
= αg(t) − βgug (1)

dsg
dt

= βgug − γgsg. (2)

Here, α, β, γ denote the transcription, splicing and degradation 
rates for different genes g. Solving the ODEs for u and s and fitting the 
equations to observed counts allows estimation of the unknown rate 
parameters, which can then be substituted into equation (2) to obtain 

the rate of change in spliced counts in each cell, ds
dt

, which in turn gives 

rise to what is commonly referred to as ‘RNA velocity’ (ref. 1). An impor-
tant challenge for RNA velocity models is that transcription rates as a 
function of differentiation time (αg(t)) can be complex and nonlinear, 
reflecting the implicit dependency on active transcription factor (TF) 
abundance in the nucleus13, yet the integral of the transcription rate 
function αg(t) needs to remain tractable to allow the ODEs to be solved 
efficiently. As a consequence, existing methods either assume simpli-
fied stepwise functions for αg(t) (refs. 1,2,5,7) or they resort to numerical 
approximations to solve the ODE6,8–10 (Supplementary Notes and Sup-
plementary Fig. 3).

In cell2fate, we use an expansion of the derivative of the transcrip-
tion rate in terms of individually integrable basis functions, which we 
refer to as linearization in the following:

dαg

dt
=

M
∑
m=1

dαmg

dt
=

M
∑
m=1

λmi(α̂mgi − αmg). (3)

We term each basis function a module, denoted by a subscript m. 
Subscript i denotes the state of a module (ON or OFF). α̂mgi is the target 
transcription rate of a module, which takes on nonzero values for all 
genes, when the module is in the ON state (Fig. 1b, bottom right). λmi 
is the rate at which the target transcription rate is reached, and the state 
i depends on switch times Tm,ON/Tm,OFF on a cell-specific timescale Tc 
(Fig. 1b, top). This choice of basis functions allows for each individual 
ODE as well as their total sum to be solved analytically (Methods and 
Supplementary Notes). The parameters Tm,ON/Tm,OFF, λmi  and Tc are 
shared across all genes, which vastly reduces the number of parameters 
that need to be estimated compared to existing models yet still pro-
vides gene-specific transcription rates αmg.

In addition to being appealing for computational reasons, the 
linearization also provides a biophysical connection between RNA 
velocity and statistical dimensionality reduction. This link becomes 
apparent when casting the linearization as a mixed membership model, 
in which transcription rates, RNA velocity and spliced and unspliced 
counts of each gene are governed by a linear combination of M modules 
(Methods and Fig. 1b). The mixing coefficients can then be interpreted 
analogously to gene loadings of factor analysis or principal-component 
analysis. Mechanistically, modules can be interpreted as approximating 
the transcription rate changes induced by all active regulatory proteins 
as a small set of independent effects that are each valid within time 
windows defined by Tm,ON/Tm,OFF.

Cell2fate is a fully Bayesian model that is fit to raw cell-level counts 
as input, and it includes a series of refinements to account for technical 
sources of variation, including overdispersion, variation in detection 
sensitivity of spliced and unspliced RNA molecules, ambient RNA and 
known batches (Methods). A hierarchical prior structure achieves 
efficient regularization of model parameters while sharing evidence 
strength across genes (Methods). The model is implemented in the 
probabilistic programming language Pyro14 and fit using Pyro’s sto-
chastic variational inference framework using a customized variational 
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Fig. 1 | Cell2fate model overview. a–d, Cell2fate allows inferring complex and 
subtle transcriptional dynamics (a) by modeling gene-specific transcription rates 
(b) using a smaller number of independent modules with simple dynamics that 
also give rise to a modular structure in RNA velocity (c) and counts (d). λ denotes 

the rate of module activation (ON) or deactivation (OFF). The superscript ‘biol’ 
denotes that counts (u and s) do not include technical factors of variation, such as 
sequencing depth.
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with higher cell2fate estimated time contained more cells from the 
later developmental ages (Supplementary Fig. 8b), validating cell2fate 
estimates. Alternative methods as well as standard diffusion pseudo-
time analysis did not resolve this granule neuron maturation trajectory 
(Supplementary Figs. 8c and 10). Furthermore, cell2fate was robust to 
changes in the assumptions on prior distributions (Supplementary 
Fig. 11), and we confirmed the ability of the model to estimate ground 
truth dynamical rates when applying the model to semisynthetic data 
(Supplementary Fig. 12). Finally, we note that, while cell2fate has higher 
computational requirements than some existing methods, the com-
putational requirements of the model are aligned with alternatives so 
that cell2fate can be readily applied to larger datasets (Supplementary 
Tables 6 and 7 and Supplementary Fig. 13).

