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RNA velocity exploits the temporal information contained in spliced and
unspliced RNA counts to infer transcriptional dynamics. Existing velocity
models often rely on coarse biophysical simplifications or numerical
approximations to solve the underlying ordinary differential equations
(ODEs), which can compromise accuracy in challenging settings, such as
complex or weak transcription rate changes across cellular trajectories.
Here we present cell2fate, aformulation of RNA velocity based on a
linearization of the velocity ODE, which allows solving a biophysically
more accurate model in a fully Bayesian fashion. As aresult, cell2fate
decomposes the RNA velocity solutions into modules, providing a

biophysical connection between RNA velocity and statistical dimensionality
reduction. We comprehensively benchmark cell2fate in real-world settings,
demonstrating enhanced interpretability and power to reconstruct complex

dynamics and weak dynamical signals in rare and mature cell types. Finally,
we apply cell2fate to the developing human brain, where we spatially map
RNA velocity modules onto the tissue architecture, connecting the spatial

organization of tissues with temporal dynamics of transcription.

The concept of ‘RNA velocity’, which involves inferring transcrip-
tional dynamics from spliced and unspliced counts in single-cell RNA
sequencing (scRNA-seq), has displayed notable potential . The first
implementations of RNA velocity models' have undergone an evo-
lution of conceptual and technical refinements, including improved
parameter inference®” as well as the use of numerical approaches®*™°
tosolve the underlying differential equations. However, these existing
refinements are bound to tradeoffs between either introducing coarse
biophysical approximations'>>""2 or relying on extensive numerical
approximations®*'°. Hence, the fundamental challenge remains to
define a mathematically sound framework that allows for capturing
realistic transcriptional dynamics while retaining computational and
numerical tractability.

To address the aforementioned limitations, we present cell2fate,
a fully Bayesian model of RNA velocity based on a more realistic bio-
physical model of complex transcription dynamics. Cell2fate employs
linearization to decompose differential equations describing complex

transcriptional patterns, suchas transcriptional boosts, into tractable
components that can be solved analytically. By doing so, the modelis at
the sametime expressive, interpretable and computationally efficient.
The approach to decompose the velocity problem into components
also provides a connection between RNA velocity and dimensionality
reduction using a biophysical solution.

We assess and benchmark cell2fate in the context of different
real-world settings, demonstrating its ability to capture complex
dynamics and weak dynamical signals in rare and mature cell types.
Finally, we show how cell2fate canbe combined with spatial transcrip-
tomics, thereby connecting transcriptional dynamics to their spatial
tissue environment.

Results

The cell2fate model

Cell2fate builds on established concepts for RNA velocity"?, employing
adynamical modelto explainvariationinspliced (s) and unspliced (u)
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read counts forindividual genes and cells (Fig. 1a), which can be defined
intwo coupled ODEs:
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Here, a, B, y denote the transcription, splicing and degradation
rates for different genes g. Solving the ODEs for u and s and fitting the
equations to observed counts allows estimation of the unknown rate
parameters, which canthen be substituted into equation (2) to obtain

therate of changein spliced countsineach cell, Z—j, whichinturngives

rise to whatis commonly referred to as ‘RNA velocity’ (ref.1). Animpor-
tant challenge for RNA velocity models is that transcription rates asa
function of differentiation time (a,(t)) can be complex and nonlinear,
reflecting theimplicit dependency on active transcription factor (TF)
abundance in the nucleus®, yet the integral of the transcription rate
function ag(t) needs to remain tractable to allow the ODEs to be solved
efficiently. Asa consequence, existing methods either assume simpli-
fied stepwise functions for a,(t) (refs.1,2,5,7) or they resort to numerical
approximations to solve the ODE**'° (Supplementary Notes and Sup-
plementary Fig. 3).

In cell2fate, we use an expansion of the derivative of the transcrip-
tionrate in terms of individually integrable basis functions, which we
refer to as linearization in the following:

M
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M
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We term each basis function amodule, denoted by a subscript m.
Subscriptidenotes the state of amodule (ON or OFF). &,,;is the target
transcription rate of a module, which takes on nonzero values for all
genes, when the module is in the ON state (Fig. 1b, bottom right). A,;
istherateat which thetargettranscriptionrateisreached, and the state
i depends on switch times T, on/ T, 0 ON a cell-specific timescale T,
(Fig.1b, top). This choice of basis functions allows for each individual
ODE as well as their total sum to be solved analytically (Methods and
Supplementary Notes). The parameters T, on/ Trnore Ami and T, are
shared across allgenes, which vastly reduces the number of parameters
that need to be estimated compared to existing models yet still pro-
vides gene-specific transcription rates a .

In addition to being appealing for computational reasons, the
linearization also provides a biophysical connection between RNA
velocity and statistical dimensionality reduction. This link becomes
apparent when casting the linearization as amixed membership model,
in which transcription rates, RNA velocity and spliced and unspliced
countsof each gene are governed by alinear combination of Mmodules
(Methods and Fig. 1b). The mixing coefficients canthenbeinterpreted
analogously to gene loadings of factor analysis or principal-component
analysis. Mechanistically, modules canbeinterpreted as approximating
the transcriptionrate changesinduced by all active regulatory proteins
as a small set of independent effects that are each valid within time
windows defined by T, on/ T orr

Cell2fateis afully Bayesianmodel that s fit to raw cell-level counts
asinput,anditincludesaseries of refinements to account for technical
sources of variation, including overdispersion, variation in detection
sensitivity of spliced and unspliced RNA molecules, ambient RNA and
known batches (Methods). A hierarchical prior structure achieves
efficient regularization of model parameters while sharing evidence
strength across genes (Methods). The model is implemented in the
probabilistic programming language Pyro and fit using Pyro’s sto-
chasticvariationalinference framework using a customized variational

distribution structure to account for dependencies between model
parameters (Methods). The software implementation comes with
guidelines and heuristics to determine hyperparameters such as the
number of modules (Methods), and it builds on scvi-tools® to facilitate
itsintegration in existing workflows.

Improved predictions of cell fates and transcription rates

To benchmark the performance of cell2fate, we compared the model
to existing RNA velocity methods by assessing the consistency of esti-
mated cell fate trajectories with prior knowledge. Briefly, we consid-
ered the cross-boundary directional correctness (CBDir) metric to
benchmark alternative models, thereby scoring the consistency of
transition probabilities at the boundary between cell clusters with
known transitions® (Methods).

