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A computational pipeline for spatial 
mechano-transcriptomics
 

Adrien Hallou    1,2,3,9  , Ruiyang He    4,5,6,9  , Benjamin D. Simons    2,3,7 & 
Bianca Dumitrascu    6,8 

Advances in spatial profiling technologies are providing insights into how 
molecular programs are influenced by local signaling and environmental 
cues. However, cell fate specification and tissue patterning involve the 
interplay of biochemical and mechanical feedback. Here we develop 
a computational framework that enables the joint statistical analysis 
of transcriptional and mechanical signals in the context of spatial 
transcriptomics. To illustrate the application and utility of the approach, 
we use spatial transcriptomics data from the developing mouse embryo 
to infer the forces acting on individual cells, and use these results to 
identify mechanical, morphometric and gene expression signatures 
that are predictive of tissue compartment boundaries. In addition, we 
use geoadditive structural equation modeling to identify gene modules 
that predict the mechanical behavior of cells in an unbiased manner. This 
computational framework is easily generalized to other spatial profiling 
contexts, providing a generic scheme for exploring the interplay of 
biomolecular and mechanical cues in tissues.

The advent of single-cell profiling technologies has transformed our 
understanding of the mechanisms that control cell state transitions and 
lineage hierarchies. Through the development of computational and sta-
tistical methods, these approaches provide a window into the transcrip-
tional and epigenetic programs that control cell fate under normal and 
perturbed conditions. However, these programs do not act in isolation, 
but respond to environmental cues and collective cell behaviors, medi-
ated by reciprocal signaling networks as well as mechanical forces and 
their coupling through mechano-chemical feedback loops1–4. In recent 
years, the advent of spatial omics techniques5 has enabled the profiling 
of gene expression6,7, protein composition8 and chromatin accessibility9 
at single-cell resolution in whole embryos and tissue sections, opening a 
window on the correlation between cell state and spatial cues.

Despite their promise, spatial omics methods and associated com-
putational analysis pipelines currently struggle to integrate molecular 

profiling measures with interpretable cell morphology metrics and local 
mechanical forces. While high-throughput sequencing technologies 
such as Slide-seq10 enable coverage of the entire transcriptome, they are 
limited to supracellular spatial resolution and, as such, cannot recover 
such information. In contrast, in situ hybridization (ISH)-based methods 
such as seqFISH11,12 and MERFISH13,14, offer a more limited transcriptomic 
coverage, yet provide single-cell or even subcellular spatial resolution 
in addition to access to cell morphology. Indeed, immunostaining of 
transmembrane proteins allows segmentation of cell contours and 
extraction of whole-cell morphometric measures. Such cellular mor-
phologies have been used either alone, for cell-type classification and 
pseudotime inference15, or in combination with gene expression data, 
for cell-type clustering refinement16,17 and cross-modality prediction18.

However, computational frameworks for linking genomics to 
tissue-level mechanical signatures such as tension at cell–cell junctions, 

Received: 11 August 2023

Accepted: 3 February 2025

Published online: 17 March 2025

 Check for updates

1Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK. 2Gurdon Institute, University of Cambridge, Cambridge, UK. 3Cambridge Stem 
Cell Institute, University of Cambridge, Cambridge, UK. 4Department of Biomedical Engineering, Columbia University, New York City, NY, USA. 5New York 
Genome Center, New York City, NY, USA. 6Irving Institute for Cancer Dynamics, Columbia University, New York City, NY, USA. 7Department of Applied 
Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK. 8Department of Statistics, Columbia 
University, New York City, NY, USA. 9These authors contributed equally: Adrien Hallou, Ruiyang He.  e-mail: adrien.hallou@kennedy.ox.ac.uk;  
rh3194@columbia.edu; bmd2151@columbia.edu

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-025-02618-1
http://orcid.org/0000-0002-3162-7848
http://orcid.org/0009-0001-8215-8439
http://orcid.org/0000-0002-3875-7071
http://orcid.org/0000-0001-8328-2354
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-025-02618-1&domain=pdf
mailto:adrien.hallou@kennedy.ox.ac.uk
mailto:rh3194@columbia.edu
mailto:bmd2151@columbia.edu


Nature Methods | Volume 22 | April 2025 | 737–750 738

Article https://doi.org/10.1038/s41592-025-02618-1

mechanical force inference approach and to quantify the mechanical 
forces that act upon cells23 (Fig. 2b,c). To apply this method effectively, 
it is necessary to recover information on precise cellular shapes and 
physical cell–cell contacts, calling for high-quality image segmenta-
tion. Moreover, to fulfill the constraints of our inference method, 
fourfold vertices—junctions that are shared between four neighboring 
cells—must be reconciled and removed while cell edges must be con-
vex at vertices (Methods). The resulting spatial mask serves as input 
into an image-based mechanical force inference pipeline (Fig. 1a and  
Supplementary Fig. 1a).

Different algorithms exist for image-based force inference23. Here, 
we chose to implement the variational method of stress inference 
(VMSI) approach proposed by Noll et al.22. This algorithm uses a nonpla-
nar triangulation of junctional tensions to form a dual representation 
of the cell array geometry. A simultaneous fit of junctions with circular 
arcs then allows the inference of both tensions and cellular pressures 
up to a multiplicative and additive constant, respectively (Methods). 
In doing so, it exhibits both increased accuracy and robustness com-
pared with other force inference methods23, particularly when the 
pressure differential between adjacent cells is large. We benchmark 
and calibrate this variational method for mechanical force inference 
against a variety of optimizers, choices of hyperparameters in real 
data and simulations (Supplementary Fig. 1b–g), ensuring it is robust 
to perturbations and noise sources encountered in experimental data, 
and make it available as a Python package. Here, we have expanded the 
utility of the original mechanical stress inference method by providing 
improved quality control tools for the resolution of ‘invalid’ vertices 
and options for image tiling for large images (Methods). The mechani-
cal stress inference pipeline provides as output inferred intracellular 
pressures, tensions at cell–cell junctions and mechanical stress tensors 
for each segmented cell in the image. Both scalar and tensor quanti-
ties are determined. Scalar quantities are directly output as features, 
while tensorial quantities, such as the mechanical stress tensor, are 
converted to features that summarize the eigenvectors, orientation 
and anisotropy of the tensor. This ensures that all resulting features 
are independently interpretable (Methods).

Alongside the measured transcriptomic readouts, the mechanical 
estimates—tensions, pressures and stress tensor—comprise a mosaic 
representation of spatial cellular identity. We use these interpretable 
features to quantify statistical associations between genomic and 
mechanical measures. Using this approach, we can then build structural 
equation models which take into account spatial confounders25, and 
identify known mechano-sensors as well as genes and ligand–receptor 
(LR) pairs associated with cell–cell junctional tension variability along 
tissue compartment boundaries.

Boundaries between tissue compartments are characterized 
by both gene expression and elevated interfacial tension
To illustrate the application and potential of this approach, we first 
apply our pipeline to the study of boundary formation in the gastru-
lating mouse embryo. The mechanisms that drive the formation of 
precise boundaries between tissue compartments in the developing 
embryo have been the subject of long-standing interest and debate26,27. 
Does cell fate specification precede a phase of cell rearrangement and 
boundary formation or does the positioning of cells induce cell fate 
acquisition? In the context of cell sorting, emphasis has been placed on 
the ability of cells to discriminate contacts between cells of the same 
cell type—homotypic contacts—and between cells of a different cell 
type—heterotypic contacts28,29. Evidence for this phenomenon was first 
shown in pioneering work by Townes and Holtfreter, who demonstrated 
that mixed dissociated cells from different embryonic regions could 
progressively sort into segregated cell clusters30.

Various hypotheses have been proposed to explain the basis 
of this phenomenon, either through differential cell adhesion (also 
known as the differential adhesion hypothesis (DAH))31, preferential 

strain and stress are currently lacking. Indeed, when considering 
the joint modeling of gene expression and morphology, existing 
approaches target only ‘local’ morphological properties (for example, 
cell roundness or volume), treating cells as independent from each 
other and from their spatial environment. Since mechanical morpho-
metrics are global properties of cellular aggregates, new methods 
are needed to estimate these quantities from images and to test for 
associations between them and gene expression signatures in the 
presence of spatial confounders.

Here, to meet this challenge, we introduce a joint spatial 
mechano-transcriptomics framework to investigate simultaneously 
the transcriptional, morphological and mechanical state of cells in 
a tissue context at single-cell resolution. To develop this method, we 
make use of image-based mechanical force inference, an approach 
rooted in the physics of cellular materials19. To illustrate the potential 
of this approach, we use it to quantify tensions at cell–cell junctions 
and intracellular pressure in the context of multicellular tissues20–23. In 
particular, we use selected regions of an embryonic day (E)8.5 mouse 
embryo spatially profiled using seqFISH24. We show that, by integrat-
ing transcriptomic profiling with local mechanical measures, we can 
gain insight into the mechanisms that promote boundary formation 
during development, as well as the role of mechano-responsive regu-
latory pathways in driving cell segregation and spatial patterning. 
We investigate the relationship between transcriptional profiles and 
mechanical forces at the single-cell level, demonstrating the existence 
of gene modules whose expression patterns are significantly associ-
ated with the mechanical state of the cell, while accounting for spatial 
confounders. Finally, exploring higher-order interactions between 
gene expression and mechanics, we show that mechano-associated 
genes display a variety of nonlinear responses to mechanical signals. 
Overall, this study provides a computational framework to investi-
gate mechano-biology in an unbiased manner, offering the poten-
tial to uncover the directional relationships between mechanical 
forces and gene expression in a spatial context, identify candidate 
mechano-sensors or mechano-effectors, and delineate mechanical 
and mechano-chemical feedback loops involved in cell fate decisions, 
pattern formation and tissue morphogenesis.