We note that cell2fate’s cell-specific timescale3,6,7 (Fig. 1a,b) pro-
vides two additional use cases that can help to gain deeper insights. 
First, it aids the identification of cell lineage progression and distinct 
cell lineages. For example, in the mouse dentate gyrus dataset, gran-
ule neurons and astrocytes were assigned markedly disconnected 
time points, with oligodendrocytes occupying a mid-time point range 
(Fig. 2e, left), consistent with the distinct lineage origins of these three 
cell types16. By contrast, in the mouse erythroid maturation dataset, a 
single lineage with a single connected time range is identified (Fig. 2e, 
right). Second, inspecting the Bayesian posterior5–7 of the cell-specific 
time provides a principled measure of confidence in the RNA veloc-
ity values across and within datasets. In both datasets mentioned 
above, the coefficient of variation (CV) of the posterior distribution 
of individual cell times was consistently estimated to be close to zero, 
indicating low uncertainty (Fig. 2e, bottom). By contrast, cell2fate 
applied to a steady-state dataset of peripheral blood mononuclear 
cells21, in which no consistent transcriptional dynamics are expected12, 
results in confidence estimates with a CV close to 1, indicating high 
uncertainty (Fig. 2f). The posterior uncertainties can also be used to 
estimate confidence levels in individual transitions. To do so, cell2fate 
implements a heuristic confidence score based on the fraction of pos-
terior samples from the cell-specific time in one cluster that are higher 
than the 90th percentile of samples from another cluster. This heuristic 

correlates well with the CBDir score of the corresponding transitions  
(ρ = 0.56), indicating that it is well calibrated (Supplementary Fig. 14). 
Hence, the posterior of cell-specific time can serve as quality control 
to assess whether cell2fate identifies meaningful dynamics in a given 
dataset.

In sum, our benchmark demonstrates cell2fate’s enhanced sta-
tistical power to estimate cell trajectories and resolve complex tran-
scriptional dynamics and the ability to quantify uncertainty in velocity 
estimates.

RNA velocity modules map fine stages of late cell maturation
Cell2fate modules are sequentially activated gene expression pro-
grams over time. Given their biophysical foundations in transcriptional 
kinetics, we expect that RNA velocity modules can provide a more 
granular characterization of dynamic processes during cellular dif-
ferentiation than conventional dimensionality reduction techniques 
that lack a mechanistic basis, such as matrix factorization or clustering. 
In addition, cell2fate comes with a suite of downstream analysis and 
visualization tools, enabling users to explore dynamic processes and 
derive biological insights.

To demonstrate the cell2fate toolkit, we considered the mouse 
brain single-cell dataset included as part of the benchmarking study 
(Fig. 2b), profiling the dentate gyrus region in the hippocampus across 
two developmental stages16. In addition to early differentiation of neu-
rons and astrocytes from neural progenitors, this dataset covers the late 
maturation trajectory of granule neurons (that is, the late differentia-
tion after the immature neuron stage), a critical process that is however 
not well understood, and, more generally, it is unknown whether this 
late maturation process unfolds across successive transcriptional 
stages. Previous RNA velocity methods applied to this dataset2,3 were 
able to distinguish neuronal versus astrocyte lineage trajectories; 
however, the correct trajectory for the most mature granule neurons 
could not be resolved (Fig. 2b).

Cell2fate applied to this dataset revealed 16 distinct RNA velocity 
modules (Supplementary Fig. 15), capturing all the expected cell tra-
jectories, with the dominant lineage corresponding to granule neuron 
differentiation and maturation stemming from neural intermediate 
progenitor cells (nIPCs), neuroblasts and immature neurons. Radial 
glial-like progenitor cells are largely committed to astrocytes (Fig. 3a), 
as evident both from cell2fate’s time estimates and CellRank fate prob-
abilities (Supplementary Fig. 16). We also observed that mossy cells, 
another neuronal population in the dentate gyrus, were assigned to 
the middle stages of the granule neuron trajectory. While mossy cells 
are thought to have different lineage origins, their transcriptional 
development is highly similar to that of granule neurons22.

To explore the dynamics of neuronal differentiation in greater 
depth, we used the fitted cell2fate model to estimate the total spliced 
transcript abundance for each of the nine granule neuron lineage 
modules in individual cells across the inferred time (Fig. 3d, top). This 
analysis identified the successive induction of modules across the early 
differentiation of radial glia into nIPCs, neuroblasts and immature 
neurons (modules 1–3). Strikingly, cell2fate also recovered dynamics 
in mature granule neurons, explained by six modules (modules 4–9) 
that are sequentially activated and temporally overlap across mature 
granule neurons, thereby finely dissecting the late maturation of these 
cells into distinct transcriptional windows (Fig. 3d). The model also 
correctly identified a temporal gap between immature and mature 
granule neurons (Fig. 3d), which is consistent with prior expectations16. 
The cell2fate visualization tool complements t-distributed stochastic 
neighbor embedding or UMAP by providing dynamic insights anchored 
on estimated differentiation time, and it can also visualize additional 
metadata such as cell type annotations or developmental age (Fig. 3d, 
bottom two panels).