We considered ten RNA velocity methods spanning different
model classes and approaches for parameter inference (Table 1 and
Methods). Allmethods were applied to five scRNA-seq datasets, includ-
ing widely used benchmark datasets such as the developing mouse
dentate gyrus'® and pancreas” (Supplementary Fig. 1). To test the ability
of different methods to resolve complex transcriptional dynamics,
we also examined mouse erythroid maturation'™ and human bone
marrow": two datasets that feature multiple transcriptional boosts
across cellular trajectories™. Finally, we considered a mouse bone
marrow dataset with markedly low unique molecular identifier (UMI)
counts’, thereby assessing the extent to which these models cope with
low-coverage data.

On average, across all five datasets, cell2fate achieved the best
CBDir scores. More importantly, cell2fate inferred the correct direc-
tionality of cell fate transitionsin all datasets, whereas all other meth-
ods, with the notable exception of pyroVelocity_model2, inferred
reverse-order dynamicsinatleast one benchmark setting (correspond-
ingto negative CBDir values). Inspecting the benchmarking results, we
couldattribute the performance of cell2fate to overcoming two major
challenges as elaborated below.

First, cell2fate provided sufficient statistical power to identify cor-
rect velocity flows from subtle transcriptional dynamics. For example,
in the mouse dentate gyrus dataset, other methods failed to resolve
the late maturation trajectory of granule neurons, thus incorrectly
inferring that mature cells transitioned into their immature counter-
parts (Fig. 2b, blue inset boxes and Supplementary Fig. 2). The same
result was observed when applying CellRank?’ to the velocity estimates
instead of uniform manifold approximation and projection (UMAP),
indicating that only cell2fate could resolve the trajectory toward
mature granule neurons (Supplementary Figs. 3 and 4).

Second, cell2fate correctly reconstructs complex transcriptional
dynamics. In the mouse erythroid maturation datasets, the model
resolved the correct cell trajectories, whereas other models tended to
perform poorly (Fig. 2c and Supplementary Fig. 5). Previous analysis'®,
based on the visualinspection of spliced and unspliced counts across
manually annotated cell clusters, has provided evidence that mouse
erythroid lineage formation features many ‘multi-rate kinetic’ genes
such as Hba-x and Nudt4 that display coordinated changes in tran-
scription rates across the cell maturation trajectory'®. Consistently,
cell2fate recapitulated the stepwise transcriptional rate boosts in
these multi-rate kinetic genes™ (Fig. 2d, turquoise line). By contrast,
other methods, such as pyroVelocity_model2, canonly predict asingle
nonzero transcription rate, due to their simpler underlying dynami-
cal model (Fig. 2d, green line), results that we again confirmed using
CellRank (Supplementary Figs. 6 and 7).

Asanalternative metric to CBDir, we also assessed concordance of
the estimated time differences between clusters with prior knowledge
(Supplementary Table 8), and we compared time outputs to known
developmental ages of different mouse samples (Supplementary Figs. 8
and 9); these alternative metrics and benchmarks confirmed the per-
formance benefits of cell2fate. Notably, granule neuron subclusters
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Fig. 1| Cell2fate model overview. a-d, Cell2fate allows inferring complex and
subtle transcriptional dynamics (a) by modeling gene-specific transcription rates
(b) using asmaller number of independent modules with simple dynamics that
also give rise to amodular structure in RNA velocity (c) and counts (d). A denotes

therate of module activation (ON) or deactivation (OFF). The superscript ‘biol’
denotes that counts (zand s) do not include technical factors of variation, such as
sequencing depth.
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Table 1| Summary of RNA velocity model versions and
parameter settings used in benchmark

Model Version Parameter settings

scVelo_dynamical 0.25 n_jobs=8

scVelo_stochastic 0.2.5 n_jobs=8

pyroVelocity_modell 0.1.0 batch_size=4,000, use_gpu=0, cell_
state="state_info’, include_prior=True,
offset=False, library_size=True, patient_
improve=1x10"%, model_type=‘auto’,
guide_type="auto_tO_constraint’,
train_size=1.0

veloVAE N/A tmax=20, dim_z=5, device="cuda:0’

UniTVelo_ 0.25 R2_ADJUST=True, IROOT=None FIT_

independent OPTION="2', GPU=0, vgenes = ‘offset’

UniTVelo_unified 0.2.5 R2_ADJUST=True, IROOT=None FIT_
OPTION="1, GPU=0, vgenes="offset’

DeepVelo 0.2.5-rc1 deepVelo.Constants.default_configs

pyroVelocity_ 0.1.0 batch_size=4,000, use_gpu=0, cell_

model2 state="state_info’, include_prior=True,
offset=False, library_size=True, patient_
improve=1x10"%, model_type=‘auto’,
guide_type="auto_tO_constraint’,
train_size=1.0

VeloVI 011 N/A

N/A in the ‘Version’ column means that a package did not have a version number associated
with it on github. N/A in the ‘Parameter settings’ column means that a method did not require
any additional parameter inputs other than the default settings.

with higher cell2fate estimated time contained more cells from the
later developmental ages (Supplementary Fig. 8b), validating cell2fate
estimates. Alternative methods as well as standard diffusion pseudo-
time analysis did not resolve this granule neuron maturation trajectory
(Supplementary Figs. 8c and 10). Furthermore, cell2fate was robust to
changes in the assumptions on prior distributions (Supplementary
Fig.11), and we confirmed the ability of the model to estimate ground
truth dynamical rates when applying the model to semisynthetic data
(Supplementary Fig.12). Finally, we note that, while cell2fate has higher
computational requirements than some existing methods, the com-
putational requirements of the model are aligned with alternatives so
that cell2fate can bereadily applied to larger datasets (Supplementary
Tables 6 and 7 and Supplementary Fig. 13).

