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A systematic benchmark of Nanopore 
long-read RNA sequencing for 
transcript-level analysis in human cell lines
 

The human genome contains instructions to transcribe more than 
200,000 RNAs. However, many RNA transcripts are generated from the 
same gene, resulting in alternative isoforms that are highly similar and 
that remain difficult to quantify. To evaluate the ability to study RNA 
transcript expression, we profiled seven human cell lines with five different 
RNA-sequencing protocols, including short-read cDNA, Nanopore 
long-read direct RNA, amplification-free direct cDNA and PCR-amplified 
cDNA sequencing, and PacBio IsoSeq, with multiple spike-in controls, and 
additional transcriptome-wide N6-methyladenosine profiling data. We 
describe differences in read length, coverage, throughput and transcript 
expression, reporting that long-read RNA sequencing more robustly 
identifies major isoforms. We illustrate the value of the SG-NEx data to 
identify alternative isoforms, novel transcripts, fusion transcripts and 
N6-methyladenosine RNA modifications. Together, the SG-NEx data provide 
a comprehensive resource enabling the development and benchmarking 
of computational methods for profiling complex transcriptional events at 
isoform-level resolution.

Gene expression is commonly estimated as the total amount of RNA 
transcripts that are generated from each gene. However, alternative 
promoters, exon skipping, intron retention, 3′-end sites and polyade-
nylation enable a single gene to generate a large number of alternative 
isoforms, each corresponding to a different RNA transcript. Such alter-
native transcripts can be differentially regulated, leading to differences 
in transcript expression across samples and conditions even when the 
overall gene expression levels are stable1–5. Due to the differences in 
their RNA sequence, alternative transcripts can have different function-
ality, and their regulation and expression play a key role during early 
development6,7, in defining cellular identity8,9 and in human diseases10,11.

The comprehensive profiling and low cost of short-read RNA 
sequencing (RNA-seq) have made it one of the most widely used 
technologies to study molecular properties of cells and tissues12. 
The majority of short-read RNA-seq data are based on PCR-amplified 
sequencing of cDNA, which introduces biases that lead to different 
exons being sequenced at different coverage levels13. While short-read 

data generate robust estimates for gene expression, the presence of 
overlapping annotations and systematic biases limits the ability to 
uniquely assign reads to individual RNA transcripts14,15. To deal with the 
increased uncertainty, approaches have been developed that focus on 
specific splice-junction or exon usage1,5,16,17. However, more complex 
transcriptional events that involve multiple exons are often not fully 
captured18–21.

Long-read sequencing promises to overcome some of the main 
limitations of current short-read RNA-seq protocols for transcriptome 
profiling22–24 at a cost per gigabase comparable with current short-read 
technologies (Supplementary Fig. 1a), potentially enabling the wide-
spread adoption of long-read RNA-seq. Long-read RNA-seq can be gen-
erated using the PacBio sequencing platform (IsoSeq), or the Oxford 
Nanopore sequencing platform, which offers three different protocols. 
PCR-amplified cDNA sequencing requires the least amount of input 
RNA and generates the highest throughput. When sufficient RNA is 
available, the PCR step can be omitted using the direct cDNA protocol. 
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modules. The pipeline is dynamically tested on a full-sized dataset, it 
allows data processing through Docker and Singularity, and it can be 
executed on the cloud. Nanoseq is implemented in the Nextflow lan-
guage46 and maintained as a community-curated pipeline on nf-core47.

A comparison of five RNA-seq protocols
Using the SG-NEx core data, we compared the five different RNA-seq 
protocols in terms of throughput, read length, transcript coverage, 
potential library preparation biases and gene and transcript expression 
estimates. Among the long-read RNA-seq protocols, PCR-amplified 
cDNA sequencing consistently generated the highest throughput per 
sample, with the most recent sequencing data matching short-read 
RNA-seq (Fig. 2a and Supplementary Figs. 1b,c and 3a,c).

PacBio IsoSeq generated the longest reads on average, followed by 
the direct RNA-seq protocol (Fig. 2b and Supplementary Fig. 3b). The 
long-read protocols showed higher coverage at the 5′ and 3′ ends of 
transcripts when compared to short-read RNA-seq, possibly reflecting 
short-read-specific limitations due to RNA fragmentation (Fig. 2c and 
Supplementary Figs. 1e and 3e). The direct RNA-seq protocol starts the 
sequencing process at the poly(A) tail, which is reflected in a higher cov-
erage at the 3′ end compared to the 5′ end (Fig. 2c and Supplementary 
Figs. 1e and 3e). The PCR-amplified cDNA sequencing and the PacBio 
IsoSeq data showed the most uniform coverage across the transcript 
length and the highest proportion of reads spanning all exon junctions 
(‘full-splice-match reads’, Fig. 2c,d and Supplementary Figs. 1e–g and 
3e,f), whereas short-read RNA-seq had the highest fraction of reads 
that were assigned to multiple transcripts (Fig. 2d and Supplementary 
Fig. 1f). However, not all transcripts appear to be equally amplified by all 
protocols. In particular, transcripts from the 1,000 genes with the high-
est gene expression estimate accounted for a significantly larger pro-
portion of the overall transcript expression in the PCR-amplified cDNA 
sequencing protocol compared to the PCR-free Nanopore RNA-seq 
(Fig. 2e; two-sided t-test, P = 0.00041; Supplementary Fig. 1g), and 
the PacBio IsoSeq data showed a significant depletion of shorter tran-
scripts (Supplementary Fig. 1h,i; two-sided t-test, P < 0.00001). Finally, 
we observed that transcripts from some genes were incompletely 
amplified and sequenced in the PCR cDNA protocol across all cell lines 
when compared to direct sequencing of the same RNA sample (Fig. 2f, 
Supplementary Fig. 1j,k and Supplementary Table 3). While the biases 
that are introduced in the fragmentation step in short-read RNA-seq 
are avoided with long reads, these results show that the library prepara-
tion method still introduces differences in read length, coverage and 
transcript diversity when using long-read RNA-seq.