The total spliced count estimates can also be used to visualize 
the dynamics of RNA velocity modules across cells, for example, on a 

Table 1 | Summary of RNA velocity model versions and 
parameter settings used in benchmark

Model Version Parameter settings

scVelo_dynamical 0.2.5 n_jobs = 8

scVelo_stochastic 0.2.5 n_jobs = 8

pyroVelocity_model1 0.1.0 batch_size = 4,000, use_gpu = 0, cell_
state = ‘state_info’, include_prior = True, 
offset = False, library_size = True, patient_
improve = 1 × 10−3, model_type = ‘auto’, 
guide_type = ‘auto_t0_constraint’, 
train_size = 1.0

veloVAE N/A tmax = 20, dim_z = 5, device = ‘cuda:0’

UniTVelo_
independent

0.2.5 R2_ADJUST = True, IROOT = None FIT_
OPTION = ‘2‘, GPU = 0, vgenes = ‘offset’

UniTVelo_unified 0.2.5 R2_ADJUST = True, IROOT = None FIT_
OPTION = ‘1‘, GPU = 0, vgenes = ‘offset’

DeepVelo 0.2.5-rc.1 deepVelo.Constants.default_configs

pyroVelocity_
model2

0.1.0 batch_size = 4,000, use_gpu = 0, cell_
state = ‘state_info’, include_prior = True, 
offset = False, library_size = True, patient_
improve = 1 × 10−3, model_type = ‘auto’, 
guide_type = ‘auto_t0_constraint’, 
train_size = 1.0

VeloVI 0.1.1 N/A

N/A in the ‘Version’ column means that a package did not have a version number associated 
with it on github. N/A in the ‘Parameter settings’ column means that a method did not require 
any additional parameter inputs other than the default settings.
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conventional UMAP plot (Fig. 3b). The activation of different modules 
per cell can be inspected, similar to the factor activity in conventional 
matrix factorization. We also compared these module activation esti-
mates to conventional factor analysis and clustering methods. Briefly, 

multi-omics factor analysis (MOFA)23 yielded factors that captured 
complementary sources of variation, with activity profiles that were 
temporally more diffuse across the differentiation trajectory. Spe-
cifically, these factors did not stratify late granule neuron maturation 
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(Fig. 3b and Supplementary Fig. 17). We also observed overall low cor-
relation between cell2fate module and MOFA factor gene loadings, 
particularly for the late neuronal maturation modules 4–9 (Supple-
mentary Fig. 18). Similarly, Leiden clustering of the scRNA-seq dataset 
at different resolutions identified clusters that were not aligned with 
neuronal maturation (Fig. 3b and Supplementary Fig. 19). Collectively, 
these observations indicate that cell2fate captures complementary 
aspects of variation compared to existing decomposition methods 
and is well suited to conduct granular dissection of granule neuron 
maturation.

Beyond the activity of modules, the dynamics can be further clas-
sified into states within each cell, based on whether they are increasing 
or decreasing in expression (Fig. 3c and Methods). Both quantities are 
shown in Fig. 3e,f for granule neuron differentiation. The additional 
dynamic information in this visualization shows, for example, that 
module 9 has not reached a steady state, implying that granule neuron 
maturation continues beyond the time range captured in this dataset.

Finally, we examined to what extent RNA velocity modules can 
provide deeper insights into the late stages of granule neuron differ-
entiation. We ranked genes by how much of their transcription rate 
is explained by each module and used top genes as ‘module mark-
ers’ (Fig. 3g and Supplementary Fig. 20). We identified Rbm24, Tafa1 
(Fam19a1) and Sptb (module 4) and Pakap (Palm2), Pdzd2 and Usp19 
(module 5) as markers switched on in immature granule neurons 
(Fig. 3g and Supplementary Fig. 20). By contrast, Fst, Rapgef5 and 
Moxd1 (module 6), Prr16, Kdm5d and Rpa3 (module 7) and Rgs2, Nudt13 
and 1700048O20Rik (module 8) provide markers of late granule neuron 
maturation stages (Fig. 3g). Fam19a1 has been reported to suppress 
neural stem cell maintenance and promote differentiation24,25, consist-
ent with its expression pattern in maturing granule neurons. Rgs2 is 
dynamically expressed during neuronal activity26 and involved in syn-
aptic plasticity27, consistent with its late induction in module 8. Apart 
from these two genes, the marker genes reported here have not been 
functionally investigated in granule neurons or brain development 
to our knowledge. We further intersected the top 30 markers of each 
module with a set of 30 Alzheimer’s risk genes28 and 250 autism spec-
trum disorder risk genes29,30, which highlighted late granule neuron 
maturation module 8, where the Alzheimer’s associated gene Trappc6a 
and the autism-associated genes Kdm6a and Nr4a2 were among the 
markers (Supplementary Table 9). These results highlight that cell2fate 
can lead to new biological insights, even in a widely characterized cell 
lineage like granule neurons.