Results
An integrated mechano-transcriptomics analysis of mouse 
organogenesis
Can the gene expression signature of cells provide information on the 
local mechanical forces that act upon them? How does the interac-
tion between genomics and mechanics inform the acquisition of cell 
identity and establishment of tissue compartments in developmental 
contexts? To begin to answer these questions, we developed a mul-
tistep computational framework based on spatial transcriptomics 
for the integrated statistical analysis of mechanical forces and gene 
expression at cellular resolution (Fig. 1a). First, we compile input data 
of multiple types, including immunostained cell membranes, seqFISH 
images and single-cell transcriptomic references (step 1). Next, we 
process and segment these images to delineate cell boundaries (step 
2) and streamline image-based mechanical force inference (step 3). We 
then perform a joint statistical analysis of mechanical forces and gene 
expression at cellular resolution (step 4). Finally, we generate spatial 
maps of tension, pressure and significant gene expression profiles 
associated with mechanical phenotypes (step 5).

In detail, we take as input, images of tissue or embryo sections 
where cell membranes have been labeled with fluorescent markers (see, 
for example, the spatial transcriptomics seqFISH dataset in Fig. 1b). 
The fluorescent markers enable image-based segmentation of cell con-
tours as well as the quantification and spatial localization of selected 
transcripts at cellular resolution; Fig. 2a). On the basis of this analysis, 
we then generate segmentation masks with annotated coordinates 
of cell–cell junctions and vertices (Methods). We take advantage of a 
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cell adhesion (also known as the selective adhesion hypothesis)32, dif-
ferential cell contractility (also known as the differential interfacial ten-
sion hypothesis (DITH))33 or juxtacrine signaling generating cell–cell 
repulsion at heterotypic cell contacts (also known as higher interfacial 
tensions (HIT))34,35. On the basis of modeling-based approaches and 
experimental studies36–38, it was established that both cell–cell adhe-
sion and cell contractility contribute to the tuning of a single physical 

quantity, the cell–cell junctional tension (also known as interfacial ten-
sion or contact tension), which is the quantity that is directly inferred 
with our image-based force inference algorithm. Thus, it is possible 
to formulate the four hypotheses above in terms of cell–cell junc-
tional tension. To understand how, consider two different cell types, 
A and B, displaying homotypic junctional tensions between cells of 
the same type, TAA and TBB, respectively, and an heterotypic junctional 
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Fig. 1 | A spatial mechano-transcriptomics framework applied to a E8.5 mouse 
embryo seqFISH dataset. a, An overview of the spatial mechano-transcriptomics 
pipeline, showing immunostained membrane images and single-cell RNA-
sequencing references as inputs, followed by deep learning segmentation, 
tension and pressure inference, gene expression imputation and final integrated 
mechanical-transcriptomic output maps. b, A schematic (top left) and images of 

the two different embryo sagittal sections considered in this study with close-ups 
of the three different brain regions studied in more details thereafter. Dataset 1: 
FMH and NC regions of embryo 1 brain; dataset 2: CM and FHM regions of embryo 
2 brain; and dataset 3: MHB region of embryo 2 brain. Panels adapted from:  
a (bottom left), ref. 24 under a Creative Commons license CC BY 4.0; b (top left 
and middle), ref. 24 under a Creative Commons license CC BY 4.0.
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Fig. 2 | Spatial mechano-transcriptomic profiling of different E8.5 mouse 
embryo brain regions. a, Instance segmentation masks of cell contours 
(Methods) for datasets 1 (left), 2 (middle) and 3 (right). b, Spatial tension (T) maps 
obtained with the VMSI algorithm from the cell segmentation masks of datasets 1 
(left), 2 (middle) and 3 (right). c, Spatial pressure (P) maps obtained with the VMSI 
algorithm from the cell segmentation masks of datasets 1 (left), 2 (middle) and 

3 (right). d, Spatial maps and Uniform Manifold Approximation and Projection 
(UMAP) clustering plots of the cell types present in the datasets 1 (left), 2 (middle) 
and 3 (right). Clusters and cell types were obtained by gene expression analysis 
on the basis of the seqFISH and inputed gene expression profiles for all cells 
contained in each dataset.
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tension, TAB, between cells of different types. For the boundary to be 
maintained between segregated populations of A and B type cells, or 
for A and B cells to segregate if initially mixed, DAH and DITH require 
that TAA > TAB > TBB, whereas the selective adhesion hypothesis and 
HIT require that TAB > max(TAA,TBB). Therefore, using a combination of 
cell-type annotation based on the transcriptomics data and the results 
of the mechanical force inference analysis, it should be possible to 
distinguish between these two scenarios.

To test our framework, we applied the force inference pipeline 
to three published spatial transcriptomics datasets of the embryonic 
day E8.5 mouse embryo obtained using seqFISH24 (Fig. 2a–c and Sup-
plementary Fig. 2). We generated instance segmentation masks of 
cell contours (Fig. 2a), derived spatial tension (Fig. 2b) and pressure 
(Fig. 2c) maps using the VMSI algorithm, and classified cell types via 
gene expression analysis (Fig. 2d). We focused on three examples 
of boundary formation (Figs. 2 and 3a), where we could distinguish 
between distinct cell types based on their transcriptional signature: 
dataset 1 shows a boundary between cells with a neural crest (NC) 
signature and the forebrain/midbrain/hindbrain (FMH), two tissues 
of ectodermal origin; dataset 2 shows a boundary between cranial 
mesoderm (CM) and the FMH; and dataset 3 shows a boundary sepa-
rating the midbrain and hindbrain (Figs. 2d and 3a). The formation of 
this last boundary is particularly well studied39 as it plays a crucial role 
in the development of the brain, the boundary functioning both as a 
signaling center, also known as the isthmus organizer, and as a physical 
barrier for the developing brain ventricles40.

To determine the locus of the physical boundary between tis-
sue compartments, we used the results of our joint image-based 
force inference (Fig. 2a–c) and spatial transcriptomics pipeline 
(Fig. 2d and Supplementary Fig. 3b,c) to obtain an assessment for the 
transcriptomics-based boundaries likelihood (Methods). From this 
approach, it was possible to determine the compartment boundaries 
for each of the datasets, as shown in Fig. 3a,b. Using the data associated 
with the tension maps shown in Fig. 2b, we then computed, for each 
dataset, the homotypic junctional tension for each tissue compartment 
and the heterotypic junctional tension existing at each boundary. As 
evidenced by the violin plots in Fig. 3c, homotypic tensions in tissue 
compartments are ~12−35% lower than heterotypic tensions at the 
compartment boundaries depending on the dataset considered, with 
dataset 1 displaying the smallest difference and dataset 3 the largest.

Examining the robustness of the mechanical differences between 
heterotypic and homotypic junctions involves investigating whether 
elevated junctional tensions at heterotypic junctions are also present in 
neighboring, parallel sagittal sections of the same embryos. To accom-
plish this, we analyzed an additional slice located at a 12 μm separation in 
the z direction from the previously examined midbrain–hindbrain region 
(Supplementary Fig. 4a,b). With this level of z separation, the parallel 
slices contain different cells within the same tissue region, thereby offer-
ing biological validation for the inferred boundary mechanical proper-
ties. It is important to note that the midbrain–hindbrain region is the 
sole one present in the dataset containing boundaries preserved across 
multiple z slices. Our analysis reveals that our mechano-transcriptomic 
pipeline recapitulates the previously observed elevated heterotypic junc-
tional tension (Supplementary Fig. 4c,d), underscoring the robustness 
of our method. Further, we confirm that the gene expression-derived 
midbrain–hindbrain boundary (MHB) occupies the same spatial loca-
tion in both dataset 3 (z-slice 1) and the parallel z slice (z-slice 2) (Sup-
plementary Fig. 5a). To account for cellular composition differences, we 
computed a Gaussian-smoothed spatial field of cell pressure and stress 
tensor magnitude quantities (Supplementary Fig. 5b,d) for each z slice at 
a common set of sampled points (Methods). We found that there was no 
significant global correlation in mechanical properties across the entire 
region; this was consistent with our observation of spatial variance in cel-
lular mechanical properties within each sagittal (x–y) plane. However, we 
hypothesized that there may be local spatial correlation in mechanical 

properties at regions where cell mechanics are particularly biologically 
relevant. We therefore used scHOT41 to calculate local spatial correlation 
in cell pressure and stress tensor magnitude across the region. Indeed, 
we found that distinct regions exhibited different degrees of spatial 
correlation in mechanical properties, with some regions showing high 
correlation while others demonstrated high anticorrelation (Supple-
mentary Fig. 5c,e). In particular, we observed that regions close to the 
MHB were more mechanically correlated than regions far away from the 
boundary (Supplementary Fig. 5f,g). These results reinforce the robust-
ness of our observation that heterotypic junctional tension is elevated 
at tissue compartment boundaries. Similarly, the local coherence in 
cell mechanical properties at the boundary suggests the existence of 
molecular mechanisms that are responsible for maintaining this coher-
ence. Taken together, our results seem to rule out a scenario based on 
DAH or DITH in favor of a mechanism of boundary maintenance based 
on HIT for all three distinct boundaries.

