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Protein sequence design in the context of small molecules, nucleotides and
metalsis critical to enzyme and small-molecule binder and sensor design,
but current state-of-the-art deep-learning-based sequence design methods
are unable to model nonprotein atoms and molecules. Here we describe a
deep-learning-based protein sequence design method called LigandMPNN
that explicitly models all nonprotein components of biomolecular systems.
LigandMPNN significantly outperforms Rosetta and ProteinMPNN on
native backbone sequence recovery for residues interacting with small
molecules (63.3% versus 50.4% and 50.5%), nucleotides (50.5% versus

35.2% and 34.0%) and metals (77.5% versus 36.0% and 40.6%). LigandMPNN
generates not only sequences but also sidechain conformations to allow
detailed evaluation of binding interactions. LigandMPNN has been used to
design over 100 experimentally validated small-molecule and DNA-binding
proteins with high affinity and high structural accuracy (as indicated by four
X-ray crystal structures), and redesign of Rosetta small-molecule binder
designs hasincreased binding affinity by as much as 100-fold. We anticipate
that LigandMPNN will be widely useful for designing new binding proteins,

sensors and enzymes.

De novo protein design enables the creation of novel proteins with new
functions, such as catalysis', DNA, small-molecule and metal binding,
and protein-protein interactions*°. De novo design is often carried
outin three steps™**: first, the generation of protein backbones pre-
dicted to be near optimal for carrying out the new desired function™;
second, design of amino-acid sequences for each backbone to drive
folding to the target structure and to make the specific interactions
required for function (for example, an enzyme active site)*°*°; and
third, sequence-structure compatibility filtering using structure
prediction methods*°. In this Article, we focus on the second step,
protein sequence design. Both physically based methods such as
Rosetta®* and deep-learning-based models such as ProteinMPNN,
IF-ESM? and others* ¢ have been developed to solve this problem. The
deep-learning-based methods outperform physically based methods
indesigning sequences for protein backbones, but currently available

models cannot incorporate nonprotein atoms and molecules. For
example, ProteinMPNN explicitly considers only protein backbone
coordinates while ignoring any other atomic context, whichis critical
for designing enzymes, nucleic-acid-binding proteins, sensors and all
other protein functionsinvolving interactions with nonprotein atoms.

Results

Toenable the design of this wide range of protein functions, we set out
to develop a deep-learning method for protein sequence design that
explicitly models the full nonprotein atomic context. We sought to
do this by generalizing the ProteinMPNN architecture to incorporate
nonprotein atoms. As with ProteinMPNN, we treat protein residues as
nodes andintroduce nearest-neighbor edges based on Ca-Ca distances
todefine asparse protein graph (Fig. 1); protein backbone geometry is
encodedinto graph edges through pairwise distances betweenN, Ca,
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Fig.1| The LigandMPNN model. LigandMPNN operates on three different
graphs. First, a protein-only graph with residues as nodes and 25 distances
between N, Ca, C, O and virtual (inferred location based on backbone coordinates
to handle the glycine case) Cp atoms for residues i and. Second, an intraligand
graphwithatoms as nodes that encodes chemical element types and distances
between atoms as edges. Third, a protein-ligand graph with residues and ligand
atoms as nodes and edges encoding residuej and ligand atom geometry.

The LigandMPNN model has three neural network blocks: a protein backbone
encoder, a protein-ligand encoder and a decoder. Protein sequences and
sidechain torsion angles are autoregressively decoded to obtain sequence
and full protein structure samples. The dotted lines show atom interactions.
Metaparameter variation and ablation experiments are described in
Supplementary Fig.1a-e.

C,0and Cpatoms. Theseinput features are then processed using three
encoder layers with128 hidden dimensions to obtain intermediate node
and edge representations. We experimented with introducing two addi-
tional protein-ligand encoder layers to encode protein-ligand inter-
actions. We reasoned that, with the backbone and ligand atoms fixed
inspace, only ligand atoms in the immediate neighborhood (within
~-10 A) would affect amino-acid sidechain identities and conformations
because the interactions (van der Waals, electrostatic, repulsive and
solvation) between ligands and sidechains are relatively short range*°.

To transfer information from ligand atoms to protein residues,
we construct aprotein-ligand graph with protein residues and ligand
atomsas nodes and edges between each protein residue and the closest
ligand atoms. We also build a fully connected ligand graph for each pro-
teinresidue withits nearest-neighbor ligand atoms as nodes; message
passing between ligand atoms increases the richness of the informa-
tion transferred to the protein through the ligand-protein edges. We
obtained the best performance by selecting for the protein-ligand
andindividual residue intraligand graphs the 25 closest ligand atoms
based on protein virtual Cp and ligand atom distances (Supplementary
Fig.1a). The ligand graph nodes are initialized to one-hot-encoded
chemical element types, and the ligand graph edges to the distances
between the atoms (Fig. 1). The protein-ligand graph edges encode
distances between N, Ca;, C, O and virtual Cp atoms and ligand atoms
(Fig.1). The protein-ligand encoder consists of two message-passing
blocks that update the ligand graph representation and then the pro-
tein-ligand graph representation. The output of the protein-ligand
encoder is combined with the protein encoder node representations
and passed into the decoder layers. We call this combined protein-
ligand sequence design model LigandMPNN.

To facilitate the design of symmetric®'® and multistate proteins'®,
we use a random autoregressive decoding scheme to decode
the amino-acid sequence as in the case of ProteinMPNN. With the
addition of the ligand atom geometry encoding and the extra two
protein-ligand encoder layers, the LigandMPNN neural network
has 2.62 million parameters compared with 1.66 million Pro-
teinMPNN parameters. Both networks are high-speed and light-
weight (ProteinMPNN 0.6 s and LigandMPNN 0.9 s on a single
central processing unit for 100 residues), scaling linearly with
respect to the protein length. We augmented the training dataset

by randomly selecting a small fraction of protein residues (2-4%)
and using their sidechain atoms as context ligand atoms in addition
to any small-molecule, nucleotide and metal context. Although this
augmentation did not significantly increase sequence recoveries (Sup-
plementary Fig. 1b), training in this way also enables the direct input
of sidechain atom coordinates to LigandMPNN to stabilize functional
sites of interest.