Additionally, we can extract top module marker genes that are TFs 
as ‘module TFs’ (Fig. 3h). Moving on to such module TFs, Zmat4 (module 
6) and Tfam (module 8) are enriched in late granule neuron matura-
tion stages (Fig. 3h). Zmat4 has been reported as upregulated in the 
auditory cortex of young mice at postnatal day 7 compared to adults31, 
while Tfam knockout results in immature neuronal phenotypes32. Yet 
their roles in granule neuron differentiation have not been studied to 
date. We also find that genes with putative promoter sequences that 
are most likely to be bound by the top 20 module TFs, as predicted by 
the ProBound algorithm33, are more frequently among the top 300 
module genes than those least likely to be bound by those TFs (Sup-
plementary Fig. 21). These TFs provide putative candidate regulators 
of late granule neuron differentiation.

In sum, our results demonstrate the great interpretability and 
statistical power of cell2fate’s module decomposition for scRNA-seq 
datasets to finely dissect cellular processes and suggest that late gran-
ule neuron maturation is composed of distinct stages.

Spatial mapping of RNA velocity modules
Temporal biological processes are often spatially organized in tissues. 
For example, cell differentiation and migration are often coupled, 
with cells associating with distinct spatial signaling microenviron-
ments throughout their differentiation trajectories. Here, we sought 

to link the temporal information captured by cell2fate to spatial tissue 
organization by mapping RNA velocity modules in a newly generated 
spatial transcriptomics dataset of human brain development (Fig. 4a).

We focused on the fetal human cerebral cortex in which excitatory 
neuron maturation follows a highly stereotyped trajectory through 
space and time34. Neural progenitors termed radial glia and inter-
mediate progenitors reside in cortical germinal zones, where they 
sequentially give rise to distinct neuronal subtypes that subsequently 
migrate out to the deep and upper layers of the cortical plate across 
their maturation (Fig. 4b). Deep layer-residing neurons (DLn) are born 
before upper-layer neurons (ULn) in early gestation; hence DLn are 
relatively more mature than ULn by midgestation (Fig. 4b). Thus, the 
maturation state and spatial location of cortical excitatory neurons 
are tightly linked.

To examine cellular differentiation trajectories in the human 
cortex, we initially performed single-nucleus RNA-sequencing 
(snRNA-seq) profiling (10x version 3.0) of one donor at midgestation. 
We then followed standard snRNA-seq processing workflows (Meth-
ods) to cluster cells and annotated cell types using markers from the 
literature35. We annotated distinct neural progenitors (radial glial and 
intermediate progenitor cells) as well as excitatory neuron populations 
at different stages of maturation (Fig. 4c). As expected, mature neurons 
expressed DLn markers, whereas newborn and immature neurons 
showed enriched expression of ULn markers (Supplementary Fig. 22). 
We also annotated inhibitory neurons and glial cell types but excluded 
them from the subsequent excitatory neuron trajectory analysis.

We then applied cell2fate to this human brain snRNA-seq dataset 
and observed the expected excitatory neuronal differentiation tra-
jectory from neural progenitors to newborn, immature and mature 
neurons (Fig. 4c). The RNA velocity modules dissected the neuronal 
trajectory into finer-grained maturation stages, identifying seven 
sequentially activated and temporally overlapping modules through-
out immature and mature neurons (Fig. 4d and Supplementary Fig. 23). 
While these modules contained some DLn and ULn cell type markers, 
they also included many genes that are widely expressed across all 
excitatory neurons in the adult human cortex36, such as PSMC3, KRR1 
and BMPER (Supplementary Figs. 24 and 25). This suggests that the 
modules partially identify a neuronal maturation trajectory common 
to both DLn and ULn.