To challenge this scenario, we ran in silico experiments using 
a simple and well-characterized biophysical model of multicellular 
tissues42,43. Specifically, for each dataset, we simulated the mainte-
nance of the boundary between the two tissue compartments using 
experimental values for homotypic and heterotypic tensions with 
all other model parameters taken as the same. We also ran control in 
silico experiments where the homotypic and heterotypic were taken 
as equal (Methods). As shown in the upper panel of Fig. 3d, in silico 
experiments confirm that, for all three datasets, a higher interfacial 
tension at the boundary between tissue compartment is sufficient 
for boundary maintenance. This phenomenon is characterized by an 
invariance of the heterotypic boundary length (Methods) over the 
length of the simulations (Supplementary Fig. 6d). Here, we also note 
that the ‘roughness’ of the boundary is inversely proportional to the 
ratio of the homotypic and heterotypic tensions. Moreover, control 
simulations confirm that, in the absence of a higher heterotypic ten-
sion, cells of both cell types start to mix, leading to a progressive dis-
solving of the boundary between the tissue compartments, as shown 
in Fig. 3d, bottom, and evidenced by the increasing values taken by the 
heterotypic boundary length in these simulations (Supplementary 
Fig. 6d). Moreover, further in silico simulations using similar numerical 
parameters, but with different initial conditions where cells are mixed 
at random, demonstrated that a higher interfacial tension is also suf-
ficient to explain the formation of segregated tissue compartments 
via a cell sorting mechanism, as shown in Supplementary Fig. 6b,c.

Overall, HIT appears to be a particularly robust mechanism for 
tissue compartment boundary maintenance, as even a difference as 
small as ~10% between homotypic and heterotypic tensions appear to 
be enough to maintain a boundary. Moreover, spatial tension profiles 
might provide a highly accurate way to determine, with subcellular 
resolution, the location of the boundary between tissue compart-
ments. For example, the one-dimensional (1D) tension profile at the 
boundary between the midbrain and hindbrain is shown in Supple-
mentary Fig. 7a, plotted against the 1D gene expression profiles of 
Otx2 and Gbx2, two well-characterized markers of the mesencephalon/
prosencephalon and of the rhombencephalon, respectively (Supple-
mentary Fig. 7b). In this case, the position of the boundary can be very 
accurately pinpointed as the maximum of the 1D tension profile and 
corresponds to the intersection of the midpoints of the Otx2 and Gbx2 
gradients. A similar phenomenon is observed at the boundary between 
the cranial mesoderm and the FMH tissue compartments, as shown in 
Fig. 4a, where the maximum of the 1D tension profile coincides with the 
intersection of the midpoints of the Wnt5b and Bmp4 gradients, two 
well-characterized markers of the FMH and CM, respectively (Fig. 4b).

LR analysis identifies putative molecular determinants of 
elevated interfacial tension at tissue compartment boundaries
Next, we quantified the interaction between transcriptional profiling 
data and force inference readouts. As higher interfacial tension is a 
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Fig. 3 | Tissue compartment boundaries defined by gene expression are 
characterized by a high interfacial tension pattern, which is sufficient to 
explain their maintenance. a, Spatial maps of the dominant cell types as 
defined by gene expression analysis for datasets 1 (left), 2 (middle) and 3 (right). 
b, Spatial maps of the boundary likelihood highlighting cells at the boundary 
between spatially distinct tissue compartments for datasets 1 (left), 2 (middle) 
and 3 (right). c, Violin plots for inferred heterotypic tension (cell–cell tensions 
for junctions at the boundary between spatially distinct tissue compartments) 
and homotypic tension (cell–cell tensions for junctions within each tissue 

compartment) for datasets 1 (left), 2 (middle) and 3 (right). Error bars indicate 
s.e.m. *P < 0.05 and **P < 0.01 by one-sided pairwise Mann–Whitney U test. Exact 
P values and test statistics can be found in Supplementary Table 1. d, Boundary 
maintenance simulations based on experimentally measured heterotypic and 
homotypic tensions for datasets 1 (left), 2 (middle) and 3 (right). Renderings 
of typical boundary maintenance simulations (top) and of typical control 
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(bottom).
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likely physical determinant of tissue compartment boundaries main-
tenance, we questioned whether the spatial transcriptomics data can 
provide insight into the molecular mechanisms underpinning this 
phenotype. As a first step, we used unbiased LR analysis using the spatial 
gene expression data, making use of the CellChatDB LR annotation 
database (Methods). We analyzed a dataset involving the boundary 
between the cranial mesoderm and the FMH tissue compartments 
and a dataset involving the boundary between midbrain and hindbrain 
tissue compartments.

Focusing on cells sharing heterotypic contacts (that is, on the 
boundary), it was possible to screen for the expression levels of known 
LR pairs and then to compute from their interaction potential (Fig. 4g 
and Supplementary Fig. 7g) an absolute interaction likelihood (Fig. 4c,e 
and Supplementary Fig. 7c,e), distinguishing the directionality of 
interactions. Considering only LR pairs displaying a positive interaction 
likelihood and filtering out the top 50 pairs, we ran a Gene Ontology 
(GO) overrepresentation analysis, the results of which are reported 
in Fig. 4d,f, and Supplementary Fig. 7d,f. The results emphasize the 
role of LR signaling in controlling mechano-biological processes such 
as ‘response to mechanical stimulus’, ‘regulation of cell adhesion’, 
‘anatomical structure morphogenesis’ and ‘ephrin receptor signaling 
pathway’ at the tissue compartment boundaries in both datasets.

Notably, considering LR pairs displaying the highest positive 
interaction likelihoods, it is apparent that some of these pairs involve 
canonical transmembrane receptors and diffusible ligands such as 
Wnt5a–Fzd5, which are known to play a crucial role in anterior–poste-
rior axis formation and patterning during mammalian development44, 
Fgf18–Fgfr1, known to play a key role in the establishment of the bound-
ary between midbrain and hindbrain in mouse45 and Edn1–Ednra, shown 
to be a key determinant of cranio-facial morphogenesis in mouse 
and human46. Interestingly, 2D maps and 1D spatial gene expression 
profiles in Fig. 4h and Supplementary Fig. 7h show that these LR pairs 
are involved in directional signaling. For example, in dataset 2, the CM 
acts as an almost spatially homogeneous source of Wnt5a, whereas its 
expression sharply decreases into the FMH region beyond the com-
partment boundary. This expression profile is mirrored by the spatial 
expression pattern of the receptor, Fzd5, which is not expressed in 
CM, but displays a spatially graded profile in the FMH, with the high-
est point of the gradient found in cells proximate to the boundary on 
the FMH side.

Furthermore, a substantial fraction of the top LR pairs are ephrin 
ligand (Efn) receptor (Eph) pairs, such as Efna1–Epha5, Efnb1–Ephb1 or 
Efnb3–Ephb2, as shown in Fig. 4c,e and Supplementary Fig. 7c,e. Ephrin 
ligands are membrane-bound proteins, which can only interact with 
ephrin receptors expressed in neighboring cells, with cells expressing 
a ligand usually downregulating the expression of its associated ephrin 
receptor(s) and vice versa34,47. This leads to a characteristic spatial 
expression pattern, which can be observed in the 2D maps and 1D spa-
tial gene expression profiles in Fig. 4h where the ephrin ligand (Efna1 
or Efnb1) is strongly expressed in one of the two tissue compartments 
(here the CM), while the receptor (Epha5 or Ephb1) is expressed almost 
exclusively in cells proximate to the boundary in the other tissue com-
partment (here the FMH). The same characteristic spatial pattern is also 
observed in dataset 3, where one can observe in Supplementary Fig. 7h 
the mutually exclusive spatial pattern of Efnb3 and Ephb2 at the MHB.

Ephrin–LR signaling is well known to generate ‘repulsion’ at het-
erotypic cell–cell contacts and tissue compartment boundaries via 
downstream signaling pathways that increase interfacial tension for 
cell–cell junctions located on the boundary28,29,47. Consequently, the 
presence of multiple ephrin–LR pairs with high interaction likelihood 
on the boundary between CM and FMH provides a potential mechanis-
tic explanation for the observed higher heterotypic interfacial tension 
at the boundary, and could be generalized to explain the higher inter-
facial tension also observed for other tissue compartment boundaries 
in dataset 3 or dataset 1.

While these findings emerge naturally from the combined tran-
scriptomic and force inference analysis of the E8.5 mouse embryo, this 
mechanism constitutes a ubiquitous feature of boundary formation 
in vertebrates, and has been observed in a variety of developmental 
contexts such as the boundary between mesoderm and ectoderm 
in the Xenopus laevis embryo35, the boundary between the different 
segments of the hindbrain (rhombomeres) in zebrafish and chick 
embryos48, the boundaries between somites26,49, and compartments 
of the neural tube50,51 in zebrafish embryos. In all these systems, the 
mechanism driving the increase in interfacial tension at the boundary 
appears to be caused both by an increase in actomyosin contractility 
due to myosin II phosphorylation directly downstream ephrin–LR sign-
aling via Ephexin-mediated RhoA activation and a localized decrease 
in cell–cell adhesion due to selective expression of cell–cell adhesion 
molecules such as cadherins or protocadherins29,47,51,52.

While our approach, based on spatial transcriptomics, does not 
allow us to directly quantify actomyosin activity, we could nonethe-
less investigate the spatial patterns of cell–cell adhesion molecules 
at the boundary between CM and FMH in dataset 2, as shown in Sup-
plementary Fig. 11a. Interestingly, CM and FMH display reciprocal 
patterns of cadherin expression so that when one particular cadherin 
is upregulated in one tissue compartment, such as Cdh2 in the FMH 
or Cdh11 in the CM, it is downregulated in the other compartment. 
As homophilic cadherin adhesion is energetically favorable over (or 
equivalent to for type I cadherins) heterophilic cadherin adhesion51, this 
creates a situation where cell–cell adhesion is markedly decreased at 
the boundary between tissue compartments and increased within the 
respective tissue compartment, correlating once again with the pattern 
of higher heterotypic tension at the boundary and lower homotypic 
tension within tissue compartments. Previous work suggests that, 
during zebrafish neural tube compartmentalization, this mechanism 
is also regulated via a signaling gradient of the morphogen Shh to Cdh2 
and Cdh11 via protocadherin Pcdh19 (ref. 50), an observation we are 
able to corroborate in our system as shown in Supplementary Fig. 11a.