Gene expression is robustly estimated across protocols
To avoid uncertainty of individual transcript expression estimates, 
the overall gene expression estimate, corresponding to the sum of all 
transcripts for each gene, is commonly used. To compare the ability of 
the different long-read and short-read RNA-seq protocols to quantify 
gene expression, we first analyzed estimates for spike-in data using 
ERCC, long SIRV, SIRV E0, SIRV E2 and two different Sequin mixtures. 
The direct RNA-seq protocol was removed from this comparison due to 
its incompatibility with existing spike-in RNA libraries (Supplementary 
Fig. 4a). Gene expression estimates from Nanopore long-read RNA-seq 
data showed the lowest estimation error overall and a higher correlation 
with the expected concentrations (Fig. 3a, Supplementary Fig. 4a and 
Supplementary Table 4), which was consistent when alternative compu-
tational quantification methods were used (Supplementary Fig. 4a,d,e). 
Among all RNA-seq protocols, the largest difference was observed in the 
PacBio IsoSeq data, which was possibly due to an uneven representation 
of transcript lengths, with low coverage for short transcripts (<1 kb; 
Supplementary Figs. 1h,i and 4a,d,e and Supplementary Text Fig. 13).

Gene expression estimates were highly correlated between 
short-read and Nanopore long-read RNA-seq both on spike-in RNAs 
and non-spike-in RNAs, with the highest correlation observed for 

The direct RNA-seq protocol enables sequencing of native RNA, thereby 
avoiding the reverse transcription and amplification steps, as well as 
providing information about possible RNA modifications25,26. While 
several long-read RNA-seq datasets have been described, they are low 
throughput23–25, lack replicates27–30 or cover single conditions24,31 or 
individual protocols25; thus, this limits the ability to comprehensively 
compare and evaluate the different RNA-seq protocols.

Here we present the results from the Singapore Nanopore Expres-
sion (SG-NEx) project, a comprehensive benchmark dataset and sys-
tematic comparison of five different RNA-seq protocols. The SG-NEx 
core data consist of seven human cell lines that were sequenced in 
multiple replicates using short-read RNA-seq, Nanopore long-read 
direct RNA, amplification-free direct cDNA and PCR-amplified cDNA 
sequencing, as well as PacBio IsoSeq. The core dataset includes six 
different spike-in RNAs with known concentrations32–34 and includes 
a transcriptome-wide reference map of N6-methyladenosine (m6A). To 
provide a broader coverage of the human transcriptome and facilitate 
new biological discoveries, the core dataset is extended with long-read 
RNA-seq from seven additional cell lines and tissues. We further provide 
a community-curated nf-core pipeline that simplifies data processing, 
method evaluation and biological discoveries. We compare the differ-
ent RNA-seq protocols, investigate the impact of fragmentation and 
short-read sequencing on transcript quantification, and illustrate how 
long-read RNA-seq facilitates analysis of full-length fusion transcripts, 
alternative isoforms and RNA modifications. The inclusion of multiple 
cell lines, all major RNA-seq platforms and spike-in controls, and each 
with multiple replicates, makes the SG-NEx data a unique resource 
that will be invaluable for the benchmarking and development of 
computational methods for differential expression analysis, transcript 
discovery and quantification, fusion gene detection and identification 
of RNA modifications from long-read RNA-seq data.

Results
A comprehensive resource for long-read RNA-seq
The core SG-NEx data resource consists of seven commonly used cell 
lines for colon cancer (HCT116), liver cancer (HepG2), lung cancer 
(A549), breast cancer (MCF7), leukemia (K562), ovarian cancer (HEYA8) 
and the H9 human embryonic stem cell line. Each cell line was sequenced 
with at least three high-quality replicates using the direct RNA protocol 
(direct RNA), the amplification-free cDNA protocol (direct cDNA), 
the PCR cDNA protocol (cDNA) and paired-end, 150-bp short-read 
Illumina cDNA sequencing (Fig. 1a). For a subset of sequencing runs, 
we included Sequin (V1, V2), ERCC, spike-in RNA variants (SIRVs; E0, 
E2) and long SIRV spike-in RNAs with known concentrations32–34, PacBio 
IsoSeq data and transcriptome-wide m6A profiling (m6ACE-seq) to 
evaluate the ability to detect RNA modifications from direct RNA-seq 
data. This core SG-NEx dataset was extended with additional samples 
from two stomach cancer cell lines (NCC24, IM95), a head and neck 
cancer cell line (HN1-NPC7), the HEK293T cell line and three samples 
from individuals with multiple myeloma. These additional samples were 
sequenced with selected protocols to cover a broad spectrum of the 
human transcriptome and its variation across cell lines and individuals. 
In total, we have sequenced 139 libraries for 14 cell lines and tissues, with 
an average sequencing depth of 100.7 million long reads for the core 
cell lines (Fig. 1b,c, Supplementary Tables 1 and 2 and Supplementary 
Fig. 2). The SG-NEx provides a community resource through GitHub 
via https://github.com/GoekeLab/sg-nex-data/.

nf-core/nanoseq: a community-curated pipeline
To facilitate the streamlined processing and analysis of long-read RNA-seq 
data, we developed the nanoseq pipeline (Fig. 1d). Nanoseq performs 
quality control, alignment35,36, transcript discovery and quantification37–39, 
differential expression analysis17,40–42, RNA fusion detection43 and RNA 
modification detection44,45. Each module provides the option to use dif-
ferent existing methods that can be seamlessly integrated with the other 
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protein-coding genes (Fig. 3b–e and Supplementary Fig. 4b,c,f–i).  
A hierarchical clustering of the different samples resulted in the same 
cell lines being clustered together even when different RNA-seq pro-
tocols were used (Fig. 3f). While technology-specific differences in 
gene expression can be observed (Supplementary Fig. 4j–m and Sup-
plementary Text Figs. 6–8), they can be modeled and removed during 
differential gene expression analysis when long-read and short-read 
RNA-seq data are available across conditions of interest, as is the case 
for the SG-NEx core data (Supplementary Text Fig. 9). These results 
suggest that aggregated gene-level profiling remained consistent 
despite the observed differences across sequencing protocols, indicat-
ing that Nanopore RNA-seq data can be integrated and combined with 
short-read RNA-seq data for gene expression analysis.

Major isoforms are more robustly estimated with long reads
While gene expression analysis is well established, the estimation of 
transcript expression abundance is more challenging as distinct tran-
scripts from the same genes are often largely similar19–21. Similarly to 
gene expression on spike-in RNAs, we observed that the Nanopore 
long-read sequencing protocols showed higher correlation between 
the estimated and expected transcript expression levels compared to 
short-read RNA-seq on the Sequin RNAs (Fig. 4a), and SIRV spike-ins 
showed higher absolute errors with short-read RNA-seq, including 
SIRVs (E0) and long SIRVs (Supplementary Fig. 5a,b,d,e).