In contrast to cell2fate, other RNA velocity methods such as scVelo 
were not able to accurately identify velocity flow in mature neurons 
(Supplementary Fig. 26). Additionally, the integrated measurement 
model of cell2fate allowed us to factor in different detection prob-
abilities for spliced and unspliced counts and correct batch effects in 
our human brain snRNA-seq dataset (Supplementary Fig. 27), which 
is crucial for estimating true transcriptional dynamics from observed 
counts (Methods).

To spatially map our RNA velocity modules in the developing 
human cortex, we performed Visium spatial RNA-seq profiling (10x 
CytAssist) of one cortical tissue section from an age-matched donor 
(Fig. 4b). As the Visium assay offers coarse spatial resolution and pro-
files multiple cells at each tissue location (that is, Visium spot), we 
used the cell2location algorithm37 to deconvolve the abundance of 
RNA velocity modules across spatial data. We used the steady-state 
expression counts of each module as reference gene expression sig-
natures and then applied the standard cell2location workflow to infer 
the abundance of each module signature across Visium spots (Fig. 4a 
and the Methods).

The RNA velocity modules showed expected patterns of spatial 
mapping across the human cortex (Fig. 4e–f and Supplementary 
Fig. 28). Progenitor modules spatially mapped to germinal zones 
(Fig. 4e), while neuronal modules primarily mapped to the cortical 
plate (Fig. 4e and Supplementary Fig. 28). The fine spatial locations of 
neuronal modules were consistent with their maturation state (Fig. 4f). 
The immature ULn module (0) mapped to the upper cortical layers as 
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well as the subplate–intermediate zone that immature neurons pass 
through during their migration to the cortical plate38. The early mature 
ULn module (2) was exclusively mapped to the upper cortical layers. 
By contrast, the late mature DLn module (5) specifically mapped to 
deep cortical layers.

In sum, our approach provides a workflow to spatially resolve 
complex cell trajectories through tissues.

Discussion
Here, we present cell2fate, a Bayesian model of RNA velocity that is 
capable of inferring transcriptional dynamics in settings of complex 
changes or weak signals in rare and mature cell types. A core innova-
tion of cell2fate is a formulation of the velocity problem that builds on 
linearization, which allows for solving a biophysically more accurate 
model using analytically tractable linearized components. Another 
benefit of this formulation is that these linear components can be 
inspected as interpretable RNA velocity modules. This provides for a 
direct biophysical connection between cell2fate and statistical dimen-
sionality reduction methods. We illustrated this feature by character-
izing late maturation trajectories in granule neurons that have been 
elusive with other methods. Furthermore, RNA velocity modules can 
be used to locate differentiation trajectories in spatial transcriptomics 
data. We exemplified this in the developing human brain where the RNA 
velocity modules of neuronal differentiation showed a high degree of 
spatial organization.

Despite cell2fate’s improved biophysical accuracy, the model still 
makes simplifying assumptions, such as a constant degradation rate 
and no stochastic bifurcations. However, the concepts proposed in 
cell2fate are general and give rise to several extensions that can further 
increase the biophysical accuracy of the model in the future without 
resorting to numerical approximations. This includes RNA velocity 
models with cell-specific splicing and degradation rates, stochastic 
rates at lineage-branching points and causal connections between 
transcription rates at different time points, equivalent to dynamic gene 
regulatory networks (Supplementary Notes). In the long term, dynami-
cal models should also include the effects of cell–cell interactions, 
based on signaling molecules measured with spatial transcriptomics. 
An immediate step toward this goal would be combining RNA veloc-
ity module mapping with spatial cell–cell interaction tools, such as 
NCEM39, which could identify putative interactions that drive specific 
steps of a differentiation process.

Online content
Any methods, additional references, Nature Portfolio reporting 
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author  
contributions and competing interests; and statements of data 
and code availability are available at https://doi.org/10.1038/
s41592-025-02608-3.
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Methods
A complete description of the cell2fate model and a comparison with 
other methods can be found in the Supplementary Notes.

Generative model for cell2fate
Equations (1) to (3) give rise to these new RNA velocity equations that 
cell2fate is based on:

dαg

dt
=

M
∑
m=1

dαmg

dt
=

M
∑
m=1

λmi(α̂mgi − αmg) (4)

dug

dt
=

M
∑
m=1

dumg

dt
=

M
∑
m=1

(αmg − βgumg) (5)

dsg
dt

=
M
∑
m=1

dsmg

dt
=

M
∑
m=1

(βgumg − γgsmg). (6)