We note that cell2fate’s cell-specific timescale**” (Fig. 1a,b) pro-
vides two additional use cases that can help to gain deeper insights.
First, it aids the identification of cell lineage progression and distinct
cell lineages. For example, in the mouse dentate gyrus dataset, gran-
ule neurons and astrocytes were assigned markedly disconnected
time points, witholigodendrocytes occupying amid-time point range
(Fig. 2e, left), consistent with the distinct lineage origins of these three
celltypes'. By contrast, in the mouse erythroid maturation dataset, a
single lineage with a single connected time range is identified (Fig. 2e,
right). Second, inspecting the Bayesian posterior®” of the cell-specific
time provides a principled measure of confidence in the RNA veloc-
ity values across and within datasets. In both datasets mentioned
above, the coefficient of variation (CV) of the posterior distribution
ofindividual cell times was consistently estimated to be close to zero,
indicating low uncertainty (Fig. 2e, bottom). By contrast, cell2fate
applied to a steady-state dataset of peripheral blood mononuclear
cells”,inwhich no consistent transcriptional dynamics are expected”,
results in confidence estimates with a CV close to 1, indicating high
uncertainty (Fig. 2f). The posterior uncertainties can also be used to
estimate confidencelevelsinindividual transitions. Todo so, cell2fate
implements a heuristic confidence score based on the fraction of pos-
terior samples from the cell-specific time inone cluster that are higher
thanthe 90th percentile of samples from another cluster. This heuristic

correlates well with the CBDir score of the corresponding transitions
(p=0.56), indicating thatitis well calibrated (Supplementary Fig.14).
Hence, the posterior of cell-specific time can serve as quality control
to assess wWhether cell2fate identifies meaningful dynamics in a given
dataset.

In sum, our benchmark demonstrates cell2fate’s enhanced sta-
tistical power to estimate cell trajectories and resolve complex tran-
scriptional dynamics and the ability to quantify uncertainty in velocity
estimates.

RNA velocity modules map fine stages of late cell maturation
Cell2fate modules are sequentially activated gene expression pro-
grams over time. Given their biophysical foundations in transcriptional
kinetics, we expect that RNA velocity modules can provide a more
granular characterization of dynamic processes during cellular dif-
ferentiation than conventional dimensionality reduction techniques
that lack amechanistic basis, such as matrix factorization or clustering.
In addition, cell2fate comes with a suite of downstream analysis and
visualization tools, enabling users to explore dynamic processes and
derive biological insights.

To demonstrate the cell2fate toolkit, we considered the mouse
brain single-cell dataset included as part of the benchmarking study
(Fig.2b), profiling the dentate gyrus regionin the hippocampusacross
two developmental stages'®. In addition to early differentiation of neu-
rons and astrocytes fromneural progenitors, this dataset covers the late
maturation trajectory of granule neurons (that is, the late differentia-
tion after theimmature neuron stage), a critical process thatis however
not well understood, and, more generally, it is unknown whether this
late maturation process unfolds across successive transcriptional
stages. Previous RNA velocity methods applied to this dataset™* were
able to distinguish neuronal versus astrocyte lineage trajectories;
however, the correct trajectory for the most mature granule neurons
could not be resolved (Fig. 2b).

Cell2fate applied to this dataset revealed 16 distinct RNA velocity
modules (Supplementary Fig. 15), capturing all the expected cell tra-
jectories, with the dominant lineage correspondingto granule neuron
differentiation and maturation stemming from neural intermediate
progenitor cells (nIPCs), neuroblasts and immature neurons. Radial
glial-like progenitor cells are largely committed to astrocytes (Fig. 3a),
asevidentboth from cell2fate’s time estimates and CellRank fate prob-
abilities (Supplementary Fig. 16). We also observed that mossy cells,
another neuronal population in the dentate gyrus, were assigned to
the middle stages of the granule neuron trajectory. While mossy cells
are thought to have different lineage origins, their transcriptional
development is highly similar to that of granule neurons™.

To explore the dynamics of neuronal differentiation in greater
depth, we used the fitted cell2fate model to estimate the total spliced
transcript abundance for each of the nine granule neuron lineage
modulesinindividual cells across the inferred time (Fig. 3d, top). This
analysisidentified the successive induction of modules across the early
differentiation of radial glia into nIPCs, neuroblasts and immature
neurons (modules 1-3). Strikingly, cell2fate also recovered dynamics
in mature granule neurons, explained by six modules (modules 4-9)
that are sequentially activated and temporally overlap across mature
granule neurons, thereby finely dissecting the late maturation of these
cells into distinct transcriptional windows (Fig. 3d). The model also
correctly identified a temporal gap between immature and mature
granule neurons (Fig. 3d), which is consistent with prior expectations'.
The cell2fate visualization tool complements ¢-distributed stochastic
neighbor embedding or UMAP by providing dynamicinsights anchored
on estimated differentiation time, and it can also visualize additional
metadatasuchas cell type annotations or developmental age (Fig. 3d,
bottom two panels).

The total spliced count estimates can also be used to visualize
the dynamics of RNA velocity modules across cells, for example, on a
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conventional UMAP plot (Fig. 3b). The activation of different modules
per cell canbeinspected, similar to the factor activity in conventional
matrix factorization. We also compared these module activation esti-
mates to conventional factor analysis and clustering methods. Briefly,

multi-omics factor analysis (MOFA)* yielded factors that captured
complementary sources of variation, with activity profiles that were
temporally more diffuse across the differentiation trajectory. Spe-
cifically, these factors did not stratify late granule neuron maturation
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(Fig.3band Supplementary Fig.17). We also observed overall low cor-
relation between cell2fate module and MOFA factor gene loadings,
particularly for the late neuronal maturation modules 4-9 (Supple-
mentary Fig.18). Similarly, Leiden clustering of the scRNA-seq dataset
at different resolutions identified clusters that were not aligned with
neuronal maturation (Fig. 3b and Supplementary Fig.19). Collectively,
these observations indicate that cell2fate captures complementary
aspects of variation compared to existing decomposition methods
and is well suited to conduct granular dissection of granule neuron
maturation.

Beyond the activity of modules, the dynamics can be further clas-
sified into states withineach cell, based on whether they are increasing
or decreasingin expression (Fig. 3c and Methods). Both quantities are
shown in Fig. 3e,f for granule neuron differentiation. The additional
dynamic information in this visualization shows, for example, that
module 9 has not reached asteady state, implying that granule neuron
maturation continues beyond the time range captured in this dataset.

Finally, we examined to what extent RNA velocity modules can
provide deeper insights into the late stages of granule neuron differ-
entiation. We ranked genes by how much of their transcription rate
is explained by each module and used top genes as ‘module mark-
ers’ (Fig. 3g and Supplementary Fig. 20). We identified Rbm24, Tafal
(Fam19al) and Sptb (module 4) and Pakap (Palm2), Pdzd2 and Usp19
(module 5) as markers switched on in immature granule neurons
(Fig. 3g and Supplementary Fig. 20). By contrast, Fst, Rapgef5 and
MoxdI (module 6), Prr16, Kdm5d and Rpa3 (module 7) and Rgs2, Nudt13
and 1700048020Rik (module 8) provide markers of late granule neuron
maturation stages (Fig. 3g). Fami9al has been reported to suppress
neural stem cell maintenance and promote differentiation?*, consist-
ent with its expression pattern in maturing granule neurons. Rgs2is
dynamically expressed during neuronal activity? and involved in syn-
aptic plasticity”, consistent with its late induction in module 8. Apart
from these two genes, the marker genes reported here have not been
functionally investigated in granule neurons or brain development
to our knowledge. We further intersected the top 30 markers of each
module with a set of 30 Alzheimer’s risk genes®® and 250 autism spec-
trum disorder risk genes®**°, which highlighted late granule neuron
maturation module 8, where the Alzheimer’s associated gene Trappc6a
and the autism-associated genes Kdmé6a and Nr4a2 were among the
markers (Supplementary Table 9). These results highlight that cell2fate
canlead to new biological insights, eveninawidely characterized cell
lineage like granule neurons.