Interestingly, another study on mouse neural tube patterning has 
shown that a dorso-ventral (DV) gradient of mechanical forces exists 
in the embryo and leads to a graded activation of YAP signaling along 
the DV axis, causing a spatially compartmentalized expression of the 
transcription factor Foxa2 and its downstream transcriptional target 
Shh53. Since such a gradient of mechanical tension exists in the vicin-
ity of the boundary between the CM and FMH in dataset 2 (Fig. 4a), it 
is tempting to speculate that it could also lead to the formation of a 
gradient of YAP signaling activity in this system, and thus be the ori-
gin of the observed Shh gradient at the compartment boundary. This 
hypothesis is supported by the observation of a graded expression of 
Cyr61, a well-characterized transcriptional target of Yap, and of Foxa2 
and its transcriptional targets, such as Ptch1, at the border between CM 
and FMH, as shown in Supplementary Fig. 11b. In addition, as shown in 
Supplementary Fig. 11c, markers of neural tube DV patterning, Nkx2.2, 
Nkx6.1, Pax7 and Pax3, are also expressed at the boundary between the 
CM and FHM tissue compartments in a spatial sequence that follows 
the spatial gradient of mechanical forces and is reminiscent of that 
observed in the mouse neural tube53.

Overall, these results provide a rational molecular mechanism 
to explain the higher heterotypic interfacial tension observed at the 
boundary between tissue compartments in our different datasets and 
support the conclusion that this mechanism may play an important role 
in maintaining a sharp boundary at the interface of two tissue compart-
ments. The LR analysis was performed with spatial transcriptomics 
data alone, without taking the inferred mechanical properties of the 
boundary into account. Nevertheless, these independent analyses 
yielded complimentary results; the LR gene pairs with highest interac-
tion potential are enriched in adhesion and mechano-transduction, 
providing putative molecular mechanisms for the mechanical prop-
erties of the boundary. This illustrates how the combination of force 

http://www.nature.com/naturemethods


Nature Methods | Volume 22 | April 2025 | 737–750 744

Article https://doi.org/10.1038/s41592-025-02618-1

b
Wnt5b Bmp4

2D
 G

eX
 

Wnt5a–Fzd5

Efna1–Epha5

Efnb1–Ephb1

d

e f

CM FMHCM FMH

FMH CMFMH CM

Rank

c g

h

FMHCM 

Wnt5a

FMHCM 

Fzd5

CM FMH

Efnb1 Ephb2

FMHCM FMHCM 

Epha5

FMHCM 

Efna1

2D
 G

eX
 

1D
  G

eX
 

FMH CM
N

or
m

. G
eX

Te
ns

io
n

Distance from boundary (no. cells)

a

2
0

0.2

0.4

0.6

0.8

100

200

0 21 1

01234

0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 5 01234

–0.1
0

0.1
0.2
0.3
0.4
0.5
0.6

1 2 3 4 5 01234
–0.10
–0.05

0
0.05
0.10
0.15
0.20
0.25

1 2 3 4 5 01234

0

0.2

0.4

0.6

0.8

1 2 3 4 5 01234
0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 1234
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

CM–CM FMH–FMH

–log10P value

CM–FMH FMH–CM

CM–CM FMH–FMH CM–FMH FMH–CM

CM–CM FMH–FMH CM–FMH FMH–CM

0

0.01

0.02

0.03

0.04

Ju
nc

tio
n 

in
te

ra
ct

io
n 

po
te

nt
ia

l

–0.005

0 1 2

–log10P value

0
0

0

5

6

7

8

9
Edn1–Ednra

Wnt5a–Fzd5
Ptn–Sdc1

Efna2–Epha5

Efnb1–Ephb2

Efna1–Epha5

Efna5–Epha5
Wnt5a–Fzd3

Mdk–Ncl

Ptn–Ncl

Cxcl12–Ackr3

Col2a1–Sdc4

Lamb1–Dag1
Col4a2–Sdc4

Col4a1–Sdc4
Angptl4–Sdc4

Efna4–Epha5

Efnb3–Epnb3

Efna2–Epna7Cxcl12–Ackr3

Nrxn1–Nlgn2

Nrxn2–Nlgn2

Apln–Aplnr

Thbs3–Sdc1

Ntf3–Ntrk3

Ptn–Sdc1

Sema5b–Plxna3

6

5 10 15 20

7

8

9

10

2.5

5.0

7.5

10.0

30 60 90 120

Rank
0 30 60 90 120

1 2 3

3

25
Count

Count

20
15
10

10
15
20
25
30

5

0

0.005

0.010

0.015

0.020

Ju
nc

tio
n 

in
te

ra
ct

io
n 

po
te

nt
ia

l

0

0.05

0.10

0.15

0.20

0.25

Ju
nc

tio
n 

in
te

ra
ct

io
n 

po
te

nt
ia

l

Distance from boundaryDistance from boundaryDistance from boundaryDistance from boundaryDistance from boundaryDistance from boundary

Negative
Positive

Negative
Positive

Ab
so

lu
te

 in
te

ra
ct

io
n 

lik
el

ih
oo

d

0

2.5

5.0

7.5

10.0

Ab
so

lu
te

 in
te

ra
ct

io
n 

lik
el

ih
oo

d

Rank

5 10 15 20

Rank

Ab
so

lu
te

 in
te

ra
ct

io
n 

lik
el

ih
oo

d
Ab

so
lu

te
 in

te
ra

ct
io

n 
lik

el
ih

oo
d

Bmp4
Wnt5b

Telencephalon development

Anatomical structure
morphogenesis

T cell activation

Ephrin receptor signaling
pathway

Anatomical structure formation
involved in morphogenesis

Regulation of cell adhesion

Positive regulation of
cytokine production

Response to mechanical
stimulus

Mononuclear cell proliferation

Lymphocyte proliferation

Organelle assembly

Response to mechanical
stimulus

Cell projection organization

Cellular component
organization

Cellular component assembly

Nerve development

Membrane organization

Cellular component
organization or biogenesis

Cellular component biogenesis

Cation transport
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tissue compartment boundaries. a, The 1D tension profile along the tissue 
compartment boundary for dataset 2 (top) and 1D normalized gene expression 
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CM and FMH markers Bmp4 and Wnt5b. c, Absolute interaction likelihood of 
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inference analysis with spatial molecular profiling can provide insight 
into the mechanism of boundary formation in the context of embryonic 
development.

GSEMs detect gene expression modules associated with 
cellular mechanics while controlling for spatial confounders
Our previous analysis identified putative mechanisms for cooperativity 
between gene expression and cellular mechanics in establishing and 
maintaining boundaries during development. To identify additional 
developmental processes in which cellular mechanical and transcrip-
tional states are coordinated, we next sought to perform unsuper-
vised tests for associations between gene expression and mechanical 
measurements.

We first tested the association between gene expression and 
mechanical state for datasets 1 and 2 by using a linear model to regress 
single-cell gene expression levels on two mechanical quantities: cel-
lular pressure and the magnitude of the cellular stress tensor (Meth-
ods). Statistical analysis identified a number of ‘mechano-associated’ 
genes, that is, genes whose expression is significantly up- or down-
regulated with cellular pressure or stress tensor magnitude. To identify 
genes that are confidently associated with mechanics, we searched 
for genes that were significantly associated with mechanical quanti-
ties in both datasets. Supplementary Fig. 10a shows that there were 
150 pressure-associated and 1,049 stress tensor-associated genes 
shared by datasets 1 and 2, respectively. Among these, a total of 131 
mechano-associated genes showed significant association with both 
pressure and stress tensor magnitude for both datasets. GO overrep-
resentation analysis (Methods) showed that this gene set is enriched 
in genes associated with ‘cell migration’, ‘tissue morphogenesis’ and 
‘ECM organization’ (Supplementary Fig. 10b), processes that are highly 
dependent on cellular mechanical state.

To further identify specific signaling pathways and mechanisms, 
we examined the specific genes involved. Volcano plots in Supplemen-
tary Fig. 10c show these mechano-associated genes for dataset 2, high-
lighting in red some of the 131 top associated genes discussed above. 
Some genes, such as Hpln1 or Col4a1, are associated with extracellu-
lar matrix (ECM) structure and mechanical properties, while others, 
such as Ccnl2, are involved in cell cycle regulation or cell metabolism, 
including Igf2. Some genes such as Arhgef15 (involved in ephrin–LR 
signaling), Actb, Dchz1 and Rhod are involved in cytoskeleton organiza-
tion and contractility. Consistently, others are known transcriptional 
targets of well-characterized mechano-transducers such as Cav1 and 
Cyr61, which are downstream of Yap. Interestingly, all of the aforemen-
tioned genes have gene expression patterns that negatively correlate 
with the magnitude of the pressure and stress tensor, that is, they tend 
to be upregulated in cells under tensile stress and downregulated in 
cells under more compressive stress.

However, a limitation of linear regression testing is that it does not 
account for spatial confounding effects. Spatial confounding could 
interfere with the estimated effects because both morpho-mechanical 
measurements and transcriptomic states are themselves spatially 
dependent; in particular, tissue regions comprising common cell types 
or subtypes may show similarities in both bulk mechanical proper-
ties and transcriptomic states. Therefore, we performed a second 
analysis, utilizing a geoadditive structural equation model (gSEM), 
which accounts for spatial confounding effects in both predictor and 
response variables by modeling and subtracting the spatial confound-
ing effects from both variables, resulting in spatially regressed variables 
with no spatial confounding. This methodology provides a means for 
rigorously accounting for spatial confounding effects in our data.