We also trained a sidechain packing neural network using the basic
LigandMPNN architecture to predict the four sidechain torsion angles
for each residue following the sequence design step. The sidechain
packing model takes asinput the coordinates of the proteinbackbone
and any ligand atoms, and the amino-acid sequence, and outputs the
coordinates of the protein sidechains with log-probability scores.
The model predicts a mixture (three components) of circular normal
distributions for the torsion angles (chil, chi2, chi3 and chi4). For each
residue, we predict three mixing coefficients, three means and three
variances per chi angle. We autoregressively decompose the joint chi
angle distribution by decoding all chil anglesfirst, then all chi2 angles,
chi3 angles and finally all chi4 angles (after the model decodes one of
the chiangles, its angular value and the associated three-dimensional
atom coordinates are used for further decoding).

LigandMPNN was trained on protein assembliesin the Protein Data
Bank (PDB; as of 16 December 2022) determined by X-ray crystallog-
raphy or cryo-electron microscopy to better than 3.5 A resolution and
with atotallength of lessthan 6,000 residues. The train-test split was
based onproteinsequences clustered ata30% sequenceidentity cutoff.
We evaluated LigandMPNN sequence design performance onatest set
of 317 protein structures containing small molecules, 74 with nucleic
acids and 83 with a transition metal (Fig. 2a). For fair comparison, we
retrained ProteinMPNN on the same training dataset of PDB biounits
as LigandMPNN (the retrained model is referred to as ProteinMPNN
in this Article), except none of the context atoms was provided dur-
ing training. Protein and context atoms were noised by adding 0.1A
standard deviation Gaussian noise to avoid protein backbone memo-
rization’®. We determined the native amino-acid residue sequence
recovery for positions close to the ligand (with sidechain atoms within
5.0 A of any nonprotein atoms). The median sequence recoveries (ten
designed sequences per protein) near small molecules were 50.4% for
Rosetta using the genpot energy function’®, 50.4% for ProteinMPNN
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Fig. 2| Insilico evaluation of LigandMPNN sequence design. a, LigandMPNN
has a higher recovery of native protein amino-acid identities than Rosetta and
ProteinMPNN around small molecules, nucleic acids and metals. Sequence
recoveries (sec.rec.) are averaged over the residues within 5.0 Afromthe
context atoms. b, LigandMPNN has higher sequence recovery around
nonprotein molecules than Rosetta for most proteins. The color indicates the

LigandMPNN confidence

LigandMPNN confidence

LigandMPNN-predicted confidence (between 0 and 100) for agiven protein.
The dashed lines show the mean values. ¢, Native sequence recovery correlates
with LigandMPNN predicted confidence for designed sequences. One dot
represents an average sequence recovery over 10 sequences for one protein for
317 small-molecule-, 74 nucleotide- and 83 metal-containing test proteins.

and 63.3% for LigandMPNN. For residues near nucleotides, median
sequence recoveries were 35.2% for Rosetta’ (using an energy func-
tion optimized for protein-DNA interfaces), 34.0% for ProteinMPNN
and 50.5% for LigandMPNN, and for residues near metals, 36.0% for
Rosetta*,40.6% for ProteinMPNN and 77.5% for LigandMPNN (Fig. 2a).
Sequence recoveries were consistently higher for LigandMPNN over
most proteinsinthe validation dataset (Fig. 2b; performance was cor-
related, probably reflecting variation in the crystal structure and the
amino-acid composition of the site). LigandMPNN predicts amino-acid
probability distributions and uncertainties for each residue position;
the expected confidence correlates with the actual sequence recovery
accuracy (Fig. 3c).

To assess the contributions to this high sustained performance,
we evaluated versions in which metaparameters and features were
varied or ablated (Supplementary Fig. 1a-e). Decreasing the number
of context atoms per residue primarily diminished sequence recovery
around nucleic acids, probably because these are larger and contain
more atoms on average than small molecules and metals (Supplemen-
tary Fig. 1a). Providing sidechain atoms as additional context did not
significantly affect LigandMPNN performance (Supplementary Fig. 1b).
Asobserved for ProteinMPNN, sequence recovery is inversely propor-
tional to the amount of Gaussian noise added to input coordinates.
The baseline model was trained with 0.1 A standard deviation noise to
reduce the extent to which the native amino acid can be read out simply
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Fig. 3 | Evaluation of LigandMPNN sidechain packing accuracy. a, Comparison
of crystal sidechain packing (gray) with LigandMPNN sidechain packing
(colored sidechains by model confidence: teal is high and purple is low
confidence per chiangle) for 2P7G, 1BC8 and 1E4M proteins. The context atoms
are shownin orange (small molecule, DNA and zinc). LigandMPNN has higher
chiland chi2 torsion angle recovery (fraction of residues within 10° from native)

Rosetta chil <10° fraction

Rosetta chil <10° fraction

than Rosetta and LigandMPNN-wo. b, Per-protein comparison of chil fraction
recovery for LigandMPNN versus Rosetta. One dot represents an average chil
recovery over 10 sidechain packing samples for one protein for 317 small-
molecule-, 67 nucleotide- and 76 metal-containing test proteins. The dashed lines
show the mean values.

on the basis of the local geometry of the residue; crystal structure
refinement programs introduce some memory of the native sequence
into the local backbone. Training with 0.05 A and 0.2 A noise instead
increased and decreased sequence recovery by about 2%, respectively
(Supplementary Fig. 1c; when comparing performance across methods,
similar levels of noising must be used). Ablating the protein-ligand
and ligand graphs led to a3% decrease in sequence recovery (Supple-
mentary Fig. 1d). Training on sidechain context atoms only (no small
molecules, nucleotides or metals) reduced sequence recovery around
small molecules by 3.3% (Supplementary Fig. 1e). Finally, a model
trained without chemical element types as input features had much
lower sequence recovery near metals (8% difference; Supplementary
Fig.1d) but almost the same sequence recovery near small molecules
and nucleic acids, suggesting that the model can to some extent infer
chemical element identity from bonded geometry.