To compare differences in transcript expression on RNA from 
human cell lines, we first identified the most abundantly expressed 
transcript for each gene in each cell line (‘major isoform’) using all 
replicates of the short-read and Nanopore long-read RNA-seq. On 
average, long-read and short-read RNA-seq identified the same major 
isoform for 13,481 (±2,021) genes per cell line, whereas they disagreed 
in the major isoform for 7,389 (±523) genes per cell line, resulting in 
more than 28,000 short-read-specific and long-read-specific major 
isoforms across all cell lines. These numbers are further reflected when 
transcript expression estimates are compared between replicates from 
the same cell line (same RNA extract) that were profiled with different 
sequencing technologies. While gene expression estimates from 
human cell lines were highly correlated, transcript expression esti-
mates showed higher variation across different protocols, possibly 
related to differences in library preparation, with the strongest differ-
ences observed between long-read and short-read protocols (Fig. 4b,c 
and Supplementary Fig. 5c,f–k). The highest agreement in abundance 
estimates was observed for major isoforms that are shared between 
long-read and short-read RNA-seq data (Fig. 4b,c and Supplementary 
Fig. 5f–j). For genes where long-read and short-read RNA-seq identified 
different major isoforms, long-read-specific major isoforms showed 
significantly higher correlation of expression estimates between both 
sequencing technologies (two-sided Mann-Whitney U-test P < 0.0001; 
Fig. 4b,c and Supplementary Fig. 5g,h). The most frequently observed 
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difference between long-read-specific and short-read-specific major 
isoforms was the use of alternative first and last exons. Specifically, 
major isoforms identified by short-read RNA-seq significantly more 
often used internal exons from the long-read-specific major isoform 
as first or last exons, typically corresponding to shorter versions of the 
long-read-specific major isoforms (internal first/last exons; Fig. 4d, 
two-sided z-test, Bonferroni-corrected P < 0.0001; Supplementary 
Fig. 5n). Furthermore, short-read-specific major isoforms were fre-
quently estimated to be lowly expressed by long-read data (counts per 
million (CPM) < 1; Fig. 4e).

While transcripts from genes with only a few annotated alternative 
isoforms show close agreement between short-read and long-read data 
(Supplementary Fig. 5l), variation increased for transcripts from genes 
with a large number of alternative isoforms (Supplementary Fig. 5l).  
A comparison of all library preparation methods showed that long reads 
cover substantially more junctions (Fig. 4f), with substantially more 
reads being uniquely assigned to a transcript (Fig. 4g). Furthermore, 

major isoforms identified by long-read RNA-seq showed substantially 
higher support by full-splice-match reads (Supplementary Fig. 5m). 
These data indicate that ambiguity in read-to-transcript assignments 
related to shorter read length may contribute to the observed difference 
in transcript expression between short-read and long-read RNA-seq data.

Read fragmentation impacts transcript expression estimates
To evaluate the impact of shorter read length and fragmentation on 
transcript abundance estimation, we generated in silico fragmented 
long-read RNA-seq data to simulate short-read RNA-seq. For this simu-
lation, we used long reads that were aligned to the transcriptome, per-
formed error correction using the reference transcriptome sequence and 
then sampled 150-bp error-corrected, short (fragmented) reads from 
these long reads (Fig. 5a). Using this procedure, we obtained matched 
long-read, fragmented long-read (simulated short-read) and Illumina 
short-read data for 67 SG-NEx samples, which we then used to estimate 
the impact of fragmentation on transcript abundance estimation.
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http://www.nature.com/naturemethods


Nature Methods | Volume 22 | April 2025 | 801–812 805

Analysis https://doi.org/10.1038/s41592-025-02623-4

While major isoforms identified by long-read RNA-seq were more 
robust against read fragmentation (Spearman correlation coefficient: 
major long + short read, ρ  = 0.9; long-read-specific, ρ  = 0.7), 
short-read-specific major isoforms were most strongly impacted 
(ρ = 0.5; Fig. 5b), reflecting our observations from the comparison of 
long-read RNA-seq with Illumina short-read RNA-seq data. Further-
more, major isoforms that were only identified by Illumina short-read 
RNA-seq data showed significantly higher transcript expression esti-
mates in the fragmented long-read RNA-seq data when compared with 
the expected transcript expression from the original long-read data 
(Fig. 5b,c). A comparison of the fragmented long-read RNA-seq data 
with the Illumina short-read RNA-seq data generated from the same 
RNA samples further confirmed that the simulated read fragmentation 
significantly increased the correlation (before fragmentation, 
ρ = 0.38; after fragmentation, ρ = 0.61; two-sided pairwise t-test, 
P < 0.0001; Fig. 5d), demonstrating that read fragmentation partially 
explains the observed difference in transcript expression estimates 
between short-read and long-read RNA-seq data (Supplementary 
Fig. 5o). Together, these results demonstrate that transcript quanti-
fication is sensitive to RNA fragmentation and reduced read length. 
In particular, read fragmentation increases transcript expression 
estimates for some isoforms that appear as the major isoforms only 
in Illumina short-read RNA-seq data.

Experimental validation confirms long-read-specific  
major isoforms
To further confirm our findings, we shortlisted 13 highly expressed 
genes with discordant major isoforms between long-read and short-read 
RNA-seq data in the MCF7 cell line, and performed quantitative PCR 
(qPCR) and digital PCR (dPCR) on the unique sequences specific to each 
of the long-read-specific and short-read-specific major isoforms. In 
some cases, where the short-read-specific major isoform is a subset of 
the long-read-specific major isoform (that is, the splice junctions are 
completely contained within the long-read-specific major isoform), we 
compared the unique sequence from the long-read-specific major iso-
form and the common sequence shared between the long-read-specific 
and short-read-specific major isoforms. Firstly, we observed that the 
concentration levels estimated (relative fluorescence units, RFUs) from 
dPCR experiments agree well with the abundance estimates obtained 
from long-read RNA-seq, but not those from short-read RNA-seq (Pear-
son correlation coefficient: (r) 0.97 (long-read RNA-seq) versus −0.6 
(short-read RNA-seq); Fig. 5e,f). Furthermore, the data confirm that for 
all 13 genes, the long-read-specific major isoform was the most abun-
dant isoform (Fig. 5e–n and Supplementary Text Fig. 22). qPCR results 
also confirmed that long-read-specific major isoforms are detectable 
at high concentration levels, while short-read-specific major isoforms 
were detected at much lower concentrations (Fig. 5h,l, Supplementary 
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versus dcDNA, cDNA versus dcDNA, dRNA versus Illumina, cDNA versus Illumina, 
and dcDNA versus Illumina, respectively) and light blue represents replicates 
from the same cell line (intra-cell line: n = 113, 103, 90, 86, 73 and 69. c, Box plots 
showing the median, upper and lower quartiles, and 1.5 times the interquartile 