We tested the association between gene expression and mechan-
ical state for all three datasets using a linear model to regress spa-
tially regressed single-cell gene expression levels on the two spatially 
regressed mechanical quantities (Methods). We identified a number 
of mechano-associated genes, as expected, accounting for spatial 

confounding resulted in fewer statistically significant genes being 
identified. Most of these genes appear to be cell type and tissue specific, 
suggesting that the effects of cellular mechanics on gene expression 
are context dependent; this highlights the utility of our approach to 
infer mechanical properties and gene expression in the same cells. 
Despite differences in specific mechano-sensitive genes, GO over-
representation analysis (Methods) showed that GO terms relevant to 
both developmental processes and cellular mechanics were enriched 
across multiple datasets (Fig. 5b,d and Supplementary Fig. 8b,d). For 
example, we identified terms such as ‘negative regulation of substrate 
adhesion-dependent cell spreading’ and ‘negative regulation of cell 
morphogenesis involved in differentiation’ enriched in dataset 2, while 
dataset 3 was enriched in the terms ‘regulation of actin cytoskeleton 
organization’ and ‘leukocyte migration’.

Volcano plots in Fig. 5a,c and Supplementary Fig. 8a,b show the 
mechano-associated genes identified for datasets 2 and 3. We found 
that, although there was generally a low degree of overlap between 
genes identified as significantly associated in the linear regression 
analysis above and the gSEM analysis, the inferred effect sizes showed 
good correlation across both analyses (Supplementary Fig. 8c,e). 
Furthermore, several genes were highlighted in both analyses. Many 
of these genes have known roles in regulating cellular mechanical 
properties, for example, Slc9a3r2 (NHERF2), Lima1 and Crabp2 (Fig. 5e). 
Slc9a3r2 interacts with and regulates the ERM complex, which couples 
the actomyosin cortex with the cell membrane and enables forces 
generated through cytoskeletal dynamics to influence the overall 
mechanical properties of the cell and, more particularly, the cell–cell 
junctional tensions54. Lima1 is also relevant in actin cytoskeletal dynam-
ics through regulating actin fiber crosslinking and depolymerization55, 
while Crabp2, a component of the retinoic acid signaling pathway, has 
previously been shown to modulate mechano-sensing in the context of 
pancreatic cancer56. Our analysis also revealed a number of novel links 
between mechanics and gene expression. One such example is Apba2, 
which interacts with and stabilizes the amyloid precursor protein 
(APP). Interestingly, previous work has shown that aggregation of the 
amyloid-β peptide generated by APP affects the mechanical proper-
ties of single cells in a pathological context57. This novel association 
suggests a potential role for Apba2, and thus APP, in responding to 
changes in mechanical state during development.

Analysis of nonlinear associations between gene expression 
and mechanical properties identifies distinct patterns of 
association with cellular mechanics
We next turned to investigate nonlinear associations between cellular 
mechanics and gene expression at the single-cell level. To that aim, we 
ranked cells in each dataset by either cellular pressure or stress tensor 
magnitude, and computed smoothed expression value estimates using 
a local weighted-median metric. Subsequently, we used scHOT41 to 
identify statistically significant patterns of association between the 
weighted median gene expression and cellular mechanical property. 
Significant gene–mechanics associations were then clustered using 
hierarchical clustering to identify clusters of genes with consistent asso-
ciation patterns. We performed this analysis for both dataset 2 (Fig. 6) 
and dataset 3 (Supplementary Fig. 9). For dataset 2, we obtained seven 
clusters of genes associated with pressure and four clusters of genes 
associated with stress tensor magnitude. For dataset 3, we obtained 
seven clusters of genes associated with pressure and five clusters of 
genes associated with stress tensor magnitude.

The clusters identified in dataset 2 revealed that different clus-
ters showed distinct patterns of association with cellular mechanics, 
and different spatially localized patterns of expression, suggesting 
that mechanical differences between tissue regions may influence 
region-specific gene expression. Interestingly, we also identified func-
tional differences between genes in different clusters. In dataset 2, 
amongst genes nonlinearly associated with pressure, cluster 1 displayed 
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a sigmoid expression profile where gene expression is upregulated at 
low intracellular pressure and downregulated after a certain pressure 
threshold (Fig. 6a). GO overrepresentation analysis (Methods) revealed 
that these genes were involved in developmental processes such as ‘cell 
fate commitment’, ‘neuron differentiation’ and ‘glial cell migration’. 
Genes in cluster 4 display the opposite behavior, being expressed at a 
low levels before becoming upregulated at higher intracellular pres-
sure when values exceeded a certain threshold (Fig. 6a). These genes 
were found to be associated with a variety of cellular and developmen-
tal processes such as ‘pattern specification process’, ‘epithelial tube 
formation’ and ‘forebrain neuron development’. Reflecting the GO 

overrepresentation analysis, we also observed known master regula-
tors of neural development (for example, Wnt7b, Lhx2, Pax3 and En1), 
as well as genes involved in cell adhesion and contractility (for example, 
Epha7 and Shroom3) within the same clusters, suggesting cooperativity 
between cellular mechanics and regulation of developmental processes.

As for genes nonlinearly associated with stress tensor magnitude, 
clusters 1 and 4 also displayed the two kinds of sigmoid response pre-
viously encountered (Fig. 6b). Genes in cluster 1 were associated with 
‘forebrain development’ and ‘telencephalon development’, and were 
upregulated at low stress tensor magnitude before sharply decreasing 
their expression beyond a certain threshold. Mirroring this behavior 
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and downregulated genes with cellular pressure. GO terms are ranked according 
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by BH adjustment (y axis) plotted against the regression coefficient, βspatial, 
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were genes of cluster 2, which were associated with ‘central nervous 
system development’ and ‘proximal/distal pattern formation’, and 
were downregulated at low and high stress tensor magnitude, with 
expression within only a narrow range of stress tensor magnitude val-
ues. Notably, the expression profiles displayed by gene clusters 1 and 
2 showed a remarkable sensitivity, suggesting that the expression of 
these genes is regulated by either a mechano-sensitive band-pass (clus-
ter 2) or band-stop (cluster 1) filter. Corroborating this, we observed 
similar band-pass behavior in gene clusters identified in dataset 3 

(Supplementary Fig. 6); again, we also observed co-localization of 
factors important in development and regulators of cellular mechan-
ics within the same clusters. This suggests that these band-pass and 
band-stop behaviors may be general mechanisms for coupling mechan-
ics and gene expression during development. While such nonlinear 
gene expression dependencies have been engineered in synthetic 
bacterial and mammalian systems in response to external biochemi-
cal signals58, their observation in the setting of a native tissue is, to our 
knowledge, unprecedented.
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Fig. 6 | Statistical analysis of higher-order interactions establishes the 
existence of significant nonlinear associations between gene expression 
and cellular mechanics. a, Analysis of nonlinear associations between gene 
expression and cellular pressure in dataset 2. The summary statistic used is 
the weighted median gene expression. For each gene, the association between 
this statistic and the cellular pressure ranking is tested. Significant (Padj < 0.1 
by permutation test followed by BH adjustment) association profiles are z 
normalized and clustered. Line plots of the weighted-median expression z score 
against cellular pressure ranking are shown for selected clusters, along with bar 
plots showing GO overrepresentation analysis of genes in each cluster. Bottom: 

spatial gene expression maps for example genes with representative behaviors. 
GO terms are ranked according to P value by hypergeometric test and gene count. 
b, Analysis of nonlinear associations between gene expression and cellular stress 
tensor magnitude in dataset 2. The analysis was performed as for a. Line plots 
of the weighted-median expression z score against cellular pressure ranking are 
shown for selected clusters, along with bar plots showing GO overrepresentation 
analysis of genes in each cluster. Bottom: spatial gene expression maps for 
example genes with representative behaviors. GO terms are ranked according to 
P value by hypergeometric test and gene count.
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Discussion
In this study, we presented a computational framework for combined 
spatial transcriptomics and image-based mechanical force inference at 
single-cell resolution. Using synthetically generated images of multicel-
lular tissues, we showed that our approach is accurate and robust to 
noise associated with confocal fluorescence imaging of immunostained 
tissue sections and cell instance segmentation. We demonstrated that 
our framework can be applied to ISH-based spatial transcriptomics 
datasets by performing an integrated analysis of a seqFISH dataset of 
the E8.5 mouse embryo. Using three different brain regions from two 
different embryos as benchmark datasets, we were able to perform 
an integrated analysis of mechanical forces and gene expression at 
single-cell resolution.

Our analyses revealed that boundaries defined by differential 
gene expression are consistently associated with elevated cell–cell 
junctional tension, which remains conserved across parallel z planes 
and underscores the role of mechanical forces in boundary forma-
tion and maintenance. Biophysical simulations demonstrated that 
heightened heterotypic tension alone can sustain these boundaries and 
may initiate them when cell types are initially intermixed. LR analysis 
further indicated that ephrin signaling contributes to this elevated 
tension through locally enhanced actomyosin contractility and dif-
ferential cell adhesion. Finally, a gSEM uncovered numerous genes 
whose expression correlates nonlinearly with tension and pressure. 
These genes span key biological processes, including cell migration, 
cell metabolism, mechano-transduction, responses to morphogens 
and hormones, and tissue morphogenesis. Notably, the expression of 
some genes was found to be up- or downregulated over a narrow range 
of mechanical forces, suggesting the existence of mechano-sensitive 
band-pass and band-stop filters.