Additionally, we canextract top module marker genes that are TFs
as‘module TFs’ (Fig.3h). Moving on to suchmodule TFs, Zmat4 (module
6) and Tfam (module 8) are enriched in late granule neuron matura-
tion stages (Fig. 3h). Zmat4 has been reported as upregulated in the
auditory cortex of young mice at postnatal day 7 compared to adults™,
while Tfam knockout results inimmature neuronal phenotypes™. Yet
their roles in granule neuron differentiation have not been studied to
date. We also find that genes with putative promoter sequences that
are most likely to be bound by the top 20 module TFs, as predicted by
the ProBound algorithm?, are more frequently among the top 300
module genes than those least likely to be bound by those TFs (Sup-
plementary Fig. 21). These TFs provide putative candidate regulators
of late granule neuron differentiation.

In sum, our results demonstrate the great interpretability and
statistical power of cell2fate’s module decomposition for scRNA-seq
datasets tofinely dissect cellular processes and suggest that late gran-
ule neuron maturation is composed of distinct stages.

Spatial mapping of RNA velocity modules

Temporal biological processes are often spatially organized in tissues.
For example, cell differentiation and migration are often coupled,
with cells associating with distinct spatial signaling microenviron-
ments throughout their differentiation trajectories. Here, we sought

tolink the temporalinformation captured by cell2fate to spatial tissue
organization by mapping RNA velocity modules in a newly generated
spatial transcriptomics dataset of human brain development (Fig. 4a).

Wefocused onthe fetal human cerebral cortex inwhich excitatory
neuron maturation follows a highly stereotyped trajectory through
space and time**. Neural progenitors termed radial glia and inter-
mediate progenitors reside in cortical germinal zones, where they
sequentially giverise to distinct neuronal subtypes that subsequently
migrate out to the deep and upper layers of the cortical plate across
their maturation (Fig. 4b). Deep layer-residing neurons (DLn) areborn
before upper-layer neurons (ULn) in early gestation; hence DLn are
relatively more mature than ULn by midgestation (Fig. 4b). Thus, the
maturation state and spatial location of cortical excitatory neurons
are tightly linked.

To examine cellular differentiation trajectories in the human
cortex, we initially performed single-nucleus RNA-sequencing
(snRNA-seq) profiling (10x version 3.0) of one donor at midgestation.
We then followed standard snRNA-seq processing workflows (Meth-
ods) to cluster cells and annotated cell types using markers from the
literature®. We annotated distinct neural progenitors (radial glialand
intermediate progenitor cells) as well as excitatory neuron populations
atdifferent stages of maturation (Fig. 4c). As expected, mature neurons
expressed DLn markers, whereas newborn and immature neurons
showed enriched expression of ULn markers (Supplementary Fig. 22).
We also annotated inhibitory neurons and glial cell types but excluded
them from the subsequent excitatory neuron trajectory analysis.

Wethen applied cell2fate to this human brain snRNA-seq dataset
and observed the expected excitatory neuronal differentiation tra-
jectory from neural progenitors to newborn, immature and mature
neurons (Fig. 4c). The RNA velocity modules dissected the neuronal
trajectory into finer-grained maturation stages, identifying seven
sequentially activated and temporally overlapping modules through-
outimmature and mature neurons (Fig. 4d and Supplementary Fig. 23).
While these modules contained some DLn and ULn cell type markers,
they also included many genes that are widely expressed across all
excitatory neurons in the adult human cortex*®, such as PSMC3, KRR1
and BMPER (Supplementary Figs. 24 and 25). This suggests that the
modules partially identify aneuronal maturation trajectory common
tobothDLnand ULn.

Incontrast to cell2fate, other RNA velocity methods such asscVelo
were not able to accurately identify velocity flow in mature neurons
(Supplementary Fig. 26). Additionally, the integrated measurement
model of cell2fate allowed us to factor in different detection prob-
abilities for spliced and unspliced counts and correct batch effects in
our human brain snRNA-seq dataset (Supplementary Fig. 27), which
is crucial for estimating true transcriptional dynamics from observed
counts (Methods).

To spatially map our RNA velocity modules in the developing
human cortex, we performed Visium spatial RNA-seq profiling (10x
CytAssist) of one cortical tissue section from an age-matched donor
(Fig. 4b). As the Visium assay offers coarse spatial resolution and pro-
files multiple cells at each tissue location (that is, Visium spot), we
used the cell2location algorithm® to deconvolve the abundance of
RNA velocity modules across spatial data. We used the steady-state
expression counts of each module as reference gene expression sig-
natures and then applied the standard cell2location workflow to infer
the abundance of each module signature across Visium spots (Fig. 4a
and the Methods).

The RNA velocity modules showed expected patterns of spatial
mapping across the human cortex (Fig. 4e-f and Supplementary
Fig. 28). Progenitor modules spatially mapped to germinal zones
(Fig. 4e), while neuronal modules primarily mapped to the cortical
plate (Fig.4e and Supplementary Fig.28). The fine spatial locations of
neuronal modules were consistent with their maturationstate (Fig. 4f).
Theimmature ULn module (0) mapped to the upper cortical layers as
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well as the subplate-intermediate zone that immature neurons pass
through during their migration to the cortical plate®. The early mature
ULn module (2) was exclusively mapped to the upper cortical layers.
By contrast, the late mature DLn module (5) specifically mapped to
deep cortical layers.

In sum, our approach provides a workflow to spatially resolve
complex cell trajectories through tissues.