ranges of the Spearman correlation between log2-transformed CPMs (using 
Salmon) for long-noncoding RNA genes from replicates generated by different 
protocols. Light green represents replicates from different cell lines (inter-cell 
line: n = 667, 617, 534, 514, 447 and 411, for dRNA versus cDNA, dRNA versus 
dcDNA, cDNA versus dcDNA, dRNA versus Illumina, cDNA versus Illumina, and 
dcDNA versus Illumina, respectively). Light blue represents replicates from the 
same cell line (intra-cell line: n = 113, 103, 90, 86, 73 and 69). d, Scatterplot of log2-
transformed CPMs from protein-coding genes obtained from long-read direct 
cDNA (using Salmon) compared with those obtained from short-read RNA-seq 
(using Salmon) in the A549 cell line. e, Scatterplot of log2-transformed CPMs from 
long-noncoding genes obtained from long-read direct cDNA (using Salmon) 
compared with those obtained from short-read RNA-seq (using Salmon) in the 
A549 cell line. f, Heatmap showing the correlation of gene log2-transformed CPM 
estimates across the SG-NEx samples generated using PCR cDNA, direct cDNA, 
direct RNA and short-read protocols.
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Table 5 and Supplementary Text Fig. 22). These observations confirm that 
long-read RNA-seq data more robustly identify major isoforms compared 
to short-read RNA-seq data, suggesting that the observed difference in 
transcript expression between short-read and long-read RNA-seq data 
may partially be the consequence of inflated expression estimates in 
short-read RNA-seq due to fragmentation and reduced read length.

Alternative isoform expression in the SG-NEx data
The presence of full-splice-match reads in long-read RNA-seq data 
can unambiguously identify alternative isoforms that are expressed, 

enabling the analysis of complex splicing events involving multiple 
exons48–50. Across all seven SG-NEx core cell lines, we observed that 
thousands of genes used multiple isoforms in each cell line that were 
supported by full-splice-match reads (Fig. 6a and Supplementary 
Fig. 6a). The most frequent difference between alternative isoforms 
and the major isoform is exon skipping (40.4%), followed by alternative 
promoters (21%) and alternative last exons (16.8%; Fig. 6a,b and Supple-
mentary Fig. 6a). Some of the most complex genes used more than 20 
distinct isoforms, often involving alternative promoters, termination 
sites and splicing (Supplementary Fig. 6b).
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direct cDNA and PCR cDNA, and short-read RNA-seq, compared with expected 
log2-transformed CPMs for spike-in transcripts of four different spike-in RNAs. 
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between different RNA-seq protocols for each cell line (n = 7). Dark blue 
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isoforms obtained from long-read direct cDNA RNA-seq compared with those 
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direct RNA, direct cDNA, cDNA, PacBio and Illumina, respectively).
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Here we found that isoform switching often involves multiple 
events (13%), illustrating how full-splice-match reads provide the 
possibility to investigate long-range associations of transcriptional 
regulation such as alternative promoters with alternative splicing 

and alternative transcription end sites (Fig. 6b and Supplementary 
Fig. 6c).

Next, we identified cell-type-specific major isoform switching 
events that were supported by full-splice-match reads, highlighting 
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the variation in isoform expression and alternative splicing within and 
across human cell lines that is captured in the SG-NEx dataset (Fig. 6c, 
Supplementary Tables 6 and 7, Supplementary Fig. 6d and Methods).

Novel transcripts are enriched in repetitive elements
A key advantage of long-read RNA-seq is the ability to identify novel 
transcripts that are missing in reference annotations37,49,51. Using a 
10% novel discovery rate (NDR) threshold for transcript discovery 
in well-annotated genomes (NDR = 0.1), we identified 1,531 novel 
multi-exon transcript candidates across all samples in the SG-NEx data 
after filtering potential reverse transcription switch and intra-priming 
artifacts with SQANTI3 (ref. 52), 622 (40.6%) of which belonged to 
genomic loci that were not annotated (Supplementary Figs. 7a and 
8a–c and Supplementary Table 8). New transcripts generally have 
lower expression, a lower number of exons and lower transcript length 
compared to reference transcripts (Supplementary Figs. 7b and 8d,e),  
particularly for new transcripts from novel genes, indicating that the 
human genome is comprehensively annotated (see Supplementary Text 7  
for a comparison with different reference annotation versions and Sup-
plementary Table 8 for additionally validated novel transcripts in this 
study). Compared to annotated transcripts, we observed a significant 
enrichment of repetitive elements in exons from novel transcripts 
(two-sided Mann–Whitney U-test, P < 0.001; Supplementary Fig. 7c). 
While most major isoforms are annotated, we noted that several novel 
transcripts were involved in cell line-specific isoform switching events 
(Fig. 6c and Supplementary Fig. 6d), illustrating the value of long reads 
for transcript discovery, even in well-annotated genomes.

Discovery and quantification of fusion transcripts
Genomic rearrangements can introduce fusion genes that are associ-
ated with clinical characteristics in patients with cancer53. Using the 
SG-NEx long-read RNA-seq data, we searched for fusion genes in the six 
cancer cell lines from the core dataset. We firstly identified fusion genes 
and assigned them to genomic breakpoints using JAFFAL43 and created 
fusion chromosomes. Next, we aligned reads against the predicted 
fusion chromosome regions, and then identified and quantified fusion 
transcripts using Bambu (Methods). Across all cell lines, we identified 
106 fusion genes, 79 (74.5%) of which have been validated previously 
or observed in short-read data (Fig. 6d and Supplementary Table 10). 
To confirm these results, we selected 12 fusion genes identified in the 
MCF7 breast cancer cell line for validation with PCR, all of which were 
confirmed (Supplementary Table 11, Fig. 6d and Supplementary Fig. 9), 
indicating that long-read RNA-seq enables the robust identification of 
fusion genes. Interestingly, we additionally found full-splice-match 
read support for most of the 5′ and 3′ genes, showing that both the 
fusion genes and the unfused wild-type genes can be detected with 
long-read RNA-seq (Fig. 6d).