We evaluated LigandMPNN sidechain packing performance on
the same dataset for residues within 5.0 A from the context atoms. We
generated ten sidechain packing examples with the fixed backbone
and fixed ligand context using Rosetta, LigandMPNN and LigandMPNN
without ligand context (LigandMPNN-wo in Fig. 3). The median chil
fraction (within 10° from crystal packing) near small molecules was

76.0% for Rosetta, 83.3% for LigandMPNN-wo and 86.1% for Ligan-
dMPNN, near nucleotides 66.2%, 65.6% and 71.4% and near metals
68.6%, 76.7% and 79.3% for the three models, respectively (Fig. 3a).
LigandMPNN has a higher chil fraction recovery compared with Rosetta
on most of the test proteins (Fig. 3b), but only marginally better than
LigandMPNN-wo (Supplementary Fig. 3¢), suggesting that most of
the information about sidechain packing is coming from the protein
context rather than from the ligand context, consistent with binding
site preorganization. All the models struggle to predict chi3 and chi4
angles correctly. For LigandMPNN, weighted average fractions of cor-
rectly predicted chil, chi2, chi3 and chi4 angles for the small-molecule
dataset were 84.0%, 64.0%, 28.3% and 18.7%, for Rosetta 74.5%, 50.5%,
24.1% and 8.1% and for LigandMPNN-wo 81.6%, 60.4%, 26.7% and 17.4%
(Supplementary Fig. 3b). The sidechain root-mean-square deviations
aresimilar between the different methods as shown in Supplementary
Figs. 4 and 5. Comparing LigandMPNN-wo versus LigandMPNN, the
biggest improvements in terms of root-mean-square deviation are
obtained for glutamine (Q) in the small-molecule dataset, for arginine
(R)inthe nucleotide dataset and for histidine (H) in the metal context
dataset (Supplementary Fig. 5), consistent with theimportant roles of
interactions of these residues with the corresponding ligands.
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Fig. 4 |Rescue of Rosetta small-molecule binder designs using LigandMPNN.
a,b, Weak or nonbinding designs made using Rosetta for rocuronium (a) and
cholicacid (b) were redesigned using LigandMPNN. Left: sidechain-ligand
interactions before and after redesign. The sidechains are predicted to be
considerably more preorganized following redesign asindicated by the
LigandMPNN amino-acid probabilities, which are colored from red (0) to blue (1).
Sidechain atoms except for carbon are color-coded (O, red; N, blue; S, yellow).

Low loglbinder ("M)]

Right: experimental measurement of binding. In a, flow cytometry of yeast is
shown, with the designs following incubation with 1 uM biotinylated rocuronium
and streptavidin phycoerythrin. Inb, fluorescence polarization measurements
ofbinding to cholic acid-fluorescein isothiocyanate are shown. The error bars
show the mean and standard deviations for three LigandMPNN and two Rosetta
measurements.

We tested the capability of LigandMPNN to design binding sites
for small molecules starting from previously characterized designs
generated using Rosetta that either bound weakly or not at all to their
intended targets: the muscle relaxant rocuronium, for which no bind-
ing was previously observed (Fig. 4a) and the primary bile acid cholic
acid (Fig. 4b) for which binding was very weak®*. LigandMPNN was
used to generate sequences around the ligands using the backbone
and ligand coordinates as input; these retain and/or introduce new
sidechain-ligand hydrogen bondinginteractions. LigandMPNN rede-
signs either rescued binding (Fig. 4a and Supplementary Fig. 6) or
improved the binding affinity (Fig. 4b). A further example with cholic
acidisdescribedinref. 4, where, starting fromthe crystal structure of a
previously designed complex, LigandMPNN increased binding affinity
100-fold. As with the many other design successes with LigandMPNN
(seebelow), theseresults indicate significant generalization beyond the
PDB training set: there were no rocuronium-binding protein complex
structuresinthe PDB training set, and the cholic-acid-binding protein
inthe PDB thatis closest to our cholic-acid-binding design (PDB: 6] Y3)
has a quite different structure (template modeling score 0.59) with a
totally different ligand-binding location (Supplementary Fig. 7).

Discussion

The deep-learning-based LigandMPNN is superior to the physically
based Rosetta for designing amino acids to interact with nonprotein
molecules. Itis about 250 times faster (because the expensive Monte
Carlo optimization over sidechainidentities and compositions is com-
pletely bypassed), and the recoveries of native amino-acid identities
and conformations around ligands are consistently higher. The method
is also easier to use because no expert customizations are required
for new ligands (unlike Rosetta and other physically based methods
that can require new energy function or force field parameters for

new compounds). At the outset, we were unsure whether the accuracy
of ProteinMPNN could extend to protein-ligand systems given the small
amountofavailable training data, but our results suggest that, for the
vast majority of ligands, there are sufficient data. Nevertheless, we
suggest some care in using LigandMPNN for designing binders to com-
pounds containing elements occurring rarely or notatallin the PDB (in
thelatter caseitis necessary to map to the most closely occurring ele-
ment). Hybridization of the physically based and deep-learning-based
approaches may provide a better solution to the amino-acid and side-
chain optimization problems in the low-dataregime.