The nonlinear associations with mechanical forces identified in 
our analyses provide a compelling case for further experimental work 
aimed at elucidating the precise molecular mechanisms underpin-
ning these behaviors. There are a number of promising experimental 
approaches that would enable the quantitative characterization of 
putative band-pass and band-stop mechano-sensing genes. For exam-
ple, combining optogenetic control of actomyosin contractility with 
in vivo live mRNA imaging through the MS2 reporter system59–62 would 
enable the measurement of changes in gene expression in response 
to local perturbations of cellular interfacial tension. Indeed, our com-
putational methods complement this approach well. Experimental 
approaches to live mRNA imaging, such as the MS2 reporter system, 
cannot be multiplexed to image many genes or transcripts simul-
taneously; our pipeline for inferring tissue mechanical properties 
and identifying nonlinear associations between mechanics and gene 
expression can therefore be used to select candidate genes of interest 
for experimental investigation.

However, our analysis also highlights the limitations of the seqFISH 
technology. First, the fidelity of this approach is highly dependent on the 
quality of staining and 2D sectioning. The quality of membrane immu-
nostaining can hinder the segmentation of individual cell contours, 
leading to inaccurate recovery of cell junction curvatures, imprecise 
inference of mechanical forces and difficulties in processing large 
datasets. Alternative membrane staining strategies, such as the use of 
antibodies against other membrane proteins or against other compo-
nents of the cell membrane such as glycolipids63, can improve mem-
brane staining and allow large-scale automated cell segmentation and 
accurate mechanical force inference. Furthermore, all current ISH-based 
spatial transcriptomics methods require successive rounds of probe 
hybridization and imaging, and therefore must undergo tissue fixation 
before antibody staining for membrane segmentation. Different fixa-
tion strategies, including the paraformaldehyde fixation used for the 
seqFISH data used in this study, have been shown to induce morphologi-
cal distortions such as cytoplasmic shrinkage in cultured cells64. Since 
force inference requires accurate cell morphologies that are reflective 

of the true mechanical state of the tissue, the potential effects of fixation 
on the accuracy of inferred mechanics must be considered. Second, 
our current approach focuses on 2D slices. While it has been shown 
that 2D force inference is a good proxy for 3D inference for simple iso-
tropic cellular ensembles, such as those found in components of early 
mouse or nematode embryos65, this is not generally true for nonplanar 
and anisotropic systems. For example, the seqFISH dataset used in this 
analysis includes whole-embryo sagittal sections, where some regions 
may intersect the plane of the section rather than being parallel to it. This 
means that the inferred 2D stress tensor captures only a subset of the 
information present in the full 3D stress state of a cell. In addition, E8.5 
mouse embryos contain a variety of regions that are not populated by 
cells, but by ECM and fluid-filled cavities whose mechanical properties 
influence the mechanical behavior of adjacent tissue layers in ways that 
cannot be captured by the present 2D method. Generalizing the current 
framework through 3D gene expression profiling66, cell segmentation 
and force inference67,68 will be a critical step toward a more integrative 
and precise understanding of the reciprocal role of mechanical forces 
and gene expression, cell fate decisions and tissue morphogenesis 
during development. Taking advantage of improved staining and 3D 
imaging, future studies will aim to extend the scope of our analysis by 
incorporating additional morphometric measures to capture cell shape, 
such as point cloud-based methods16 or Fourier shape descriptors15. 
In addition, the measurement of additional genomic modalities, such 
as metabolomics, proteomics and chromatin accessibility, as well as 
metrics that capture the nature of the local cell environment, such as 
the size and composition of the cell neighborhood or the coarse-grained 
stress tensor, could help us to better understand how cellular mechani-
cal and transcriptional phenotypes are regulated and integrated at the 
tissue and organismal level. Finally, advances in computational methods 
for analyzing spatial omics will enable a more robust and comprehen-
sive characterization of the relationship between tissue mechanical 
properties and its transcriptomic, epigenetic and proteomic state. 
For instance, our analysis of LR communication across boundaries 
did not consider potential communication between nonadjacent cells 
via diffusible ligands. This is due, in part, to the highly pathway- and 
context-dependent nature of paracrine signaling with which existing 
methods for inferring spatial intercellular communication struggle. As 
improved computational methods are developed for analyzing spatial 
data, the utility of our approach will undoubtedly increase.

Overall, our computational framework can be applied directly to 
ISH-based spatial transcriptomics datasets with minimal additional 
processing required. Although some previous studies have performed 
combined analysis of single-cell morphometrics and gene expression69 
and others have investigated the relationship between mechanical 
forces or mechanical properties and expression of individual genes70,71, 
integration of mechanical force inference and spatial transcriptomics 
at single-cell resolution has not been previously reported. The work 
presented here contributes to our understanding of the interplay 
between mechanical forces and gene expression at the cell and tissue 
level and provides an innovative and powerful tool that can be applied 
to other spatial transcriptomics datasets to further investigate this 
interplay in a variety of physiological and pathological contexts.
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Methods
Transcriptomics quantification
A previously published multi-embryo seqFISH dataset was used to 
examine the utility of the spatial mechano-transcriptomics workflow24. 
In this approach, the abundance and positions of individual transcripts 
were obtained at subcellular resolution for 387 genes across sections 
of three mouse embryos at developmental stage E8.5. This dataset was 
used to impute a broader pattern of gene expression taking advantage 
of the mouse gastrulation atlas dataset, a previous single-cell atlas 
obtained from single-cell RNA-sequencing analysis using a 10X Genom-
ics pipeline72. We targeted the correlation between cell mechanics and 
gene expression in the context of boundary formation in three different 
brain regions (Fig. 1b), spanning the intersection between the FMH and 
NC (dataset 1), the boundary between the CM and FHM (dataset 2) and 
an upper brain region involving the MHB (dataset 3).

Image segmentation. High-quality segmentation masks are essential 
for accurate image-based mechanical force inference. As the existing 
segmentation masks for the E8.5 mouse seqFISH dataset exhibited 
high variability across biological regions and replicates with frequent 
instances of over- or undersegmentation, we reprocessed the imaging 
datasets as follows. We first preprocessed the membrane segmenta-
tion immunofluorescence images by local contrast enhancement in 
Fiji73 using the Contrast Limited Adaptive Histogram Equalization 
algorithm74 with parameters (blocksize = 99, histogram bins = 128, 
slope = 5), followed by denoising via outlier removal. Next, we per-
formed automated segmentation of 4,6-diamidino-2-phenylindole 
(DAPI)-labeled cell nuclei using a custom deep learning pipeline. The 
ground-truth dataset used for training was composed of 12 image and 
mask pairs tilled into 16 random 256 × 256 pixel image patches and split 
into three batches comprising training, validation and test datasets in 
a 70:15:15 ratio. The convolutional neural network trained for binary 
segmentation involved a custom ‘light weight’ U-Net with a reduced 
depth of one level as compared with the original implementation75 
resulting in a network with ~0.5 million nodes and using ELU instead of 
ReLu as activation functions. Training was carried out using Tensorflow 
2.0 and Keras 2.8 libraries76, using a custom loss function combining 
weighted binary cross-entropy and dice index loss, and using the Adam 
optimizer, a batch size of 16 and a learning rate of 0.0001. Then, the 
resulting nuclei centroids were used as seeds to a initialize a watershed 
algorithm77 to generate cell instance segmentation masks on the basis 
of the averaged E-cadherin, N-cadherin, pan-cadherin and β-catenin 
immunostaining fluorescence signals. The cell contour segmentation 
masks were further preprocessed and curved edges between cell–cell 
contacts were identified via circular arc fitting. Poor-quality edges were 
manually corrected using Fiji73.

Circular arc polygon tiling. Following image segmentation, circular 
arcs approximating the locus of cell boundaries and their contact 
points are required for downstream stress inferences22. This results in 
a circular arc polygon (CAP) tiling. More precisely, the CAP tiling fits 
a circular arc parameterized by the center of curvature ραβ and radius 
of curvature Rαβ to each cell–cell junction between two cells α and β. 
In cases where the cell–cell junction is not curved or exhibits incon-
sistent curvature (for example, ‘wiggly’ boundaries where the sign of 
curvature changes along the boundary), a straight line was fit to the 
junction instead. The curve-fitting procedure, as well as the criteria for 
identifying straight junctions, were adapted from ref. 22.

Spatial transcriptomics processing. Cells identified in the corrected 
segmentation were correlated with cells in the original segmentation 
using a pairwise Jaccard index. Real overlaps were defined as cells with 
greater than 0.1 Jaccard similarity, and all overlaps were filtered out. 
Weights for each cell in the original segmentation mask for each cell in 
the corrected segmentation mask were calculated using the fraction 

of overlap in the segmentation masks. Cells in the corrected segmen-
tation with ≤0.4 total overlap were filtered out. The resulting weights 
were used to compute corrected expression matrices, using a weighted 
mean of both the imputed expression values and raw counts for genes 
profiled by seqFISH. Corrected raw counts were further normalized by 
the total mRNAs identified in each cell and log transformed.

Tissue boundaries defined by transcriptomic profiles. Boundaries 
within the three datasets were defined using a boundary likelihood 
metric. For a given cell i with neighbors N and two sets of cell types A 
and B, the boundary likelihood between A and B at cell i was defined as

L = 1
N ∑

i∈N
[i ∈ A] × 1

N ∑
i∈N

[i ∈ B]. (1)

A threshold of L > 0.15 was applied to identify cells at a boundary. The 
boundary within the ‘embryo 2 midbrain–hindbrain’ region was defined 
manually, similarly to the method applied in the original study24.

To investigate properties of cell–cell junctions at boundaries, 
each cell was assigned a distance to boundary d, defined as the number 
of neighbors between that cell and the closest cell belonging to the 
boundary. A cell–cell junction between the cell pair {α, β} was defined 
as ‘near-boundary’ if min(dα, dβ) ≤5 and ‘at-boundary’ if min(dα, dβ) =0. 
At-boundary junctions were then classified as homotypic if both cells 
belonged to the same cell-type set, or heterotypic otherwise.