Discussion

Here, we present cell2fate, a Bayesian model of RNA velocity that is
capable of inferring transcriptional dynamics in settings of complex
changes or weak signals in rare and mature cell types. A core innova-
tion of cell2fateis aformulation of the velocity problem that builds on
linearization, which allows for solving a biophysically more accurate
model using analytically tractable linearized components. Another
benefit of this formulation is that these linear components can be
inspected as interpretable RNA velocity modules. This provides for a
directbiophysical connectionbetween cell2fate and statistical dimen-
sionality reduction methods. Weiillustrated this feature by character-
izing late maturation trajectories in granule neurons that have been
elusive with other methods. Furthermore, RNA velocity modules can
beusedtolocate differentiation trajectoriesin spatial transcriptomics
data. We exemplified this in the developing human brain where the RNA
velocity modules of neuronal differentiation showed a high degree of
spatial organization.

Despite cell2fate’simproved biophysical accuracy, the model still
makes simplifying assumptions, such as a constant degradation rate
and no stochastic bifurcations. However, the concepts proposed in
cell2fate are general and giverise to several extensions that can further
increase the biophysical accuracy of the model in the future without
resorting to numerical approximations. This includes RNA velocity
models with cell-specific splicing and degradation rates, stochastic
rates at lineage-branching points and causal connections between
transcription rates at different time points, equivalent todynamic gene
regulatory networks (Supplementary Notes). In the long term, dynami-
cal models should also include the effects of cell-cell interactions,
based on signaling molecules measured with spatial transcriptomics.
An immediate step toward this goal would be combining RNA veloc-
ity module mapping with spatial cell-cell interaction tools, such as
NCEM?¥, which could identify putative interactions that drive specific
steps of a differentiation process.

Online content

Any methods, additional references, Nature Portfolio reporting
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author
contributions and competing interests; and statements of data
and code availability are available at https://doi.org/10.1038/
$41592-025-02608-3.
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Methods
A complete description of the cell2fate model and a comparison with
other methods can be foundin the Supplementary Notes.

Generative model for cell2fate
Equations (1) to (3) give rise to these new RNA velocity equations that
cell2fate is based on:

da, da, M
g 2 —= Z /Imi(amgi - amg) (4)
m= m=1
du, Y du,,
@ mZ::l dr Z (tmg — Bglimg) S
ds;, M dsy,
E = mzzl dr Z(ﬂgumg Vgsmg) (6)

Subscripts g and m correspond to genes and modules, respec-
tively. &, is the target transcription rate of each module thatis O in
the OFF state (i = OFF) and nonzero in the ON state (i = ON). The target
transcription rate is reached at arate A,,. @, 5, y denote the transcrip-
tion, splicing and degradation rates, similar to other RNA velocity
models. These RNA velocity equations can be solved analytically (Sup-
plementary Notes1.3and 3.1) to give equations for the expected spliced
counts s, and unspliced counts u,, in each cell (Supplementary Note
1.3, equations (15) and (16)). We call these count values ‘biological’
expectation values, denoted by ngj = (ucg S¢g), because they represent
the expected countsin the absence of measurement effects. Theindex
Jjdenotes maturity of RNA transcripts (spliced/unspliced). Toaccount
for measurement effects and obtain ‘measurement’ expectationvalues,

ng ,we transform xB as follows:

xg/ = cgj(HceSegj +Xcng)' 7)
Here, H.. denotes a one-hot categorical assignment of cells to experi-
mental batches, [; describes differences in detection efficiency (for
example, sequencing depth, read alignment and quantification) of
genesacross cells and s,,; models ambient RNA (‘soup’) for each gene
ineachbatch. These ‘measurement’ expectation values are then used
to parameterize the mean of a negative binomial (NB) observation
model of the observed raw count values X ;= (U, S.,):

XCgJ~NB(u Xpg O = agj) (8)

Here, a,; are NB overdispersion parameters for each gene, separate
for spliced and unspliced counts. All parameters have hierarchical
prior distributions (Supplementary Note 1.6) and are inferred using
stochastic variationalinference in the Pyro probabilistic programming
framework*’ (Supplementary Note 1.8).

Downstream analysis of cell2fate

Computation of the RNA velocity graph. We followed the procedure
proposed in the scVelo package for computing a cell-cell transition
probability graph from RNA velocity estimates?, with the modification
of averaging the velocity graph over 100 posterior velocity samples,
so that noisy gene velocities with high posterior uncertainty have less
weight in estimating transition probabilities. Optionally, the original
procedure can also be followed exactly by computing the velocity
graphwithmean velocity estimates from our method, using the original
functionin the scVelo Python package.

Computation of module activation. We calculate the module acti-
vation, which we defined as the total spliced counts produced by a
module in a cell, by substituting posterior parameter values into the

equations that capture the time evolution of spliced counts. Module
activation canthen be plotted over time by plotting the posterior time
of each cell onthexaxis and the calculated module activation of each
module on the yaxis.

Calculation of normalized module activation and state. Module
normalized activation denotes the number of counts produced by a
module divided by the steady-state counts of the module (Fig. 3d, gray
line), whichis calculated by setting time to infinity inthe equations that
capture the time evolution of spliced counts. The module state is
defined as OFF if the cell time is smaller than the switch-on time of the
module or the module’s normalized activation is below 0.05 (Fig. 3d,
gray) and as ONif its normalized activationis above 0.95 (Fig. 3d, bright
green). Otherwise, a module is in either the induction or repression
state depending on whether the inferred cell time is below or above
the switch-off time (Fig. 3d, light green or orange).

Benchmarking of RNA velocity methods

Processing of datasets. We used the 3,000 most variable genes with
atleast 20 detected counts for all results in the paper. In addition,
we applied the standard preprocessing pipeline suggested in the
main scVelo tutorial (on mouse pancreas development), except for
Pyro-Velocity and cell2fate, which do not require preprocessing. This
included total count normalization, log transformation and calculating
mean expression among the 30 nearest neighbors in 30-component
PCA space (‘kNN-smoothing’).

Application of velocity models

We followed online tutorials based on the mouse pancreas develop-
ment dataset for all methods and then used the same analysis pipeline
to produce the benchmarking results in this paper. We summarize
parameter settings for all methods in Table 1 and also include the
method version when available. For cell2fate, we kept all training and
model parameters at their default values.

Definition of ground truth cell state transitions. For the mouse bone
marrow dataset, we defined the following ground truth cluster tran-
sitions: ‘dividing’ to ‘progenitors’ to ‘activating’. For the remaining
datasets, we used the ground truth transitions from the UniTVelo RNA
velocity study that also used these datasets for benchmarking*.. All
ground truth transitions are included in Supplementary Tables 1-5.