Subscripts g and m correspond to genes and modules, respec-
tively. α̂mgi is the target transcription rate of each module that is 0 in 
the OFF state (i = OFF) and nonzero in the ON state (i = ON). The target 
transcription rate is reached at a rate λmi. α, β, γ denote the transcrip-
tion, splicing and degradation rates, similar to other RNA velocity 
models. These RNA velocity equations can be solved analytically (Sup-
plementary Notes 1.3 and 3.1) to give equations for the expected spliced 
counts scg  and unspliced counts ucg  in each cell (Supplementary Note 
1.3, equations (15) and (16)). We call these count values ‘biological’ 
expectation values, denoted by xBcg j = (ucg, scg), because they represent 
the expected counts in the absence of measurement effects. The index 
j denotes maturity of RNA transcripts (spliced/unspliced). To account 
for measurement effects and obtain ‘measurement’ expectation values, 
xMcg j, we transform xBcg j as follows:

xMcg j = lcg j(Hceseg j + xBcg j). (7)

Here, Hce denotes a one-hot categorical assignment of cells to experi-
mental batches, lcg j describes differences in detection efficiency (for 
example, sequencing depth, read alignment and quantification) of 
genes across cells and seg j models ambient RNA (‘soup’) for each gene 
in each batch. These ‘measurement’ expectation values are then used 
to parameterize the mean of a negative binomial (NB) observation 
model of the observed raw count values Xcgj = (Ucg, Scg):

Xcg j ∼ NB (μ = xMcg j,α = ag j) . (8)

Here, agj are NB overdispersion parameters for each gene, separate 
for spliced and unspliced counts. All parameters have hierarchical 
prior distributions (Supplementary Note 1.6) and are inferred using 
stochastic variational inference in the Pyro probabilistic programming 
framework40 (Supplementary Note 1.8).

Downstream analysis of cell2fate
Computation of the RNA velocity graph. We followed the procedure 
proposed in the scVelo package for computing a cell–cell transition 
probability graph from RNA velocity estimates2, with the modification 
of averaging the velocity graph over 100 posterior velocity samples, 
so that noisy gene velocities with high posterior uncertainty have less 
weight in estimating transition probabilities. Optionally, the original 
procedure can also be followed exactly by computing the velocity 
graph with mean velocity estimates from our method, using the original 
function in the scVelo Python package.

Computation of module activation. We calculate the module acti-
vation, which we defined as the total spliced counts produced by a 
module in a cell, by substituting posterior parameter values into the 

equations that capture the time evolution of spliced counts. Module 
activation can then be plotted over time by plotting the posterior time 
of each cell on the x axis and the calculated module activation of each 
module on the y axis.

Calculation of normalized module activation and state. Module 
normalized activation denotes the number of counts produced by a 
module divided by the steady-state counts of the module (Fig. 3d, gray 
line), which is calculated by setting time to infinity in the equations that 
capture the time evolution of spliced counts. The module state is 
defined as OFF if the cell time is smaller than the switch-on time of the 
module or the module’s normalized activation is below 0.05 (Fig. 3d, 
gray) and as ON if its normalized activation is above 0.95 (Fig. 3d, bright 
green). Otherwise, a module is in either the induction or repression 
state depending on whether the inferred cell time is below or above 
the switch-off time (Fig. 3d, light green or orange).

Benchmarking of RNA velocity methods
Processing of datasets. We used the 3,000 most variable genes with 
at least 20 detected counts for all results in the paper. In addition, 
we applied the standard preprocessing pipeline suggested in the 
main scVelo tutorial (on mouse pancreas development), except for 
Pyro-Velocity and cell2fate, which do not require preprocessing. This 
included total count normalization, log transformation and calculating 
mean expression among the 30 nearest neighbors in 30-component 
PCA space (‘kNN-smoothing’).

Application of velocity models
We followed online tutorials based on the mouse pancreas develop-
ment dataset for all methods and then used the same analysis pipeline 
to produce the benchmarking results in this paper. We summarize 
parameter settings for all methods in Table 1 and also include the 
method version when available. For cell2fate, we kept all training and 
model parameters at their default values.

Definition of ground truth cell state transitions. For the mouse bone 
marrow dataset, we defined the following ground truth cluster tran-
sitions: ‘dividing’ to ‘progenitors’ to ‘activating’. For the remaining 
datasets, we used the ground truth transitions from the UniTVelo RNA 
velocity study that also used these datasets for benchmarking41. All 
ground truth transitions are included in Supplementary Tables 1–5.