LR signaling analysis across tissue compartment boundaries. 
Log-transformed, normalized imputed gene expression values were 
derived after correction using the method described above and used 
for analysis of LR signaling potential across tissue boundaries.

LR annotations from the CellChat database78 were obtained with 
Omnipath79 and filtered for LR pairs for which both ligand and receptor 
showed non-zero expression in our transcriptomic data. An ‘interaction 
potential’ PL→R,α,β = Lα × Rβ was defined for each LR pair {L, R} across the 
cell pair {α, β} to quantify the potential degree of signaling through 
the receptor. This definition takes into account the directionality of 
signaling interactions and allows for the signaling through the recep-
tor to be investigated independently for both tissues at a boundary.

LR signaling interactions were compared for two spatially adjacent 
cell types {A, B} using the interaction likelihood metric l, defined as

lL→R = min(WA,WB), (2)

where WA represents the Wilcoxon rank-sum test statistic between the 
interaction potential distribution PL→R,α,β for α ∈ A, β ∈ B and the interac-
tion potential distribution for {α, β} ∈ A. Signaling interactions were 
ranked by interaction likelihood, with negative interaction likelihoods 
(that is, where the {A, A} interaction likelihood or {B, B} interaction 
potential is higher than the {A, B} interaction likelihood) filtered out, 
and genes in the top 50 interactions were tested for overrepresentation 
of GO terms compared to the total set of ligand and receptor genes (see 
the 'GO analysis' section).

Mechanics quantification
Inferring tension from images. There are a variety of methods for 
inferring intercellular stress in tissues at mechanical equilibrium, that 
is, where the tensions at each vertex of the cell array sum to zero23. These 
methods vary in sophistication, which mechanical features are inferred 
and dependence on the image segmentation quality. At the most basic 
level, segmentation-free methods exploit the correlation between 
cell shape anisotropy and stress anisotropy to derive coarse-grained 
estimates of tissue stress in tissues where accurate cell segmentation 
cannot be performed80. If segmentation is possible, but there is high 
noise that prevents a precise determination of the geometry of cell–cell 
junctions and vertices, methods such as chord inference can be used 
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that model cell–cell junctions as straight lines and therefore discount 
the contribution of cell pressure to the geometry of the cell array20. 
Tangent inference methods improve on chord inference by using the 
angle between cell–cell junctions at vertices. This allows for less noisy 
output but requires more precise image segmentation. However, cell 
pressures are again not taken into account in this approach81. Recent 
methods are able to infer both cell junction tension and cell pressure by 
measuring the curvature at cell–cell junctions as well as vertex angles. 
However, these methods generally require increased segmentation 
precision and are not robust to noise. The VMSI method22 circumvents 
these issues by inferring both pressures and tensions simultaneously 
from fitted CAP tilings instead of the segmented image, as the CAP til-
ing provides additional noise reduction over the segmentation itself. 
Hence, we build on and extend the VMSI method to probe the mechani-
cal properties of seqFISH generated data.

Mechanical phenotypes. Following22, three mechanical phenotypes 
were computed for each cell α and each adjacent cell pair (α, β): the 
cellular pressure pα, the cell–cell junctional tension Tα,β and the stress 
tensor σα.

Given a CAP tiling, let ραβ be the center of the curvature of the 
circular arc at the (α, β) cell–cell junction, and let Rαβ be the radius 
of curvature of the same arc. Force balance equations result in geo-
metrical constraint variables {q, θα}, which parameterize the curvature 
center and radius

ραβ =
pβqβ − pαqα

pβ − pα
, (3)

Rαβ =
√√√
√

pαpβ|qα − qβ|2

(pα − pβ)
2 −

θα − θβ
pα − pβ

. (4)

Cellular pressure. Cellular pressures were computed in two steps22. First, 
initial values for cell pressures pα and geometric constraint parameters 
q enforced the condition that ραβ the center of curvature to the edge 
vertices ri, rj, must be perpendicular to the edge tangents τi, τj, minimiz-
ing the functional

Ep,q =
1
ne

Σ(α,β)[ ̂ti × τ̂j]
2 + [ ̂tj × τ̂j]

2, (5)

where ̂ttti is the unit vector along ri − ραβ and ̂τi is the edge tangent at vertex 
i. Similarly, initial values θ optimized the functional

Eθ = Σ(α,β)R2
αβ − ( 12 |ri − ραβ| +

1
2 |rj − ραβ|)

2
, (6)

where ραβ were calculated using the {p, q} values determined previously. 
Second, the initial values (pα, qα, θα) were used to instantiate the gradi-
ent descent optimization of the objective

Ep,q,θ =
1

2ne
∑
(α,β)

Nα,β

∑
n
(|rαβ(n) − ραβ| − Rαβ)

2, (7)

finding the mechanical equilibrium parameters resulting in a CAP 
tiling which best approximated the one obtained through image seg-
mentation. Here, rαβ(n) denotes the nth pixel along the circular arc 
approximation of the edge between cells (α, β) in the segmented CAP 
tiling, and ne denotes the total number of edges.

Cell–cell junctional tension. Cell–cell junctional tensions were com-
puted as functions of the corresponding cellular pressures and the 
corresponding radius of curvature using the Young–Laplace law: 
Tαβ = (pα − pβ)Rαβ.

Stress tensor. The 2D cellular stress tensors σα were defined from the 
inferred cellular pressures and cell–cell junctional tensions using 
Batchelor’s formula82

σα = −pαδ + ∑
{β}α

Tαβ

2Aα
∫
rαβ

dr ̂rαβ ⊗ ̂rαβ, (8)

where pα and Aα denote the pressure and area of cell α, respectively, Tαβ 
denotes the junctional tension between adjacent cells (α, β), and ̂rαβ is 
the unit vector along the junction. The resulting 2 × 2 stress tensor 
encodes all of the stress information of a cell65. Using the elements of 
the cellular stress tensor, five interpretable descriptors of the mechani-
cal state of a cell can be computed: the two eigenvalues of the stress 
tensor, the stress tensor magnitude, the stress tensor anisotropy and 
the stress tensor orientation. The stress tensor magnitude was defined 
as the sum of its eigenvalues, its anisotropy was defined as the eccen-
tricity of ellipse formed by the two eigenvectors and its orientation 
was defined as the angle between the major axis of the ellipse formed 
by the two eigenvectors and the x axis of the image.

Practical considerations
Calibration via mask processing. For force inference results to be 
valid, variational methods such as VMSI22 assume that all vertices 
between cells are threefold, as a large proportion of vertices with more 
than three cells would violate the assumption of mechanical equilib-
rium23. The dual triangulation used by VMSI explicitly forbids fourfold 
(or greater) vertices. In our implementation (Fig. 1a), these vertices are 
filtered before inference by recursively splitting each invalid vertex into 
two vertices in the direction of greatest variance of neighbor vertices 
until all vertices are threefold. Further, VMSI assumes that all angles 
between cell junctions at a vertex are convex. Concave vertices under 
the VMSI formulation imply negative tension at one of the junctions23, a 
situation that is hard to motivate biologically and beyond the scope of 
the method. Therefore, concave vertices are assumed to be a precision 
error in the cell segmentation, and are dealt with by moving the vertex 
until all angles between junctions are concave, as shown in Fig. 1a.

Robustness checks via simulations. Synthetic images of 2D multi-
cellular tissues (Supplementary Fig. 1a) for which the ground-truth 
values of cell pressures and cell–cell junction tensions are known 
were generated to test the accuracy and robustness of force infer-
ence. The estimated force inference values were highly correlated 
with their corresponding ground-truth values (Spearman’s ρ > 0.96; 
Supplementary Fig. 1b) across a range of average pressure differentials 
(Supplementary Fig. 1f,g) and image sizes (Supplementary Fig. 1e). 
Furthermore, our approach showed robustness against noise in the 
measured vertex position as well as occasional incorrect merging of 
adjacent cells (undersegmentation) during image segmentation (Sup-
plementary Fig. 1c,d). This is notable as these are common sources of 
error in instance cell segmentation and demonstrates the practical 
applicability of our image-based force inference algorithm to real 
microscopy images.

Optimization details. We developed a Python implementation of 
the VMSI algorithm. All optimization steps were performed using the 
augmented Lagrangian method with a subsidiary L-BFGS algorithm 
using the NLopt optimization library83. Analytic Jacobians were sup-
plied for the objective and constraint functions for increased speed 
and accuracy.