Benchmarking metric. We calculated the CBDir, using the functions
provided by the UniTVelo Python package*. The following is an expla-
nation of the metric from the UniTVelo publication: ‘CBDir measures
the correctness of transitions from a source cluster to target cluster
using boundary cells given ground truth. Here boundary of source
cluster refers to cells in that cluster that are neighbors of the target
cluster and vice versa. Boundary cells are used because they reflects
the biological development in a short period of time and CBDir is
calculated via

. _ 1 Ve (Xer =Xc)
CBDIr(c) = Lo LeecoM© ol ©
Norm = |c’eC4 n N(c)|,

where C4issets of cellsintarget cluster A, N(c) stands for the neighbor-
ing cells of specified cell c. v. and x. are the low-dimensional vectors
representing computed velocity and positions of cell c. Therefore,
x., — x.isthe displacement in space during the short period of time’.

CellRank analysis. For the dentate gyrus dataset, we ran CellRank
with default parameters and computed fate probabilities for the
astrocyte, oligodendrocyte and granule mature states, if the method
identified them as macrostates. When using the default parameter
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n_states = (4,12), VeloVl and VeloVAE returned an error: ‘ValueError:
Clustering into 12 clusters will split complex conjugate eigenvalues.
Request one cluster more or less’; so we set n_states = (4, 11), which
ran successfully. For cellDancer and VeloVAE, we also obtained the
followingerror:‘[...] value(s) do not sum to 1 (rtol=1e-3). Try decreas-
ing the tolerance as ‘tol = ..., specifying a preconditioner as ‘precon-
ditioner=... or use a direct solver as ‘solver = ‘direct” if the matrix is
small’. This error could not be resolved, even after following the steps
inthe error message and the advice found regarding relevant GitHub
issues. For the erythroid maturation dataset, we also ran CellRank with
default parameters and computed fate probabilities both toward the
progenitor 1state and the erythroid 3 state.

Simulation benchmark. First, we fit cell2fate to the dentate gyrus
dataset. Next, we generated datafrom the cell2fate generative model,
keepingall parameters at their fitted values except one chosen param-
eter that we multiplied with 0.25, 0.5, 1, 2 or 4. We investigated four
biological and technical parameters in this way: the splicing rate, the
degradation rate, the detection probability of transcripts and the NB
overdispersion parameter. We then fit cell2fate to this simulated data
and calculated the correlation of inferred splicing and degradation
rate values to the known ground truth (as RNA velocity is a function of
splicing and degradation rates).

Time and memory requirements. We measured the time requirements
for all methods using the ‘time’ Python package. The start point for
time measurements was placed right before data preprocessing began,
andthe end point was placed right after velocity values were obtained.
We measured memory requirements by running either the ‘htop’ (for
CPU-based methods) or the ‘nvidia-smi’ command (for GPU-based
methods) every 10 s for up to 2 min and recording the highest value.

Comparison of decomposition methods on the dentate gyrus
dataset

Application of cell2fate. Following the benchmarking runon dentate
gyrus data, we applied the downstream analysis methods, described
above in Downstream analysis, to calculate and plot module activa-
tions and states.

Application of multi-omics factor analysis. We used the 3,000 most
variable genes with at least 20 detected counts as input, identical to
the cell2fate analysis. We limited the analysis to clusters involved in
the neurondifferentiation trajectory (radial glialike, nIPC, neuroblast,
granuleimmature, granule mature). We added spliced and unspliced
counts and then normalized, log transformed and scaled the data
matrix using the respective scanpy functions. We ran MOFA using a
Gaussianlikelihood and ten factors (the same number of factors found
by cell2fatein the relevant clusters). Further run options were spikeslab
weights = True, ard factors = True, ard weights = True.

ProBound algorithm. To produce Supplementary Fig. 29, we applied
the ProBound algorithm®. ProBound can predict the binding affin-
ity for most TFs to a user-supplied DNA sequence. We used the
refdata-cellranger-arc-mm10-2020-A-2.0.0 genome as a reference.
To obtain putative promoter sequences for each geneinthereference,
we extracted the DNA sequence 450 bp upstream and 149 bp down-
stream of the transcription start site of each gene. For each TF, we then
ranked genes based on the predicted ProBound binding affinity toits
putative transcription start site. We then used the top ten and bottom
ten binding targets of each TF to produce the results illustrated in
Supplementary Fig. 29.

Spatial integration of RNA velocity
Human tissue. Formalin-fixed paraffin-embedded (FFPE) blocks of
second-trimester human fetal brain were obtained from the MRC- and

Wellcome-funded Human Developmental Biology Resource (HDBR,
http://www.hdbr.org), with appropriate maternal written consent and
approval fromthe Fulham Research Ethics Committee (REC reference
18/L0O/0822) and the Newcastle & North Tyneside 1 Research Ethics
Committee (REC reference 18/NE/0290). The HDBR is regulated by
the UK Human Tissue Authority (http://www.hta.gov.uk) and oper-
ates in accordance with the relevant Human Tissue Authority Codes
of Practice.

Developing human brain single-nucleus library preparation and
sequencing. Single nuclei were isolated from frozen fetal brain tis-
sue according to a published protocol*. Briefly, tissue was Dounce
homogenized in homogenization buffer (250 mM sucrose, 25 mM
potassium chloride, 5 mM magnesium chloride, 10 mM Tris buffer,
pH8.0,1M1,4-dithiothreitol, 0.1% Triton X-100, 1x protease inhibitor,
0.4 U ' RNasin PlusRNase inhibitor, 0.2 U I SUPERase-In RNase inhibi-
tor) and filtered with a 40-um cell strainer. Debris was removed from
the filtrate via density centrifugation with 27% Percoll. All nucleiin a
batch were mixed in equal concentrations before droplet encapsula-
tion with the 10x Chromium Single Cell 3’ version 3.1kit. Libraries were
generated according to the manufacturer’s protocol (CG000204) and
single-index sequenced with cycles 28-8-91onaNovaSeq 6000 System
(Illumina) using a NovaSeq S4 flow cell.

Developing human brain Visium library preparation and sequenc-
ing. FFPE tissue sections (5 pm) were stained and imaged following the
10x Genomics Visium CytAssist user guide (CG000520). The following
times were used for the fetal brain tissue: hematoxylin, 3 min; bluing,
1 min; eosin, 1 min. After probe hybridization and ligation, a Visium
CytAssist instrument was used to transfer analytes from the glass slide
toaVisium CytAssist Spatial Gene Expression slide with a capture area
of 42.25 mm? Probe extension and library construction were carried
out following the standard Visium for FFPE workflow (CGO00495)
outside of the instrument. Libraries were sequenced with paired-end
dualindexing (28 cycles, read 1; ten cycles, i7; ten cycles, i5; 90 cycles,
read 2) on the Illumina-HTP NovaSeq 6000 System with paired-end
sequencinginan SP flow cell. The Loupe Browser was used to generate
the JSON file, and the Space Ranger pipeline version 2022.0705.1 (10x
Genomics) and the GRCh38-2020-A reference were used to process
FASTQfiles.