Benchmarking metric. We calculated the CBDir, using the functions 
provided by the UniTVelo Python package41. The following is an expla-
nation of the metric from the UniTVelo publication: ‘CBDir measures 
the correctness of transitions from a source cluster to target cluster 
using boundary cells given ground truth. Here boundary of source 
cluster refers to cells in that cluster that are neighbors of the target 
cluster and vice versa. Boundary cells are used because they reflects 
the biological development in a short period of time and CBDir is 
calculated via

CBDir(c) = 1
Norm

∑c′ϵCA∩N(c)
vc⋅(xc′−xc)
|vc |⋅|xc′−xc |

Norm = |c′ϵCA ∩ N(c)| ,
(9)

where CA is sets of cells in target cluster A, N(c) stands for the neighbor-
ing cells of specified cell c. vc and xc are the low-dimensional vectors 
representing computed velocity and positions of cell c. Therefore, 
xc′ − xc is the displacement in space during the short period of time’.

CellRank analysis. For the dentate gyrus dataset, we ran CellRank 
with default parameters and computed fate probabilities for the 
astrocyte, oligodendrocyte and granule mature states, if the method 
identified them as macrostates. When using the default parameter 
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n_states = (4, 12), VeloVI and VeloVAE returned an error: ‘ValueError: 
Clustering into 12 clusters will split complex conjugate eigenvalues. 
Request one cluster more or less’; so we set n_states = (4, 11), which 
ran successfully. For cellDancer and VeloVAE, we also obtained the 
following error: ‘[…] value(s) do not sum to 1 (rtol=1e-3). Try decreas-
ing the tolerance as ‘tol = …’, specifying a preconditioner as ‘precon-
ditioner = …’ or use a direct solver as ‘solver = ‘direct’’ if the matrix is 
small’. This error could not be resolved, even after following the steps 
in the error message and the advice found regarding relevant GitHub 
issues. For the erythroid maturation dataset, we also ran CellRank with 
default parameters and computed fate probabilities both toward the 
progenitor 1 state and the erythroid 3 state.

Simulation benchmark. First, we fit cell2fate to the dentate gyrus 
dataset. Next, we generated data from the cell2fate generative model, 
keeping all parameters at their fitted values except one chosen param-
eter that we multiplied with 0.25, 0.5, 1, 2 or 4. We investigated four 
biological and technical parameters in this way: the splicing rate, the 
degradation rate, the detection probability of transcripts and the NB 
overdispersion parameter. We then fit cell2fate to this simulated data 
and calculated the correlation of inferred splicing and degradation 
rate values to the known ground truth (as RNA velocity is a function of 
splicing and degradation rates).

Time and memory requirements. We measured the time requirements 
for all methods using the ‘time’ Python package. The start point for 
time measurements was placed right before data preprocessing began, 
and the end point was placed right after velocity values were obtained. 
We measured memory requirements by running either the ‘htop’ (for 
CPU-based methods) or the ‘nvidia-smi’ command (for GPU-based 
methods) every 10 s for up to 2 min and recording the highest value.

Comparison of decomposition methods on the dentate gyrus 
dataset
Application of cell2fate. Following the benchmarking run on dentate 
gyrus data, we applied the downstream analysis methods, described 
above in Downstream analysis, to calculate and plot module activa-
tions and states.

Application of multi-omics factor analysis. We used the 3,000 most 
variable genes with at least 20 detected counts as input, identical to 
the cell2fate analysis. We limited the analysis to clusters involved in 
the neuron differentiation trajectory (radial glia like, nIPC, neuroblast, 
granule immature, granule mature). We added spliced and unspliced 
counts and then normalized, log transformed and scaled the data 
matrix using the respective scanpy functions. We ran MOFA using a 
Gaussian likelihood and ten factors (the same number of factors found 
by cell2fate in the relevant clusters). Further run options were spikeslab 
weights = True, ard factors = True, ard weights = True.

ProBound algorithm. To produce Supplementary Fig. 29, we applied 
the ProBound algorithm33. ProBound can predict the binding affin-
ity for most TFs to a user-supplied DNA sequence. We used the 
refdata-cellranger-arc-mm10-2020-A-2.0.0 genome as a reference. 
To obtain putative promoter sequences for each gene in the reference, 
we extracted the DNA sequence 450 bp upstream and 149 bp down-
stream of the transcription start site of each gene. For each TF, we then 
ranked genes based on the predicted ProBound binding affinity to its 
putative transcription start site. We then used the top ten and bottom 
ten binding targets of each TF to produce the results illustrated in 
Supplementary Fig. 29.

Spatial integration of RNA velocity
Human tissue. Formalin-fixed paraffin-embedded (FFPE) blocks of 
second-trimester human fetal brain were obtained from the MRC- and 

Wellcome-funded Human Developmental Biology Resource (HDBR, 
http://www.hdbr.org), with appropriate maternal written consent and 
approval from the Fulham Research Ethics Committee (REC reference 
18/LO/0822) and the Newcastle & North Tyneside 1 Research Ethics 
Committee (REC reference 18/NE/0290). The HDBR is regulated by 
the UK Human Tissue Authority (http://www.hta.gov.uk) and oper-
ates in accordance with the relevant Human Tissue Authority Codes 
of Practice.