LigandMPNN has already been extensively used for designing
interactions of proteins with nucleic acids and small molecules, and
these studies provide considerable additional experimental valida-
tion of the method. In these studies, LigandMPNN was either used
as adrop-in replacement for Rosetta sequence design retaining the
backbone relaxation of RosettaFastDesign®®**, or used independently
without backbone relaxation. Glasscock et al.> developed a computa-
tional method for designing small sequence-specific DNA-binding
proteins that recognize specific target sequences through interac-
tions with bases in the major groove that uses LigandMPNN to design
the protein-DNA interface. The crystal structure of a DNA-binding
protein designed with LigandMPNN recapitulated the design model
closely (deposited to the Research Collaboratory for Structural Bioin-
formatics Protein Data Bank as PDBID 8TAC). Leeet al.’, An etal.* and
Krishna et al.’ used LigandMPNN to design small-molecule-binding
proteins with scaffolds generated by deep-learning- and Rosetta-based
methods. Iterative sequence design with LigandMPNN resulted in
nanomolar-to-micromolar binders for the 17a-hydroxyprogesterone,
apixaban and SN-38 with NTF2-family scaffolds?, nanomolar bind-
ers for cholic acid, methotrexate and thyroxine* in pseudocy-
clic scaffolds, and binders for digoxigenin, heme and bilin in
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RFdiffusion_allatom-generated scaffolds’. In total, more than 100
protein-DNA binding interfaces and protein-small-molecule binding
interfaces designed using LigandMPNN have been experimentally
demonstrated to bind to their targets, and 5 co-crystal structures
havebeensolved thatineach case are very close to the computational
design models®™. This extensive biochemical and structural validation
provides strong support for the power of the approach.

As with ProteinMPNN, we anticipate that LigandMPNN will be
widely usefulin protein design, enabling the creation of anew genera-
tion of small-molecule-binding proteins, sensors and enzymes. To this
end, we have made the code available via GitHub at https://github.com/
dauparas/LigandMPNN.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-025-02626-1.
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Methods

Methods for training LigandMPNN for sequence design
Training data. LigandMPNN was trained on a dataset similar to Pro-
teinMPNN?, We used protein assembliesin the PDB (as of 16 December
2022) determined by X-ray crystallography or cryo-electron micros-
copytobetterthan3.5 A resolution and with fewer than 6,000 residues.
We parsed all residues present in the PDBs except ['HOH’, ‘NA’,‘CL’, ‘K,
‘BR’]. Protein sequences were clustered at 30% sequence identity cut-
off using mmseqs2 (ref. 43). We held out a nonoverlapping subset of
proteins that have small-molecule contexts (atotal of 317), nucleotide
contexts (a total of 74) and metal contexts (a total of 83).

Optimizer and loss function. For optimization, we used Adam with
betal of 0.9, beta2 of 0.98 and epsilon of 1e-9, the same as for Pro-
teinMPNN. Models were trained with a batch size of 6,000 tokens,
automatic mixed precision and gradient checkpointing on a single
NVIDIA A100 graphics processing unit for 300,000 optimizer steps.
We used categorical cross entropy for the loss function following the
ProteinMPNN paper®,

Input featurization and model architecture. We used the same input
features as in the ProteinMPNN paper for the protein part. For the
atomic context input features, we used one-hot-encoded chemical
elementtypes asnode features for the ligand graph and the radial basis
function-encoded distances between the context atoms as edges for
the ligand graph. To encode the interaction between protein-context
atoms, we used distances between N, Ca, C, O and virtual Cp atoms
and contextatoms. In addition, we added angle-based sin/cos features
describing context atoms in the frame of N-Ca-C atoms.

We used the same MPNN architecture asused in ProteinMPNN for
the encoder, decoder and protein-ligand encoder blocks. Encoder
and decoder blocks work on protein nodes and edges, that is, map-
ping vertices [NV] and edges [N, K] to updated vertices [N] and edges
[N, Klwhere Nis the number of residues and K'is the number of direct
neighbors per residue. We choose M context atoms per residue result-
ingin [N, M] protein-atom interactions. The ligand graph blocks map
vertices of size [N, M] and edges of size [N, M, M] (fully connected
context atoms) to updated vertices [N, M]. The updated [N, M] rep-
resentation is used in the protein-ligand graph to map vertices [V]
and edges [N, M]into updated vertices [N]. For more details, refer to
the LigandMPNN code.

Model algorithms. We provide a list of algorithms and model layers
used by the LigandMPNN model. The modelis based on the autoregres-
sive encoder-decoder architecture. Algorithm 10 describes how the
input features such as protein atom coordinates (X), ligand coordinates
(¥), ligand mask (¥_m), and ligand atom types (Y_t) are converted into
theinputfeatures. Protein and ligand geometric features are encoded
using the algorithm 11, and it returns final protein node and edge fea-
tures. Finally, algorithm 12 decodes protein sequence by predicting
log probabilities for all amino acids. During the inference, we sample
from these probabilities with some temperate (7) (algorithm 13) and
iteratively run algorithm 12 to populate the designed sequence (S).

Notation:

X eR"*3- proteinbackbone coordinates for N, Ca, Cand O atoms
with L residues

Y e R”™3. coordinates of the closest M ligand atoms from the
virtual Cp atomin the protein

Y_m e R”- ligand atom mask

Y te R“-ligand atom type

Algorithm1. Linear layer
defLinear(xeR; WeR™",beR"™):
1. x<Wx+b,xeR"

2: returnx

Algorithm 2. Non-linear layer**

defGELU(x eR"):
1: x < 0.5-x-(1+tanh(2/1-(x + 0.044715-x%))), x e R"
2: returnx

Algorithm 3. Normalization layer
defLayerNorm(xeR"%; yeR", 3 eR"):
1. p=E[x]=(x;+x,+...+4x,)/n,peR”
2: o’=E[(x-p)’],’eR”

3: x<y-(x-p)/o+p,xeR”

4: returnx

Algorithm 4. Dropout layer
defDropout(x e R*; p €R, training: bool):
iftraining:
mask =Binomial[1-p](x.shape), mask e R"
x < mask-x/(1-p), x eR"
returnx
else:
returnx