Developing human brain Visium and single-nucleus sequencing
count quantification, clustering and annotation. We quantified
counts using Space Ranger1.3.0 for the Visium dataand STARsolo with
CellRanger 3.02 for the single-nucleus data using GRCh38 version1.2.0
asareference. We applied CellBender to the single-nucleus total count
matrix (but not spliced and unspliced count matrices). We followed
the scanpy processing and clustering tutorial with default param-
eters (min_genes = 200, min_cells = 3, n_genes_by_counts < 2,500, pct_
counts mt <5), which involves removing cells and genes with low
UMI counts, followed by removal of cells with very high total counts
or mitochondrial generatio, total count normalization, log transforma-
tion, highly variable gene selection, data scaling, principal-component
analysis and finally Louvain clustering. Expression of cell type
marker genes taken from the single-cell atlas (Fig. 1f of Polioudakis
et al.**) was plotted for each cluster, based on which we annotated
the cluster identity. Clusters outside the excitatory neuron lineage
(oligodendrocytes, interneurons, microglia) were not considered for
further analysis.

Cell2location. We used the steady-state counts of each module as a
reference gene expression profile. This steady-state expression cor-
responds to the g, parameter of the generative model. We then ran
the cell2location method with default parameter settings (including
a=20).
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Data availability

Raw UMI counts and metadata in anndata format for all single-cell
and Visium data are available for download on this portal: https://
cell2fate.cog.sanger.ac.uk/browser.html. FASTQ files for the human
brain single-nucleus and Visium data are available on ENA under the
accession number PRJEB79988.

Code availability

The cell2fate packageis available for installation at this GitHub reposi-
tory: https://github.com/BayraktarLab/cell2fate. It is also available
on Zenodo*’: https://zenodo.org/records/13883214. Results from
the cell2fate method can be reproduced with the notebooks in this
repository: https://github.com/AlexanderAivazidis/cell2fate_note-
books. Benchmarking results for all methods as well as robustness
analysis and comparison to real developmental age were done with
notebooks inthis repository: https://github.com/AlexanderAivazidis/
fate_benchmarking.
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Software and code

Policy information about availability of computer code

Data collection  The single-nucleus RNAseq data was processed using the open-source StarSolo method, version 2.7.9a with the velocyto option enabled.
Available at: https://github.com/alexdobin/STAR/blob/master/docs/STARsolo.md

Data analysis Analysis of RNAseq data was performed with the cell2fate method available here:
https://github.com/BayraktarLab/cell2fate

Results from the cell2fate method can be reproduced with the notebooks in this repository:
github.com/AlexanderAivazidis/cell2fate_notebooks

Benchmarking results for all methods, as well as robustness analysis and comparison to real developmental age was done with notebooks in
this repository:

github.com/AlexanderAivazidis/fate_benchmarking

We used a computing environment with the following publically available python packages:

Name Version
_libgcc_mutex 0.1
_openmp_mutex 4.5
absl-py 1.2.0
aiohttp 3.8.1
aiosignal 1.2.0
anndata 0.8.0

appdirs 1.4.4
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argon2-cffi 21.3.0
argon2-cffi-bindings  21.2.0

arpack 3.7.0
asttokens 2.0.5
astunparse 1.6.3
async-timeout 4.0.2
attrs 22.1.0
backeall 0.2.0
beautifulsoup4 4.11.1
bioservices 1.10.0
blas 1.0

bleach 5.0.1
bottleneck 1.3.5
brotlipy 0.7.0
c-ares 1.18.1
ca-certificates 2022.9.14
cachetools 5.2.0
cell2fate 0.1a0
cell2location 0.1
certifi 2022.9.14
cffi 1.15.1
charset-normalizer 2.1.0
chex 0.1.4

click 8.1.3
colorama 0.4.5
colorlog 6.6.0
commonmark 0.9.1
cryptography 35.0.0
cycler 0.11.0
debugpy 1.6.2
decorator 5.1.1
defusedxml 0.7.1
dm-tree 0.1.7
docrep 0.3.2
easydev 0.12.0
einops 0.4.1
entrypoints 0.4
et-xmlfile 1.1.0
etils 0.6.0
executing 0.9.1
fastcluster 1.2.6
fastjsonschema 2.16.1
flatbuffers 22.12.6
flax 0.5.0
fonttools 4.34.4
freetype 2.10.4
frozenlist 1.3.1
fsspec 2022.7.1
future 0.18.2
gast 0.4.0
gevent 21.8.0
glpk 4.65

gmp 6.2.1
google-auth 2.9.1
google-auth-oauthlib  0.4.6
google-pasta 0.2.0
greenlet 1.1.1
grequests 0.6.0
grpcio 1.47.0
gseapy 0.12.1
hSpy 3.7.0
htmlSlib 1.1

icu 58.2

idna 3.3

igraph 0.9.10

importlib-metadata 3.10.0
importlib-resources  5.9.0

intel-openmp 2021.4.0
iprogress 0.4
ipykernel 6.15.1
ipython 8.4.0
ipython-genutils 0.2.0
ipywidgets 7.7.1

jax 0.3.15

jaxlib 0.3.15

jedi 0.18.1
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jinja2 3.1.2

joblib 1.1.0
jpeg 9e
jsonschema 49.1
jupyter 1.0.0
jupyter-client 7.3.4
jupyter-console 6.4.4
jupyter-core 4.11.1

jupyterlab-pygments  0.2.2
jupyterlab-widgets 1.1.1

keras 2.11.0
kiwisolver 1.4.4
lcms2 2.12
Id_impl_linux-64 2.38
leidenalg 0.8.10
libblas 3.9.0
libcblas 3.9.0
libclang 14.0.6
libev 4.33

libffi 3.3
libgce-ng 12.1.0
libgfortran-ng 7.5.0
libgfortran4 7.5.0
libhwloc 2.8.0
liblapack 3.9.0
libpng 1.6.37
libstdcxx-ng 12.1.0
libtiff 4.2.0