Unlike short-read RNA-seq data, which is limited to detecting 
the breakpoint, long-read RNA-seq data enable the reconstruction of 
complete fusion transcripts. On average, we identified two alternative 
isoforms per fusion gene that are supported by full-splice-match reads 
(Supplementary Table 12), illustrating how the SG-NEx data provide 

a unique resource for analyzing full-length fusion transcripts with 
long-read RNA-seq.

m6A RNA modifications in the SG-NEx data
The ability to directly sequence RNA using the Nanopore technology 
facilitates the discovery of RNA modifications that otherwise requires 
dedicated experimental protocols54. Here, we used m6Anet45 to obtain a 
set of candidate m6A positions (Fig. 6e and Supplementary Text Fig. 24). 
To provide an independent, transcriptome-wide map of m6A, we also 
generated m6ACE-seq data for the HCT116 cell line. Across all seven 
SG-NEx core cell lines, we found 6,337 positions that were predicted 
to be modified in at least one cell line (Supplementary Table 13), with 
59% of m6A sites in the HCT116 cell line being confirmed by m6ACE-seq 
(Supplementary Fig. 10a). Globally, we note that m6A sites can be either 
cell-type specific or modified across cell types (constitutive sites; 
Fig. 6f,g and Supplementary Fig. 10e). While constitutively expressed 
transcripts also showed cell-type-specific modifications, the major-
ity of cell-type-specific m6A sites originated from cell-type-specific 
transcripts (Fig. 6g). Among the most heavily modified genes across all 
SG-NEx cell lines was the oncogene MYC, which is shown to be regulated 
by m6A in cancer55, illustrating how direct RNA-seq can simultaneously 
profile RNA expression and modifications (Fig. 6h and Supplementary 
Fig. 10f,g).

Discussion
Here we present the results from the SG-NEx project, a systematic 
resource and benchmark dataset of current RNA-seq technologies. 
Our study highlights differences between the alternative library prepa-
ration and sequencing methods and illustrates the value of the SG-NEx 
data as a rich resource to study numerous aspects of transcriptome 
profiling, such as the identification of alternative isoform expression 
using full-splice-match reads, transcript discovery, fusion transcript 
quantification and the identification of m6A modifications.

The ability to quantify transcript expression has been previously 
compared between long-read and short-read RNA-seq data using 
spike-in RNAs56–60 and cell lines from human28,58–60, mouse56,57,59 and 
other species59,61,62, consistently showing a high level of variation in 
transcript expression estimates23,56,59 (Supplementary Table 2). How-
ever, the limited complexity of spike-in RNAs, the lack of a ground truth 
for biological samples, low sequencing depth, limited replicates or a 
focus on single protocols or cell lines have made it difficult to quantify 
the differences in the estimation accuracy when comparing differ-
ent sequencing technologies23,57,59,62. Here we compare differences in 
transcript expression between short-read and long-read RNA-seq data 
on six spike-in RNAs, seven human cell lines with multiple replicates, 
matched simulated short-read data and experimental validation by 
digital and quantitative PCR. Our analysis shows that the observed 
variation is partially explained by the fragmentation step, resulting in 
an overestimation of major isoforms in the short-read RNA-seq data. 
While short-read RNA-seq generates abundance estimates that are 
highly correlated with replicates generated using the same technology, 
our results provide evidence that a benefit of using long-read RNA-seq 

Fig. 6 | Profiling of complex transcriptional events, novel transcript, full-
length fusion transcript and m6A modification in seven human cell lines.  
a, Bar plots of different isoform switching-type events in the seven human cell 
lines. b, Upset plot of isoform switching event combinations. Top, number of 
isoforms for each combination. c, Heatmap showing the expression levels of 
325 isoforms showing significant dominant isoform switching events across 
the seven human cell lines. The type of events associated with the isoform is 
indicated at the bottom. Expression is shown for the cell-type-specific isoforms. 
d, Heatmap of fusion gene candidates detected using long-read RNA-seq data, 
showing the status of validations in this study and in the literature (top), number 
and class of breakpoints (middle) and full-splice-match read support for the 
5′ gene, 3′ gene and the fusion gene (bottom). e, Workflow for identifying m6A 

positions from direct RNA-seq data. f, Heatmap showing the clustering of direct 
RNA-seq samples based on the similarity of their m6A profile. The similarity was 
estimated using a two-sided Fisher’s test based on the number of common m6A 
sites among all sites that were tested for m6A in each pairwise comparison. The 
odds ratio was then used as enrichment score across sample replicates from the 
seven cell lines. g, Bar plots showing the number of m6A sites that were found 
across the SG-NEx cell lines, for predicted m6A sites at genes that are expressed 
across all cell lines (blue, top), and predicted m6A positions at genes that are 
expressed in at least one cell line (green, bottom). h, The MYC gene with m6ACE-
seq-detected m6A positions (green bars) and m6Anet-detected m6A probability 
inferred from direct RNA-seq data (blue bars). The direct RNA-seq coverage is 
shown in light blue for each cell line.
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is a more robust and technology-independent identification and esti-
mation of major isoforms compared to short-read data.

Highly repetitive transposable elements have been shown to be 
expressed in embryonic development63, and adult tissues16. They have 
also been associated with diseases64, and remain among the most dif-
ficult to study65,66. Our data show that newly discovered transcripts in 
the SG-NEx data are enriched for such repetitive elements compared 
to annotated transcripts. While the expression pattern, transcript 
structure and relevance or function of these transcripts remains to be 
validated, transcript discovery with long-read RNA-seq data may be of 
particular relevance for tissues that show high expression of repeats, 
such as cells from early embryos or samples from species that are 
known to be particularly repeat-rich67,68.

Compared to short-read and PacBio RNA-seq data, Nanopore 
RNA-seq has a higher sequencing error rate24, which affects the preci-
sion of read alignments in particular for splice junctions. Therefore, 
assignment of Nanopore reads to transcripts requires approximate 
matching, providing a barrier for using tools designed for short-read 
RNA-seq data. Error correction69 or splice alignment correction as used 
in Bambu37 and Flair51 or NanoSplicer70 can alleviate this limitation. Here 
we observe that the direct RNA-seq data, which have the highest error 
rate23,24, generate transcript abundance estimates that are consistent 
with the direct cDNA data. This indicates that sequencing or alignment 
errors at splice junctions can effectively be dealt with for transcript 
quantification.