=

SAIRANE A

Algorithm 5. Position wise feed-forward
defPositionWiseFeedForward (v;e R"; n =128, m=512):
1: v;<Linear[n,m](v),v;eR"

2: v;«< GELU(v),v;eR"

3: v« Linear[m,n](v,),v;eR"

4: returny;

Algorithm 6. Positional encoding layer

def PositionalEncodings(offset € R™, mask e R“¥; n =16,
max_offset =32):

#offset - protein residue to residue distances for all chains
#mask - mask if two residues are from the same chain
#n-number of dimensions to embed the offset to
#max_offset - maximum distance between two residues
d=mask-clip[0, 2-max offset](offset + max offset), d e R™*
f=(1-mask)-(2-max offset +1), fe R**

g=d+f,geR™

g one_hot=one_hot[2-max_offset + 2](g), g one_hot
= RLXLXZ'max,oﬂ"seﬁZ

o

5. e < Linear[2-max offset +2,n](g_one_hot), e e R"*"
6: returne

Algorithm 7. Encoder Layer
defEncLayer(veR"", e R, e idxeR":n=128, m=128,
p=0.1,5=30.0):
#v - vertexembedding for L residues
#e - edge embedding for L residues with K neighbors per residue
#e_idx - integers specifying protein residue neighbor positions
#n-input dimension
#m-hidden dimension
#p - dropout probability
#s-scaling factor
q;=concatenate[e_idx;1(v, v, e;), g e R"", q;eR*",
q; < GELU{Linear[3n,m](q;)}, q;€R™,
q; < GELU{Linear[m,m](q;)}, q;€R™,
q; < Linear[m,m](q,), g;€R",
dh; « %;q,/s,dh;eR™,
v; < LayerNorm{v+Dropout[pl(dh)}, v;eR",
q;=concatenate[e_idx;1(v, v; e;), g € R"*?", g, e R*”",
q; < GELU{Linear[3n,m](qg;)}, q;€R™,
: gy < GELU{Linear[m,m](q;)}, q;€R™,
10: g < Linear[m,m](q;),q;€R",
11: e; <« LayerNormf{e,+Dropout[pl(q;)},v;eR",
12: returnv,e

WRNUD R RNE
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Algorithm 8. Decoder Layer
defDecLayer(veR”", e e R**?":n =128 m=128,p=0.1,s=30.0):
#v - vertex embedding for L residues
#e - edge embedding for L residues with K neighbors
#n-inputdimension
#m - hidden dimension
#p - dropout probability
#s-scaling factor
q;=concatenate(v, e;), € R"**", q;eR*"
q; < GELU{Linear[3n,m](q;)}, q;€R™,
q; < GELU{Linear[m,m](q;)}, q;€R",
q; < Linear[m,ml(q;), q;€R",
dh; « X;q,/s,dh;eR™,
v; < LayerNorm{v+Dropout[pl(dh,)}, v;e R",
returnv

Nounsenwe

Algorithm 9. Context Decoder Layer

defDecLayer)(v e R"M*, e e R*M M2y = 128, m= 128, p = 0.1, s = 30.0):
#v - vertex embedding for L residues with M atoms per residue
#e - edge for L residues with M atoms and M neighbors per atom
#n-input dimension

#m-hidden dimension

#p - dropout probability

#s-scaling factor

Q= concatenate(vy, e;),  eR“3", q,, e R*",

Qi € GELU{Linear[3n,m](q;)}, q;x€R™,

Qi < GELU{Linear[m,m](q; )}, q;x €R™,

Qi € Linear[m,m](q;s), ;x €R™,

dh; <X, qy/s, dh;eR™,

v; < LayerNorm{v;+Dropout[p]l(dh;)}, v;eR",

returnv

NoahkwhH

Algorithm10. Protein and ligand featurization
defProteinFeaturesLigand(Y eR"3 Y_meR"™, Y_teR"™ X e R™*%,
R_idx eR%, chain_labels € R:; noise_level =0.1, K =32, m=128,r=16):
#Y,Y_m, Y_t-ligand atom coordinates, mask, and chemical
atomtype
#X - protein coordinates for N, Ca, C, O atoms in this order
#R_idx - protein residue indices
#chain labels - integer labels for protein chains
#noise_level - standard deviation of Gaussian noise
#K-number of nearest Ca neighbors for protein
#m - hidden dimension size
#r - radial basis function number

1: X<« X+noise_level-GaussianNoise(X.shape), X e RF#3,
2: Y <« Y+noise_level-GaussianNoise(Y.shape), X € RPM,
3: CP==-0.5827-[(Ca-N)*(C-Ca)] +0.5680-(Ca-N) -

0.5407-(C-Ca) + Cax, N, Cax, C,CB €R™?,

4: e_idx=top_k[K](l|CaCal,), e_idx € R™,

5. rbf=[]

6: forain[N,Ca,C,OCpI:

7: forbin[N, Ca, C, 0 CBI:

8: rbf_tmp =rbf _f{get_edges[e_idx](lla;bjll,)}, rbf tmp € R™,

9: rbf.append(rbf_tmp)

10: rbf < concatenate(rbf), rbf e RP¥Z7,

11: offset=get edges[e_idx](R_idxR_idx;), offset e R,

12: offset_m = get_edges[e_idx](chain_labels-chain_labels;==0),
offset_m e R,

13: pos_enc=PositionalEncodings(offset, offset_m), pos_enc e R™¥"

14: e<LayerNorm{Linear[r + 25.r,m](concat[pos_enc, rbf])}, e R"*™

15: Y_t_g=chemical group(Y_t),Y_t geR“*¥

16: Y_t_p=chemical_period(Y_t),Y_t pcR"¥

17:  Y_t_lhot = Linear[64,147](onehot[concat(Y_t, Y_t_g, Y_t_p)]),
Y_t_lhote RU-64