libuv 1.40.0
libwebp-base 1.2.2
libxmI2 2.9.14
libxslt 1.1.35
libzlib 1.2.12
llvm-openmp 14.0.4
llvmlite 0.39.0
loompy 3.0.7
Ixml 4.9.1
lz4-c 1.9.3
markdown 3.3.4
markupsafe 2.1.1
matplotlib 3.5.2
matplotlib-base 3.4.3
matplotlib-inline 0.1.3
metis 5.1.0
mistune 0.8.4
mkl 2021.4.0
mkl-service 2.4.0
mkl_fft 1.3.1
mkl_random 1.2.2
mpfr 4.1.0
msgpack 1.0.4
multidict 6.0.2
multipledispatch 0.6.0
natsort 8.1.0
nbclient 0.6.6
nbconvert 6.5.0
nbformat 5.4.0
ncurses 6.3
nest-asyncio 1.5.5
networkx 2.8.5
notebook 6.4.12
numba 0.56.0
numexpr 2.8.3
numpy 1.21.4
numpy-groupies 0.9.17
numpyro 0.10.0
oauthlib 3.2.0
olefile 0.46
opencv-python 4.6.0.66
openpyxl 3.0.10
openss| 1.1.1q
opt-einsum 3.3.0
optax 0.1.3
packaging 21.3
pandas 1.4.2

pandocfilters 1.5.0
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parso 0.8.3
patsy 0.5.2
pexpect 4.8.0
pickleshare 0.7.5
pillow 9.2.0
pip 22.1.2

prometheus-client 0.14.1

prompt-toolkit 3.0.30
protobuf 3.19.6
psutil 5.9.1
ptyprocess 0.7.0
pure-eval 0.2.2
pyasnl 0.4.8
pyasnl-modules 0.2.8
pycparser 2.21
pydeprecate 0.3.1
pygments 2.12.0
pynndescent 0.5.7
pyopenss| 22.0.0
pyparsing 3.0.9
pyro-api 0.1.2
pyro-ppl 1.8.1
pyrsistent 0.18.1
pysocks 1.7.1
python 3.9.12
python-dateutil 2.8.2
python-graphviz 0.20.1
python-igraph 0.9.11
python_abi 3.9
pytorch-lightning 1.5.10
pytz 2022.1
pyyam| 6.0
pyzmq 23.2.0
gtconsole 5.4.0
qtpy 2.3.0
readline 8.1.2
requests 2.28.1

requests-oauthlib 1.3.1

requests_cache 0.4.13
rich 12.3.0

rsa 4.9

scanpy 1.9.1
scikit-learn 1.1.1
scipy 1.8.0
scvelo 0.2.4
scvi-tools 0.16.1
seaborn 0.11.2
send2trash 1.8.0
session-info 1.0.0
setuptools 59.5.0
Six 1.16.0
soupsieve 2.3.2.postl
sglite 3.39.0
stack-data 0.3.0
statsmodels 0.13.2
stdlib-list 0.8.0
suds-community 1.1.2
suitesparse 5.10.1
tbb 2021.5.0
tensorboard 2.11.0

tensorboard-data-server 0.6.1
tensorboard-plugin-wit  1.8.1

tensorflow

tensorflow-estimator
tensorflow-io-gcs-filesystem 0.28.0

2.11.0

termcolor 2.1.1
terminado 0.15.0
texttable 1.6.4
threadpoolctl 3.1.0
tinycss2 1.1.1
tk 8.6.12
toolz 0.12.0
torch 1.11.0
torchmetrics 0.9.3
tornado 6.2
tgdm 4.64.0
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traitlets 5.3.0

txnburst 0.0.0
typing-extensions 4.3.0 S
tzdata 2022a c
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zope.interface 5.4.0
zstd 1.4.9

Additional algorithms run in our study are listed in the following together with their version number:

scvelo_dynamical
v0.2.5
scvelo_stochastic
v0.2.5
pyroVelocity_modell
0.1.0
veloVAE

n.a.
UniTVelo_independent
0.2.5
UniTVelo_unified
0.2.5

DeepVelo
0.2.5-rc.1
pyroVelocity_model2
0.1.0
VeloVI
0.1.1

CellRank
v.2.0.6

MOFA
v0.1

ProBound

1.4.0

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Raw UMI counts and metadata in anndata format for all single cell and Visium data is available

for download on this portal: https://cell2fate.cog.sanger.ac.uk/browser.html

FASTQ files for the human brain single-nucleus and Visium data are available on ENA under this accession number: PRIEB79988.

Reference GRCh38 v1.2.0 that was used to process the FASTQ files is available for download here: https://www.ncbi.nlm.nih.gov/datasets/genome/
GCF_000001405.26/
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Reporting on sex and gender The sex was assigned as male by the Human Developmental Biology Resource, UCL, UK (REC 23/L0O/0312) from where the
second trimester human fetal brain tissue was obtained.

Population characteristics No further characteristics were provided.

Recruitment Human embryo and fetal samples were obtained from the MRC and Wellcome-funded Human Developmental Biology
Resource (HDBR, http:// www.hdbr.org), with appropriate maternal written consent and approval from the Fulham Research
Ethics Committee (REC reference 18/L0/0822) and Newcastle & North Tyneside 1 Research Ethics Committee (REC reference
18/NE/0290). The HDBR is regulated by the UK Human Tissue Authority (HTA; www.hta.gov.uk) and operates in accordance
with the relevant HTA Codes of Practice.

Ethics oversight Human embryo and fetal samples were obtained from the MRC and Wellcome-funded Human Developmental Biology
Resource (HDBR43, http:// www.hdbr.org), with appropriate maternal written consent and approval from the Newcastle and
North Tyneside NHS Health Authority Joint Ethics Committee (08/H0906/21+5). The HDBR is regulated by the UK Human
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Sample size No sample size calculation was performed, since we did not use a case control study design, so there were no comparisons between groups.
Instead we demonstrated our computational method on 5 public and 1 new dataset, for which Visium spatial transcriptomics and single-
nucleus RNA sequencing were applied to one tissue sample from the same donor.

Data exclusions  Data was excluded during quality control of the single-nucleus RNAseq data, using default recommended count thresholds in the scanpy
python processing pipeline: min_genes=200, min_cells=3, n_genes_by_counts = 2500, pct_counts_mt =5

Replication We did not replicate any experiments, since this is not generally needed for single-cell RNA sequencing, which is a very reproducible assay.
Randomization  There are no comparisons between experimental groups in our study hence no need for randomization.

Blinding There are no comparisons between experimental groups in our study hence no need for blinding.
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