One of the main advantages of short-read RNA-seq data is the 
availability of a large amount of public data for benchmarking and 
discovery14,71. Even though the long-read RNA-seq technology is widely 
available for bulk27,62,72,73, single-cell57,74–76 and spatial77,78 profiling, and 
despite new methods being actively developed37,51,79, the lack of a 
comprehensive data resource prevents widespread use of long-read 
RNA-seq for routine profiling of the transcriptome80. Here we present 
the SG-NEx dataset and use it to compare the different sequencing 
protocols as well as comparative benchmarking of computational 
methods. By including multiple cell lines with multiple replicates 
sequenced on five different RNA-seq protocols, the data enable the 
development and evaluation of methods for transcript quantification 
and discovery, differential expression analysis and fusion gene detec-
tion. Furthermore, the SG-NEx data contain the raw current signal from 
direct RNA-seq for seven core cell lines, each profiled with multiple 
replicates with partially matched m6A profiling, providing a unique 
resource to develop and evaluate methods for identification of RNA 
modifications. Together, we provide a systematic benchmark dataset 
for short-read and long-read cDNA and direct RNA-seq, a comprehen-
sive overview of transcription in human cell lines and a systematic 
evaluation of transcriptomics protocols that highlights the benefit 
of long reads to studying complex transcriptional phenotypes at the 
resolution of individual transcripts.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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butions and competing interests; and statements of data and code avail-
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Methods
Data generation and processing
Cell growth. Cell growth protocols are described in Supplementary 
Table 1.

RNA extraction. RNA extraction protocols are described in Supple-
mentary Table 1.

Library preparation. Sequencing libraries were prepared using the 
Nanopore direct RNA, direct cDNA and PCR cDNA kits, PacBio-SMRTcell, 
and short-read sequencing (Illumina 150-bp paired-end reads). 
m6ACE-seq was generated as described in ref. 81. Details and devia-
tions are described in Supplementary Table 1.

Sequencing. Sequencing runs were performed using MinION/GridION 
(FLO-MIN106/106D/107), or PromethION (FLO-PRO001/002; Oxford 
Nanopore Technologies), PacBio Sequel II and Illumina HiSeq 4000 
(Supplementary Table 1).

Reference genome and annotation. We used the GRCh38 Ensembl 
annotations release (version 91)82 and the primary assembly fasta 
sequence as the reference genome sequence. For transcriptome align-
ment, we combined the coding and noncoding RNA reference fasta 
files, selected transcript IDs that matched the reference annotations 
and removed other transcripts from the transcriptome fasta file. For 
repeat elements, we used the matched release version of RepeatMasker 
sequences obtained from the UCSC genome browser83. For the spike-in 
dataset, we used the Sequin annotation and the SIRV-Set 4 annotations, 
which include SIRVs, ERCC and long SIRV annotations. All reference files 
can be downloaded from https://github.com/GoekeLab/sg-nex-data/.

Basecalling. The raw Nanopore RNA-seq data (fast5) were first con-
verted to BLOW5 files84 and then basecalled using Guppy (version 
6.4.2)85.

Read alignment. The resulting fastq files were aligned using the 
long-read aligner Minimap2 version 2.22 with parameters ‘--ax splice 
--junc-bed’ for alignments against the genome, using the junction bed 
file to correct splicing junctions; and with parameters ‘--ax map-ont’ 
for alignments against the transcriptome. For direct RNA-seq runs, the 
additional parameters ‘--k14’ and ‘--uf’ were used as recommended. 
For short reads, we performed STAR86 alignment with parameters 
‘--outMultimapperOrder Random --outSAMattributes NH HI NM MD 
AS nM jM jI XS’ to obtain the genome alignment (which was then used to 
calculate the junction counts). For PacBio samples, we first converted 
the provided bam files to fastq files and then performed alignment 
using Minimap2 version 2.22 with parameters ‘--ax splice:hq -uf’ for 
alignments against the genome and with parameters ‘--ax map-hifi -uf’ 
for alignments against the transcriptome.

Transcript abundance estimation. For long-read data, we applied 
Bambu, NanoCount87 and Salmon88 to estimate the gene and transcript 
expression levels. For Bambu, we used Bambu version 3.2.4 on genomic 
alignments obtained from Minimap2 with degradation model off and 
recommended NDR (only annotated transcripts were used for this 
analysis, unless otherwise specified). For NanoCount, we first aligned 
fastq files to the transcriptome with recommended alignment param-
eters ‘--ax map-ont -p 0 -N 10’ and then applied NanoCount version 
1.0.0.post3. For Salmon, we first aligned fastq files to the transcriptome 
with the recommended alignment parameters ‘--ax map-ont -p 1.0 -N 
100’ and then applied Salmon version 1.9.0 with parameters ‘--ont -q -l 
U’. For short-read data, we applied Salmon and RSEM89 to estimate the 
transcript expression. We used Salmon version 1.9.0 with paired-end 
fastq files using the quasi mapping-based mode, with parameters 
‘--validateMappings --seqBias --gcBias --posBias’ to allow correcting for 

sequence bias, fragment-level GC bias and the nonuniform coverage 
biases. For RSEM, we used RSEM version 1.3.3.

Gene expression estimation. Here we define gene expression as the 
sum of transcript expression from all transcripts that belong to each 
gene based on reference genome annotations. For Bambu, we used 
the function transcriptToGeneExpression() to estimate gene expres-
sion. For other methods, we calculated the sum of CPM values for all 
transcripts from each gene to obtain the gene expression estimate.

Spike-in data. For the analysis of spike-in data, we first extracted 
spike-in reads from each sample before combining spike-in reads of the 
same spike-in type and protocol into one sample (‘spike-in only data’).

Data analysis
Comparison of RNA-seq protocols. We compared the different read 
RNA-seq protocols: direct RNA, direct cDNA, cDNA, PacBio cDNA and 
Illumina short-read RNA-seq protocols in terms of sequencing depth, 
read length, transcript diversity, coverage and error rate. For sequenc-
ing depth (Fig. 2a), we compared the total number of reads generated 
from each sequencing run. To compare the read length (Fig. 2b), we 
calculated the mean read length of aligned reads for each sequencing 
run and each protocol. To evaluate the read coverage between pro-
tocols (Fig. 2c), we used the coverage function from GenomicAlign-
ments90 to obtain the coverage for each position along the transcript. 
Here we included regions corresponding to D(deletion) in the CIGAR 
string for the coverage calculation. We then divided each transcript 
into 100 equal bins and took the average of the coverage read count 
within each bin, which was then normalized by the maximum for each 
transcript to obtain the relative transcript coverage. We then averaged 
the normalized relative coverage across samples within each protocol 
and each cell line for each bin.