18:  rbf N_Y=rbf f{||N-Y||,}, rbf N_Ye R"¥*

19: rbf Co_Y =rbf f{]|Ca-Y||}, rbf Ca_Y € REM

20: rbf C_Y=rbf f{||C-Y||,}, rbf C_Y e R"M*

21: rbf O_Y=rbf f{||0-Y||,}, rbf O_Ye RI™

22: rbf CBY=rbf f{IICB-YIL}, rbf CB_Ye R*"

23: rbf Y=concat(rbf N_Y, rbf Ca_Y, rbf C_Y, rbf O_Y,rbf CB_Y),
rbf Ye REMST

24: angles_Y =make_angle features(N, Ca, C,Y), angles_Ye R"M*

25: v=concat(rbf Y,Y_t_1hot, angles_Y), ve R"*

26: v<LayerNormf{Linear[5r+ 64 +4,m](v)}, ve R°M™"

27 Y_edges=rbf f{|[YY/ll,}, Y_edgese R®*

28: Y_edges < LayerNorm{Linear[r,m](Y_edges)},
Y_edgese RVMM<m

29: Y_nodes=LayerNorm{Linear[147,m](onehot[concat
(Y_t,Y_t g, Y_t p)])}, Y_nodese R

30: returnv,e,e_idx,Y_nodes, Y_edges

Algorithm11. LigandMPNN encode function
defLigandMPNN_encode(Y eR“™3 Y meR"M Y te R,

X eR”3 R idx eR%, chain_labels € R:; num_layers=3, c_num_
layers=2, m =128):

1. v.ye, eidx, Y _nodes, Y_edges=ProteinFeaturesLigand
(Y,Y_m,Y_t,X,R_idx, chain_labels)
v_y=Linear[m,m](v_y),v_y e R"",

v=zeros(L, m),veR"™,

foriinrange(num_layers):

v, e < EncLayer(v, e, e_idx), ve R"™, e e RH¥*™
v_c=Linear[m,m](v),v_ceR"™,
Y_m_edges=Y_m;Y_m; Y _edges e R""",

Y_nodes =Linear[m,m](Y_nodes), Y_nodes € R&"*™,
Y_edges = Linear[m,m](Y_edges), Y_edges € R“"*m
10: foriinrange(c_num_layers):

WHONDDRRN

11: Y_nodes <« DecLayer](Y_nodes, Y_edges, Y_m,Y_m_edges)
#atom graph

12: Y_nodes_c =concat(v_y, Y_nodes)

13: v_c « DeclLayer(v_c, Y_nodes_c, mask, Y_m) #protein graph

14: v_c<Linear[m,m](v_c)

14: v <v+LayerNorm[Dropout[p]l(v_c)
15: returnv,e,e_idx

Algorithm 12. LigandMPNN decode function
defLigandMPNN_decode(SeR:, Y meR" Y teR" X e RY* R_idx
R, chain_labels eR%, decoding_order eR%; num_layers=3, m =128):
1. h.V,e e_idx=LigandMPNN_encode(Y,Y_m, Y_t, X, R_idx,
chain_labels)

causal_mask = upper_triangular[decoding_order](L,L)
h_S=Linear[21,m](onehot(S)), h_S e R*™,

h_ES=concat(h_S, e, e_idx), h_ES e R"**™,

h_EX_encoder =concat(zeros(h_S), e, e_idx), h_EX_encoder

c RLXKXZm,

h_EXV_encoder=concat(h_V,h_ EX _encoder, e_idx), h EXV_encoder
e RLXKX3m,

7: h_EXV_encoder_fw=(1-causal_mask)-h_EXV_encoder

8: foriinrange(num_layers):

9 h_ESV =conat(h_V, h_ES, e_idx)

10:  h_ESV <« causal_mask-h_ESV +h_EXV_encoder_fw

11:  h_V<Declayer(h_V,h_ESV)

12: logits=Linear[m,21](h_V), logits e R*Z,

13: log_probs=log softmax(logits)

14: returnlogits, log_probs

N

Algorithm13. Amino-acid sampling with temperature
defsampling(logitsc R?, TeR, biase R%):

1: p=softmax((logits+bias)/T)

2: S=categorical_sample(p)

3: return$S
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Algorithm 14. Outline of LigandMPNN sidechain decode function

defLigandMPNN _sc_decode(Y_meR"™, Y_te R*Y, X e R¥#,

R_idx e R}, chain_labels e R!, decoding_order e RY; num_layers=3,

m=128):

1: h_V_enc,h_E_enc,e_idx=LigandMPNN_encode(Y,Y_m, Y_t, X,
R_idx, chain_labels)

2: h_V_dec, h_E_dec=LigandMPNN encode(Y,Y_m,Y_t, X, R_idx,
chain_labels)

3: causal_mask=upper_triangular[decoding_order](L,L)

4: h_EV_encoder=concat(h_V_enc, h_E_enc, e_idx)

5: h_E_encoder fw=(1-causal_mask)-h_EV_encoder

6: h_EV_decoder=concat(h_V dec, h E dec, e idx)

7-

8

9

h V=hV. enc
foriinrange(num_layers):
B h_Ev=conat(h_V,h_E_decoder, e_idx)
10: [@ih_ECV < causal_mask-h_EV +h_E_encoder_fw
11:  Fh V< Declayer(h_V,h_ECV)
12: torsions=Linear[m,4-3-3](h_V).reshape(L,4,3,3), torsions
c RL><4><3><3’
13: mean=torsions[...,0], mean e R"*3,
14: concentration=0.1+softplus(torsions]...,1]), concentration
c RL><4><3
15:  mix_logits =torsions]...,2], mix_logits € R**
16: predicted_distribution=VonMisesMixture(mean, concentra-
tion, mix_logits)
17: returnpredicted_distribution