Tissue boundary maintenance and cell sorting simulations
To simulate tissue compartments boundary maintenance and cell 
sorting, we used a custom C++ implementation43 of the Cellular Potts 
Model42. In this framework, multicellular tissues are represented as 2D 
lattices of pixels, k, partitioned into N cells. Each cell, i, is composed of 
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all the lattice sites with a pixel value equal to i, with i ∈ {1…N}. Each cell 
is assigned a cell-type, τk, which is defined at the pixel level, and is thus 
a function of its position on the lattice. The dynamics of this system is 
driven by two components: a membrane surface energy term and an 
elastic deformation term. The membrane surface energy is determined 
by cell–cell junctional tensions—the outputs of the mechanical force 
inference algorithm—and controlled by a cell-type dependent param-
eter Jτk ,τk′. The elastic deformation term enforces the condition that 
cell volumes Vi do not markedly deviate from a target value V0 and are 
parameterized by a bulk modulus κ. The cell–cell interactions and the 
volume constraints can be combined into a global energy function, E 
in which

E = ∑
i

1
2 κ(Vi − V0)

2 + ∑
(k,k′)

Jτk ,τk′ (1 − δi(k)i(k′)) , (9)

where i represents the cell index and (k, k′) represent pairs of neighbor-
ing pixels, δi(k)i(k′) takes the value of unity when both pixels belong to 
the same cell and 0 otherwise, to solely account for interactions at 
cell–cell junctions. Moreover, Jτk ,τk′ = Jhom if k and k′ belong to two cells 
of the same cell type, and Jτk ,τk′ = Jhet  if k and k′ belong to two cells of a 
different cell type. The system dynamics results from the iterative 
minimization of this energy function through the Metropolis Monte 
Carlo algorithm84, where the level of noise in the system is accounted 
for by a temperature parameter T. Time is here expressed in Monte 
Carlo steps (MCS), where 1 MCS corresponds to an average of one itera-
tion per pixel over the whole lattice. For the simulations described in 
Fig. 3 and Supplementary Fig. 6, parameters are set to V0 = 40, κ = 1.0 
and T = 10.0. The numerical values used in simulations for parameters 
Jhom and Jhet differ for each dataset and are those inferred for the homo-
typic and heterotypic junctional tensions reported in Fig. 3c. For simu-
lating tissue compartment boundary maintenance, a cell aggregate 
was initially split in two by a straight boundary separating two distinct 
cell types. For cell sorting simulations, initial conditions were set to a 
cell aggregate where the two cell types were allocated at random. For 
all simulations the total number of cells was set to N = 540 cells, which 
were equally assigned to both cell types considered. All simulations 
were run for 50,000 MCS and at least in 6 replicates. To quantify the 
boundary maintenance and sorting dynamics, we computed the het-
erotypic boundary length, lHB, defined as the total length of the inter-
face between cells of a different cell type

lHB = ∑
(k,k′)

(1 − δτk ,τk′ ) , (10)

where δτk ,τk′ takes the value of unity when k and k′ belong to cells of the 
same cell type and 0 otherwise. As shown in Supplementary Fig. 6c, lHB 
decreases over time in cell sorting simulations, as cells of a different 
cell type sort out in spatially distinct clusters. However, as shown in 
Supplementary Fig. 6d, during boundary maintenance simulations, 
lHB remains constant, as long as the boundary between the two tissue 
compartments is maintained.

Integrative analysis of tissue mechanics in serial sagittal planes
Inferred cellular mechanical properties were compared across serial 
sagittal planes of the mouse MHB as follows. The two z slices available 
from this tissue section were separated by 12 μm in the z direction, but 
with the same x and y positions as dataset 3. Owing to the 12 μm z sepa-
ration, these parallel z slices do not contain the same cells. Therefore, 
to enable an unbiased comparison of inferred mechanical properties, 
we devised a method to smooth the cell pressure and stress tensor 
magnitude, and sample these smoothed values across a grid of points 
common to both planes to be used for further analysis.

We first initialized a 40 × 40 square grid of sampling points to 
cover the entire field of view of the tissue image. To filter out points that 

are outside of the tissue region for which mechanical properties are 
inferred in at least one z slice, we approximated each cell for which we 
have inferred mechanical properties as a rectangle defined by the cell 
centroid and bounding box dimensions; any sampled points which do 
not lie within a cell in both z slices was filtered out. Next, we calculated a 
Gaussian-smoothed mechanical quantity at each sampled point using 
the following smoothing function

qi =
N
∑
j
q j ×wij, (11)

wij =
exp (− 1

2
( d(i, j)

σ
)
2
)

∑N
k exp (− 1

2
( d(i,k)

σ
)
2
)
, (12)

for each mechanical quantity qi at a sampled point i, smoothing across 
N cell centroids indexed by j. We use the Euclidian pixel distance as our 
distance function d(i, j), and take σ = 100.

We next computed local spatial correlations for the smoothed cell 
pressure and stress tensor magnitude across z slices using scHOT41. In 
detail, we defined a conical weight matrix with span 0.05, and com-
puted the local weighted Spearman correlation for each sampled point. 
For a weighting scheme w that assigns a weight to each point, and two 
vectors of mechanical properties x and y, we determined the weighted 
Spearman correlation by first calculating the weighted rank for each 
vector of mechanical properties

r x
i =

N
∑
j
w j1(xi < xj), (13)

r y
i =

N
∑
j
w j1(yi < yj), (14)

where 1 is the indicator function, and i, j ∈ N are sampled points. The 
weighted Spearman correlation is then the weighted Pearson correla-
tion of the weighted ranks

rweightedSpearman =
∑N

i wi (r xi − ̄rx) (r yi − ̄ry)

√∑N
i wi(r xi − ̄rx)

2
∑N

i wi(r yi − ̄ry)
2
. (15)

Finally, to determine how the local correlation in cell pressure 
and stress tensor magnitude varies as a function of the distance to the 
MHB, we computed for each sampled point an average distance to the 
boundary, defined as the mean of the distance to the closest boundary 
cell in each z slice, and binned these average boundary distances into 
10 bins, each containing an equal number of sampled points.

Statistical mechano-transcriptomics analysis
Linear regression. Associations between gene expression and mechan-
ical properties were first tested using linear regression. Two mechanical 
properties: cell pressure and stress tensor magnitude, were tested. 
Mechanical properties were first log normalized and regression was 
performed using the linear model:

gi = βlinregqi + ϵi, (16)

for a gene g and log-transformed mechanical property q with a standard 
normal error term ϵ. Significance was determined by the false discovery 
rate-adjusted P value of the t-test statistic for the regression coefficient 
βlinreg, using a threshold of Padj ≤ 0.05 after correction using the Benja-
mini–Hochberg (BH) procedure.
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Structural equation regression. The linear regression model 
described above does not take into account potential spatial con-
founding effects, which are probably present in our data. Spatial 
location can influence both gene expression and cell mechanics. On 
a local scale, cells in close spatial proximity influence each others’ 
expression profiles and mechanical properties through cell–cell 
interactions. On a global scale, cell types, which are highly spatially 
structured, play important roles in dictating gene expression and 
mechanical properties. To account for this potential spatial con-
founding in both the predictor and response variables, we therefore 
used a gSEM25.

The gSEM accounts for spatial confounding by fitting a thin plate 
regression spline to determine the effect of spatial location on both 
the predictor and response variables,

xi = f x(ci) + ϵx
i , (17)

where x is the predictor or response variable, ci is the spatial coordinate 
associated with xi, and ϵ is a standard normal error term. The fitted 
values are then subtracted from the predictor and response variables 
to give the spatially regressed residual r. The gSEM is the linear model

r gi = βspatialrqi + ϵi, (18)

where rg = g − fg(c) is the spatially regressed residual for the normalized 
gene expression g and rq = q − fq(c) the residual for the log-transformed 
mechanical property q. Significance testing was performed as for the 
linear regression model described above.

Nonlinear associations between gene expression and mechani-
cal forces. The regression methods described above uncover lin-
ear relationships between gene expression and mechanical forces. 
However, nonlinear relationships may also exist. Specifically, gene 
expression may be associated with mechanical stress in a nonlinear 
monotonic manner, which could indicate the presence of feedback 
loops or auto-regulation in mechano-sensitive signaling pathways. 
Alternatively, nonlinear nonmonotonic associations may suggest the 
presence of band-pass filter-like mechanisms wherein gene programs 
are only active within certain ranges of cellular mechanical stress or 
pressure.

To test this, we ranked cells by pressure or stress tensor magnitude, 
and computed a smoothed estimate of gene expression along the 
ranked cells using the weighted median. The stress tensor magnitude 
was computed as either λ1 + λ2, the sum of the stress tensor eigenvalues 
for each cell (dataset 2), or max(λ1, λ2), the max eigenvalue for each cell 
(dataset 3). Given a weighting scheme w that assigns a weight to each 
cell, and a vector of gene expression values g, the weighted median is 
the solution of the optimization problem

a∗ = arga minΣn
i wi|gi − a|. (19)

We used a triangular weight matrix with span 0.1, which assigns 
non-zero weights to cells which have a pressure/stress tensor ranking 
within 10 percentiles of a given cell. This corresponds to ~150 cells in 
our datasets.

Significance testing was performed using scHOT41, which imple-
ments a permutation test-based method. scHOT randomly permutes 
the cell ranking and recomputes the weighted median along the per-
muted ranking. The variance of the weighted median values was then 
used as a test statistic. We used 200 permutations per gene to ensure 
robust significance estimates. Permutation test P values were then 
corrected for multiple hypothesis testing using the BH procedure.

To ensure computational tractability, the top 3,000 highly vari-
able genes were identified using Scanpy, and scHOT testing was used 
to identify genes for which the weighted median expression changes 

significantly along the pressure or stress tensor magnitude ranking. A 
threshold of Padj ≤ 0.1 was used to determine significantly associated 
genes. Weighted median profiles were then clustered using hierarchi-
cal clustering and the number of clusters was estimated automatically 
using dynamicTreeCut. Overrepresentation of GO terms within clusters 
compared to the total set of scHOT-tested genes was then performed 
as described in the GO analysis section.

GO analysis. GO overrepresentation analysis was performed using the 
enrichGO() function from the clusterProfiler R package85. Each gene set 
was tested for overrepresentation of GO terms against a background 
set composed of all 29,452 genes for which expression values have been 
measured or imputed. As GO terms are organized hierarchically, the 
simplify function was used to remove redundant terms.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data presented in this study are available via Zenodo at https://doi.
org/10.5281/zenodo.13975707 (ref. 86).

Code availability
A Python implementation of the combined force inference, morpho-
metrics and transcriptomics framework, as well as the code required 
to reproduce the subsequent analyses presented here are available via 
Zenodo at https://doi.org/10.5281/zenodo.13975227 (ref. 87).
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