Developing human brain single-nucleus library preparation and 
sequencing. Single nuclei were isolated from frozen fetal brain tis-
sue according to a published protocol42. Briefly, tissue was Dounce 
homogenized in homogenization buffer (250 mM sucrose, 25 mM 
potassium chloride, 5 mM magnesium chloride, 10 mM Tris buffer, 
pH 8.0, 1 M 1,4-dithiothreitol, 0.1% Triton X-100, 1× protease inhibitor, 
0.4 U l−1 RNasin Plus RNase inhibitor, 0.2 U l−1 SUPERase·In RNase inhibi-
tor) and filtered with a 40-µm cell strainer. Debris was removed from 
the filtrate via density centrifugation with 27% Percoll. All nuclei in a 
batch were mixed in equal concentrations before droplet encapsula-
tion with the 10x Chromium Single Cell 3′ version 3.1 kit. Libraries were 
generated according to the manufacturer’s protocol (CG000204) and 
single-index sequenced with cycles 28-8-91 on a NovaSeq 6000 System 
(Illumina) using a NovaSeq S4 flow cell.

Developing human brain Visium library preparation and sequenc-
ing. FFPE tissue sections (5 μm) were stained and imaged following the 
10x Genomics Visium CytAssist user guide (CG000520). The following 
times were used for the fetal brain tissue: hematoxylin, 3 min; bluing, 
1 min; eosin, 1 min. After probe hybridization and ligation, a Visium 
CytAssist instrument was used to transfer analytes from the glass slide 
to a Visium CytAssist Spatial Gene Expression slide with a capture area 
of 42.25 mm2. Probe extension and library construction were carried 
out following the standard Visium for FFPE workflow (CG000495) 
outside of the instrument. Libraries were sequenced with paired-end 
dual indexing (28 cycles, read 1; ten cycles, i7; ten cycles, i5; 90 cycles, 
read 2) on the Illumina-HTP NovaSeq 6000 System with paired-end 
sequencing in an SP flow cell. The Loupe Browser was used to generate 
the JSON file, and the Space Ranger pipeline version 2022.0705.1 (10x 
Genomics) and the GRCh38-2020-A reference were used to process 
FASTQ files.

Developing human brain Visium and single-nucleus sequencing 
count quantification, clustering and annotation. We quantified 
counts using Space Ranger 1.3.0 for the Visium data and STARsolo with 
Cell Ranger 3.02 for the single-nucleus data using GRCh38 version 1.2.0 
as a reference. We applied CellBender to the single-nucleus total count 
matrix (but not spliced and unspliced count matrices). We followed 
the scanpy processing and clustering tutorial with default param-
eters (min_genes = 200, min_cells = 3, n_genes_by_counts < 2,500, pct_ 
counts mt < 5), which involves removing cells and genes with low 
UMI counts, followed by removal of cells with very high total counts  
or mitochondrial gene ratio, total count normalization, log transforma-
tion, highly variable gene selection, data scaling, principal-component 
analysis and finally Louvain clustering. Expression of cell type 
 marker genes taken from the single-cell atlas (Fig. 1f of Polioudakis 
et al.35) was plotted for each cluster, based on which we annotated 
the cluster identity. Clusters outside the excitatory neuron lineage 
(oligodendrocytes, interneurons, microglia) were not considered for 
further analysis.

Cell2location. We used the steady-state counts of each module as a 
reference gene expression profile. This steady-state expression cor-
responds to the gmg  parameter of the generative model. We then ran 
the cell2location method with default parameter settings (including 
α = 20).
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Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw UMI counts and metadata in anndata format for all single-cell 
and Visium data are available for download on this portal: https://
cell2fate.cog.sanger.ac.uk/browser.html. FASTQ files for the human 
brain single-nucleus and Visium data are available on ENA under the 
accession number PRJEB79988.

Code availability
The cell2fate package is available for installation at this GitHub reposi-
tory: https://github.com/BayraktarLab/cell2fate. It is also available 
on Zenodo40: https://zenodo.org/records/13883214. Results from 
the cell2fate method can be reproduced with the notebooks in this 
repository: https://github.com/AlexanderAivazidis/cell2fate_note-
books. Benchmarking results for all methods as well as robustness 
analysis and comparison to real developmental age were done with 
notebooks in this repository: https://github.com/AlexanderAivazidis/
fate_benchmarking.
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