ProteinMPNN and LigandMPNN share the idea of using autore-
gressive sequence decoding with a sparse residue graph with
ref. 21. However, there are many differences between the models.
First, ProteinMPNN is trained on biological protein assemblies,
and LigandMPNN on the biological protein assemblies with small
molecules, nucleotides, metals and other atomsin the PDB, whereas
ref. 21 was trained on single chains only. Second, we wanted our
models to work well with novel protein backbones as opposed to
crystal backbones, and for this reason, we added Gaussian noise
to all the protein and other atom coordinates to blur out fine-scale
details that would not be available during the design. Further-
more, we innovated by using a random autoregressive decoding
scheme that fits more naturally protein sequences as opposed to
left-to-right decoding used in language models and ref. 21. Also,
we simplified input geometric features by keeping only distances
between N, Ca, C, O and inferred C[3 atoms and added positional
encodings that allowed us to design multiple protein chains at
the same time, as opposed to using backbone local angles as in
ref. 21. Both ProteinMPNN and LigandMPNN can design symmet-
ric and multistate proteins by choosing an appropriate decoding
order and averaging out predicted probabilities. Also, we added
expressivity to our MPNN encoder layers, allowing both graph
nodes and edges to be updated. LigandMPNN further builds on
top of ProteinMPNN by incorporating local atomic context into
the protein residue local environment using invariant features.
We pass messages between protein residues and context atoms to
encode possible sequence combinations. Finally, LigandMPNN can
also predict with uncertainty multiple sidechain packing combina-
tions of a newly designed sequence near nucleotides, metals and
small molecules, which can help designers to choose sequences
that make desired interactions with the ligand of interest. Ligan-
dMPNN can also take sidechain conformations as an input, which
allows the design sequence to stabilize given ligand and selected
protein sidechains.

Algorithms 1, 2, 3,4 and 5 are commonly used in many machine
learning models. Algorithms 6, 7, 8 and 13 were used in the Pro-
teinMPNN model. Algorithms 9,10,11,12 and 14 are novel and specific
to LigandMPNN.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data are available in the Article or its Supplementary Informa-
tion. PDB structures used for training were obtained from RCSB. The
following PDB IDs were used in the Article: 8VEI, 8BEJ, 8VEZ, 8VFQ,
8TAC, 6)Y3, 2P7G, 1BC8 and 1E4M. (https://www.rcsb.org/docs/
programmatic-access/file-download-services). Source data are pro-
vided with this paper.

Code availability

The LigandMPNN code is available via GitHub at https://github.com/
dauparas/LigandMPNN. The neural network was developed with
PyTorch1.11.0, cuda11.1, NumPy v1.21.5, Matplotlib v3.5.1and Python
v3.9.12. MMseqs2 version13-45111+ds-2 was used to cluster PDB chains,
and mmcif vesion 0.84 (https://pypi.org/project/mmcif/) and rdkit
version 2022.03.2 were used to parse PDB files. The flow cytometry
data were analyzed using the software FlowJo v10.9.0.

References

43. Steinegger, M. & Soéding, J. MMseqs2 enables sensitive protein
sequence searching for the analysis of massive data sets.
Nat. Biotechnol. 35, 1026-1028 (2017).

44. Hendrycks, D. & Gimpel, K. Gaussian error linear
units (GELUs). Preprint at https://arxiv.org/abs/1606.08415
(2016).

Acknowledgements

We thank S. Pellock, Y. Kipnis, J. Wenckstern, A. Goncharenko,

N. Hanikel, W. Ahern, P. Sturmfels, R. Krishna, D. Juergens,

R. McHugh, P. Kim and I. Kalvet for helpful discussions. This research
was supported by the Department of the Defense, Defense Threat
Reduction Agency grant (grant no. HDTRA1-21-1-0007 to I.A.);
National Science Foundation (grant no. CHE-2226466 for R.P.);
Spark Therapeutics (Computational Design of a Half Size Functional
ABCA4 to I.A.); The Audacious Project at the Institute for Protein
Design (to L.A. and C.G.); Microsoft (to J.D. and I.A.); the Washington
Research Foundation, Innovation Fellows Program (to G.R.L.); the
Washington Research Foundation and Translational Research Fund
(to L.A.); a Washington Research Foundation Fellowship (to C.G.);
Howard Hughes Medical Institute (G.R.L., .A. and D.B.); National
Institute of Allergy and Infectious Diseases (NIAID) (contract nos.
HHSN272201700059C and 75N93022C00036 to I.A.); the Open
Philanthropy Project Improving Protein Design Fund (to J.D. and
G.R.L.); and the Bill & Melinda Gates Foundation Grant INV-037981
(to G.R.L.).

Author contributions

Conceptualization: J.D., G.R.L., L.A. and I.A.; methodology:
J.D.,G.R.L, L.A., LA, R.P.and C.G.; software: J.D. and I.A.; validation:
G.R.L., L.A., R.P. and C.G.; formal analysis: J.D. and G.R.L.; resources:
J.D.and D.B.; data curation: I.A., J.D., G.R.L., L.A. and R.P.; writing—
original draft: J.D. and D.B.; writing—review and editing: J.D. and
D.B.; visualization: J.D., G.R.L. and L.A; supervision: D.B.; funding
acquisition: J.D. and D.B.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41592-025-02626-1.

Nature Methods


http://www.nature.com/naturemethods
https://www.rcsb.org/docs/programmatic-access/file-download-services
https://www.rcsb.org/docs/programmatic-access/file-download-services
https://github.com/dauparas/LigandMPNN
https://github.com/dauparas/LigandMPNN
https://pypi.org/project/mmcif/
https://arxiv.org/abs/1606.08415
https://doi.org/10.1038/s41592-025-02626-1
https://doi.org/10.1038/s41592-025-02626-1

Article

https://doi.org/10.1038/s41592-025-02626-1

Correspondence and requests for materials should be addressed to
David Baker.