To compare the percentage of full-splice-match reads (Fig. 2d), we 
looked at the splice-junction match between read alignments (after 
junction alignment correction with Bambu) and annotation, and 
defined a read as a full-splice-match read upon an exact splice-junction 
match to any of the annotated transcripts, or as a partial read upon 
the splice junction of the read alignments being only partially con-
tained within the transcript. For fair comparison, data generated 
from all RNA-seq protocols were processed by Bambu to calculate the 
splice-junction match.

To compare the transcript diversity between protocols (Fig. 2e), we 
first ranked the genes by the average expression within each protocol 
and each cell line and then calculated the cumulative read count for 
genes ranked from top expressed to low expressed for each sequenc-
ing run. Due to the existence of similar read counts, there were missing 
points in the gene ranks; therefore, we performed interpolation to 
estimate the cumulative read frequency for such points. To summarize 
the transcript diversity for each protocol, we then took the median of 
the cumulative read frequency across samples for each protocol. We 
also compared the transcript diversity between protocols when rank-
ing genes by their gene length to understand how genes with different 
lengths were being sequenced by each protocol. For this analysis, we 
ranked genes by their gene length (defined as the maximum isoform 
length) and then calculated the cumulative read count for genes ranked 
from shortest to longest for each sequencing run.

To compare the gene coverage (Fig. 2f), we aggregated the read 
count from all read classes aligned to each gene as the expected read 
count if the read classes were full-splice-match reads with respect 
to the gene. We then calculated the relative length ratio of each read 
class where the width of each read class was divided by the maxi-
mum transcript length within the gene, and then computed a relative 
length-adjusted total read count for each gene as the observed read 
counts. By taking the ratio between the length-adjusted and origi-
nal total read count, we obtained an approximate measure for gene 
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coverage. Similarly, we averaged the gene coverage ratios across sam-
ples generated from the same protocol for each gene to compare 
between protocols. We only included genes that were expressed in all 
protocols with an average expression level being above 30 CPM. To 
identify the genes that show significant differences in coverage, we 
tested the proportions for each gene using a two-sided z-test without 
assuming the equal variance between two protocols.

In addition to sequencing depth, we also compared the total 
mapped bases filtered by cigar string and error rate reported for each 
sequencing run by running ‘samtools stats’.

To show the distribution of full-splice-match coverage, we calcu-
lated the coverage for each read based on the transcriptome alignment 
and calculated the ratio against the transcript length, normalizing the 
coverage ratio to a number over a thousand. We then calculated the 
mean number of transcripts for each coverage ratio ranging from 0 
to 1 for each protocol and the cumulative distribution of the coverage 
ratios.

All analyses described above were also conducted for spike-in data.

Comparison of gene and transcript expression. For the analysis 
reported in the study, we compared the estimates obtained from 
Salmon for both long-read and short-read data (‘Transcript abundance 
estimation’). Results generated from other methods are included in 
Supplementary Figs. 4 and 5. This analysis was based on annotated 
isoforms; novel isoforms were not included in the comparison. All 
long-read transcript expression estimates used CPM values as esti-
mated by the different computational methods. Short-read RNA-seq 
estimates used TPM values.

Definition of major and minor isoforms. Here we defined major isoforms 
for each gene as the isoform that has the highest transcript expres-
sion estimate. For this analysis, major isoforms were calculated for 
each cell line using the average transcript expression from all Nano-
pore long-read RNA-seq replicates (long-read major isoforms) and 
the average from all short-read RNA-seq replicates (short-read major 
isoforms). We then compared long-read and short-read major isoforms 
to identify major isoforms identified by both sequencing technologies, 
long-read-specific major isoforms, short-read-specific major isoforms 
and isoforms that were never estimated to be the most highly expressed 
(minor isoform).

Comparison of spike-in RNAs. For the spike-in data analysis, we used 
the spike-in-only data that were combined for each protocol and each 
spike-in type. To obtain the expected CPM for the combined data for 
each spike-in type and protocol, we first multiplied the total number 
of reads by the spike-in percentage for the total expected spike-in 
reads, and then multiplied this number by the relative concentration 
of each spike-in transcript in the total spike-in set for each sample 
to obtain the true expected CPM. To benchmark different RNA-seq 
protocols in profiling gene and transcript expression using spike-in 
data, we compared the log2-transformed estimated CPM against the 
log2-transformed expected CPM using the Spearman correlation, mean 
absolute error, mean relative absolute difference, mean relative differ-
ence, root mean squared error and R-squared value, for both gene and 
transcript expression. The metrics were calculated for all RNA-seq pro-
tocols and all methods. To compare across protocols, we also computed 
the Spearman correlation between the log2-transformed estimated 
CPM between each pair of protocols.

Comparison of human cell line RNA. For the human chromosome gene 
and transcript estimation evaluation between different RNA-seq 
protocols, we matched the annotations to include only genes with 
all transcripts present in both genomic annotation and transcrip-
tomic annotations, removing 1,066 (2%) genes in the process. As out-
lined in the study, we focused on protein-coding genes, antisense 

RNAs, long intergenic noncoding RNAs, noncoding RNAs and macro 
long-noncoding RNAs, which further removed 25,441 (43.6%) genes 
(pseudogenes and short RNAs) from consideration. After filtering, a 
total of 32,861 genes were included, with 169,254 associated transcripts.

For each sequencing run, we identified the cross-cell line replicates 
(same replicate number but from different cell lines, different proto-
cols) and the within-cell line replicates (same replicate number, same 
cell line, different protocols). For gene expression, we computed the 
Spearman correlation and mean relative absolute differences between 
each replicate pair for protein-coding genes, long-noncoding genes 
and other genes, respectively. For transcript expression, we computed 
the Spearman correlation and mean absolute error between each 
replicate pair for major isoform, major isoform-long read (LR), major 
isoform-short read (SR) and minor isoform, respectively.

Comparison of splicing events/alternative promoters for short- 
read-specific and long-read-specific major isoforms. To determine 
if there were systematic differences between the major isoforms 
identified between long reads and short reads for each gene, we 
used the function compareTranscripts in Bambu to calculate how 
often a long-read-specific major isoform (1) used an internal exon 
from the short-read-specific major isoform as first or last exon; (2) 
underwent an exon skipping event or intron retention event; and (3) 
underwent an alternative splicing event at both 3′ and 5′ ends against 
the short-read-specific major isoform of the same gene. To simulate 
the (expected) background distribution, we randomly chose one iso-
form that was not the short-read-specific major isoform from the 
same gene and compared it against the short-read-specific major 
isoform for the same alternative events, repeating it for 20 times. 
Similarly, we compared the short-read-specific major isoform against 
the long-read-specific major isoform from the same gene and con-
ducted the simulation by randomly choosing one isoform from the 
non-long-read-specific major isoforms of the same gene and compared 
against the long-read-specific major isoform.

Clustering of samples using gene expression estimates. We clustered all 
SG-NEx samples using gene-level correlation computed for the genes 
with the top-ranked variation across all samples using the heatmap, 
dendrogram and PCA functions in R.

Analysis if junction read coverage. We determined the number of junc-
tions covered by each read using the GenomicAlignments package90. 
To determine the number of reads that can be uniquely assigned, we 
processed short-read data using Bambu without transcript discovery 
to obtain the read class assignment. We then compared the distribution 
of the number of transcripts that can be assigned by each read class.

In silico read fragmentation. To simulate fragmented, short-read 
data from long-read data, we identified the transcripts that each read 
aligned to in the primary alignments. For each long read, we extracted 
the coordinates in the corresponding transcript, and randomly simu-
lated the sequencing start position uniformly from the start position 
of the read alignment to 150 bp before the end position of the read 
alignment. To mimic the fragmentation process, the process was ran-
domly repeated N times for each read according to the read length 
(N ≤ mapped read length/150 bp, in silico fragmentation). After simu-
lating the sequencing starts, we then extracted the 150-bp transcript 
sequences based on the annotation for each simulated read. Here we 
only used reads with mapped read lengths of at least 150 bp. We then 
compared the log2-transformed estimated CPM for major isoforms, 
long-read-specific major isoforms, short-read-specific major isoforms 
and minor isoforms between fragmented long-read data (simulated 
SR) with the long-read data and calculated the Spearman correlation 
and mean absolute error between the same sequencing run. We also 
calculated the Spearman correlation between fragmented long-read 
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and short-read data using the same replicates from the same cell line, to 
understand the impact of fragmentation in explaining the differences 
between long-read and short-read data.

We also performed this fragmentation simulation using short-read 
data (Supplementary Fig. 5p). To systematically perform the simula-
tion, we fragmented the short-read data from the 5′ end to single-end 
read of different lengths ranging from 150 bp to 50 bp at a 25-bp differ-
ence for all short-read RNA-seq samples, using seqtk (https://github.
com/lh3/seqtk/) with parameters ‘trimfq -L’.

RT–qPCR and dPCR validation of the long-read-specific versus 
short-read-specific major isoforms. To further confirm whether 
long-read-specific or short-read-specific major isoforms are the true 
dominant isoform among the genes with discordant major isoforms 
between long and short-read RNA-seq data, we shortlisted 13 candidate 
genes from the MCF7 cell line, each with either long-read-specific or 
short-read-specific major isoforms being the most highly expressed. 
Around 1 µg of total RNA from MCF7 breast cancer cell lines was reverse 
transcribed using the SuperScript IV First-Strand cDNA Synthesis Sys-
tem (Invitrogen) following the manufacturer’s instructions. For the 13 
shortlisted candidate genes, we designed and selected 26 pairs of prim-
ers to amplify the unique transcript sequences from each isoform. In 
the case where the short-read-specific major isoform is a subset of the 
long-read-specific major isoform (that is, the splice junctions from the 
short-read-specific major isoform are completely contained within the 
long-read-specific major isoform), we amplified the common sequence 
shared between the long-read-specific and short-read-specific major 
isoforms instead for the short-read-specific major isoform. RT–qPCR 
was performed using Luna Universal qPCR Master Mix (NEB) with the 
following thermocycling conditions: 95 °C for 2 min, then 95 °C for 
15 s, and 60 °C for 30 s for 45 cycles. Each reaction well contained 1 µl 
of 10× diluted cDNA and 19 µl of Master Mix, totaling 20 µl, in a Bio-Rad 
Hard-Shell 96-well PCR plate. dPCR was conducted using 3× EvaGreen 
PCR Master Mix (Qiagen) with the following thermocycling condi-
tions: 95 °C for 2 min, then 95 °C for 15 s, 60 °C for 15 s, and 72 °C for 
15 s for 40 cycles. Imaging conditions included an exposure duration 
of 300 ms and a gain of 4. Each reaction well contained 5 µl of 500× 
diluted cDNA and 35 µl of Master Mix, totaling 40 µl, in a 26k 24-well 
QIAcuity Nanoplate.

Analysis of alternative isoform expression. Details for the analysis of 
alternative isoform expression can be found in Supplementary Note 1.

Novel transcripts and repeat enrichment analysis. Details for novel 
transcripts and repeat enrichment analysis can be found in Supple-
mentary Note 2.

Fusion gene analysis. Details for fusion gene analysis can be found in 
Supplementary Note 3.

m6A modification analysis. Details for m6A modification analysis can 
be found in Supplementary Note 4.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The SG-NEx data are available at https://github.com/GoekeLab/
sg-nex-data/. All data are deposited in the European Nucleotide Archive 
under accession code PRJEB44348. Fast5 (BLOW5), fastq, bam and 
additional processed data are available for fast compute-optimized 
access on S3 through the AWS open data sponsorship (https://reg-
istry.opendata.aws/sgnex/). We also downloaded the datasets from 
the ENCODE portal91 with the following identifiers: ENCSR000CON, 

ENCSR000CWM, ENCSR000CPE, ENCSR000AEM and ENCSR000CPT 
(see Supplementary Text Table 1 for detailed download links).

Code availability
nf-core/nanoseq is a streamlined, community-curated pipeline for 
Nanopore sequencing data processing and analysis (https://nf-co.
re/nanoseq/). The code used for this paper is deposited in GitHub via 
https://github.com/GoekeLab/sg-nex-data/tree/master/manuscript/.
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