Peer review information Nature Methods thanks Claus Wilke and the
other, anonymous, reviewer(s) for their contribution to the peer review

of this work. Primary Handling Editor: Arunima Singh, in collaboration
with the Nature Methods team.

Reprints and permissions information is available at
www.nature.com/reprints.

Nature Methods


http://www.nature.com/naturemethods
http://www.nature.com/reprints

nature portfolio

Corresponding author(s): DAVID BAKER, NMETH-A54598E

Last updated by author(s): Nov 7, 2024

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name, describe more complex techniques in the Methods section.

A description of all covariates tested

I B I )™

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX X [O0XKXK X XS
X

oo

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The neural network was developed with PyTorch 1.11.0 (https://pytorch.org/get-started/locally/), cuda 11.1 (https://developer.nvidia.com/
cuda-11.1.0-download-archive), NumPy v1.21.5 (https://github.com/numpy/numpy), Matplotlib v3.5.1 (https://github.com/matplotlib/
matplotlib), Pythonv3.9.12 (https://www.python.org/).

MMseqs2 version 13-45111+ds-2 (https://github.com/soedinglab/MMseqs2) was used to cluster PDB chains, and mmcif vesion 0.84 (https://
pypi.org/project/mmcif/), rdkit version 2022.03.2 (https://github.com/rdkit/rdkit) was used to parse PDB files.

Data analysis Data analysis used Python v3.9.12 (https://www.python.org/), Matplotlib v3.5.1 (https://github.com/matplotlib/matplotlib), NumPy v1.21.5
(https://github.com/numpy/numpy). Structure visualizations were created in Pymol v2.3.5 (https://github.com/schrodinger/pymol-open-
source). Flow cytometry data was analyzed using the software FlowJo v10.9.0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

>
Q)
—
c
D)
§O)
o)
=
o
=
_
D)
©
o)
=
S
Q@
wv
[
3
3
Q
=
2




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All input data are freely available from public sources.

PDB structures used for training were obtained from RCSB (https://www.rcsb.org/docs/programmatic-access/file-download-services). The PDB ids used in the
paper: 8VEI, 8BEJ, 8VEZ, 8VFQ, 8TAC, 6JY3, 2P7G, 1BC8, 1E4M.

>
Q
—
c
D)
o)
le)
=
o
=
—
)
©
o)
=
>
Q@
wv
[
3
3
Q
=
2

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size was chosen; the method was evaluated on PDB chains not in the training set (subject to the exclusions noted below).

Data exclusions  The PDB dataset was filtered removing all entries with lower than 3.5 angstrom resolution, chain with too few resolved residues, biological
units with more than 6000 residues. This set was also redundancy reduced by clustering chains using 30% sequence identity, 80% coverage
using MMseqs2 version 13-45111+ds-2 (https://github.com/soedinglab/MMseqs2).

No sample was excluded from the experimental data analysis.

Replication The biotinylated rocuronium binding experiment using yeast cell surface display and flow cytometry was replicated twice to validate the
binding signal. The fluorescence polarization experiments were performed independently twice and all replications were successful.

Randomization  Randomization was not needed for the binding experiments.

Blinding Blinding was not needed for the binding experiments.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
X| Antibodies [] chip-seq

Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging
Animals and other organisms

Clinical data

XXNXXXOS
oo

Dual use research of concern

Antibodies
Antibodies used anti-cMyc-PE (Cell Signaling Technology, Myc-Tag (9B11) Mouse mAb (PE Conjugate) #3739) in 1:50 dilution, anti-cMyc-FITC
(Immunology Consultants Laboratory, CMYC-45F) in 1:100 dilution, Streptavidin R-Phycoerythrin Conjugate (SAPE)
Validation anti-cMyc-PE (https://www.cellsignal.com/products/antibody-conjugates/myc-tag-9b11-mouse-mab-pe-conjugate/3739): "Myc-Tag

(9B11) Mouse mAb (PE Conjugate) detects exogenously expressed proteins containing the Myc epitope tag. This antibody recognizes
the Myc tag fused to either the amino or carboxy terminus of targeted proteins in transfected cells. Myc-Tag (9B11) Mouse mAb (PE
Conjugate) detects exogenously expressed Myc-tagged proteins in cells expressed under a CMV promoter. Expression under other
promoters has not been evaluated. The antibody may cross-react with c-myc protein."

anti-cMyc-FITC (https://www.icllab.com/anti-c-myc-antibody-chicken-fitc-conjugated-cmyc-45f.html) "This antibody will react with

EQKLISEEDL as determined by ELISA and IEP techniques. It is suitable for blotting, ELISA and IF applications. Optimal working dilutions
should be determined experimentally by the investigator"

Flow Cytometry

Plots
Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group’ is an analysis of identical markers).
|Z| All plots are contour plots with outliers or pseudocolor plots.

|Z| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation EBY100 yeast strain was used to clone in gene fragments of the designed sequences with pETCON3 vector for cell surface
display.

Instrument Attune NxT Flow Cytometer (Thermo Fisher) was used.

Software The provided operating software of Attune was used to collect data, and the software FlowJo was used for data anaylsis and
visualization.

Cell population abundance We collected data of at least 30,000 cells per analysis.

Gating strategy We applied gates to exclude outliers using FSC-A/SSC-A, followed by a gating strategy using FSC-A/FSC-H to exclude doublets.

|Z| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

>
Q)
—
c
D)
o)
o)
=
o
=
_
D)
©
o)
=
>
Q@
wv
[
3
3
Q
=
2




	Atomic context-conditioned protein sequence design using LigandMPNN

	Results

	Discussion

	Online content

	Fig. 1 The LigandMPNN model.
	Fig. 2 In silico evaluation of LigandMPNN sequence design.
	Fig. 3 Evaluation of LigandMPNN sidechain packing accuracy.
	Fig. 4 Rescue of Rosetta small-molecule binder designs using LigandMPNN.




