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interactions
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Recent advances in single-cell RNA sequencing (scRNA-seq) techniques have 
provided unprecedented insights into the heterogeneity of various tissues. 
However, gene expression data alone often fails to capture and identify 
changes in cellular pathways and complexes, as they are more discernible 
at the protein level. Moreover, analyzing scRNA-seq data presents further 
challenges due to inherent characteristics such as high noise levels and 
zero inflation. In this study, we propose an approach to address these 
limitations by integrating scRNA-seq datasets with a protein–protein 
interaction network. Our method utilizes a unique dual-view architecture 
based on graph neural networks, enabling joint representation of gene 
expression and protein–protein interaction network data. This approach 
models gene-to-gene relationships under specific biological contexts and 
refines cell–cell relations using an attention mechanism. Next, through 
comprehensive evaluations, we demonstrate that scNET better captures 
gene annotation, pathway characterization and gene–gene relationship 
identification, while improving cell clustering and pathway analysis across 
diverse cell types and biological conditions.

Single-cell RNA sequencing (scRNA-seq) data have revolutionized our 
understanding of complex biological systems by revealing inherent  
cellular heterogeneity. Typically, scRNA-seq analysis involves graph- 
based clustering to identify distinct cell populations, followed by dif-
ferential gene expression analysis. This approach highlights key genes 
associated with specific cell states and functions.

One key limitation of scRNA-seq data is its zero-inflated nature1. 
These zero counts represent a mix of biological signals and technical 
limitations, resulting in a notably higher dropout rate compared with 
bulk RNA sequencing (RNA-seq). This leads to a substantial proportion 
of false zero values, masking true signals and resulting in a loss of cor-
relation in gene expression2, and thus struggles to delineate complexes 
and pathways activation. Addressing this issue various methods have 

been developed for scRNA-seq data imputation3. These at large include 
zero-inflated probabilistic models, nearest-neighbor-based smooth-
ing of expression profiles, and techniques to discover dense latent 
representations. Although these methods are theoretically capable of 
revealing gene–gene interactions, most methods focus on numerical 
recovery of dropout events and cell clustering4.

Several other approaches were suggested for tackling specifi-
cally the loss of correlation in scRNA-seq data. A model proposed by 
Aleksander et al.5 introduces a cell-specific correlation model that 
considers sequencing depth and read errors to infer cell-type-specific 
coexpression. However, these and the above-mentioned approaches 
aim to separate the true biological signal from noise, without the use 
of previous and complementary knowledge.
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dynamics, they often require fine-tuning with supervised loss (com-
monly using cell labels) when applied to specific datasets, which may 
not be available in most newly sequenced datasets. Thus, an unsuper-
vised framework that can be applied to unlabeled small-to-medium 
scRNA-seq datasets is called for.

Recently, Li et al.17 introduced a graph neural network (GNN)-based 
method (PINNACLE) for learning gene representations by integrating 
scRNA-seq atlases and PPI networks. Their work demonstrates the 
advantages of combining scRNA-seq data with PPI information using a 
deep learning framework at the atlas level. In our presented framework, 
we aim to showcase the benefits of deep learning-based PPI integration 
at the dataset level, while also leveraging cell similarity to enhance the 
learned embeddings effectively.

Here we introduce scNET—a method that combines both gene–
gene and cell–cell relations to learn simultaneously gene and cell 
embeddings. scNET learns GNNs based on protein–protein interac-
tions on the one hand and cell–cell expression similarities on the other 
hand. Propagating gene expression information on both networks 
alternately, our proposed framework aims to simultaneously smooth 
noise and learn condition-specific gene and cell embeddings. It also 
introduces an edge attention-based mechanism to refine the cell–
cell relations graph (K-nearest neighbor, KNN), relaxing the common 
assumption of a fixed number of connections per cell, which may not 
align with real biological systems. Our gene-based and cell-based dual 
view of the expression data facilitates the discovery of both types of 
relations and their usage in downstream tasks.

Our results indicate that scNET surpasses traditional imputa-
tion methods and advanced statistical models in elucidating gene–
gene relationships. We also demonstrate the potential of scNET’s cell 
embedding, leading to better cell clustering. Finally, we show that 
scNET’s reconstructed gene expression presents a clear advantage in 
identifying differentially enriched pathways in different cell types and 
biological conditions.

Results
We present scNET—a deep learning framework that employs a dual-view 
encoder to integrate scRNA-seq data with PPI information (Fig. 1).  

Protein–protein interaction (PPI) networks effectively capture the 
functional context of genes, including pathway and complex activation 
as well as signal transduction. A key limitation of these networks is that 
they are typically constructed on a global scale, capturing interactions 
at the organism level without reflecting the dynamic changes that 
occur across different cell types and biological conditions. Therefore, 
integrating PPIs with scRNA-seq holds great potential, as it combines 
the dynamic nature of scRNA-seq with the strong functional annotation 
and contextual information provided by PPI networks, which could 
enhance downstream scRNA-seq analyses.

In earlier work6, we demonstrated the potential of dataset-specific 
weighted PPIs to identify downstream signaling events following 
cell–cell interactions. On a broader scope, integrating the connec-
tions represented by PPIs into specific datasets may help identify 
condition-specific gene–gene relationships. This concept has been 
explored in studies such as that of Zand and Ruan7, who proposed 
the idea of propagating gene expression across PPI edges. Another 
study8 demonstrated how PPI networks can be used with a set of dif-
ferentially expressed genes to find a subset of key genes that can 
explain patient’s survival rates in non-small-cell lung cancer. Further 
research9,10 has shown that this integration can enhance fundamental 
scRNA-seq tasks, such as dimensionality reduction, dropout imputa-
tion and cell–cell similarity analysis.11 Introduced a non-negative matrix 
factorization-based framework for incorporating PPIs in the imputation 
of scRNA data. More recently, Li et al.12 introduced a graph embedding 
method called scLINE, which integrates scRNA data with various bio-
logical networks to capture gene-to-gene and gene–cell relationships 
within a dense latent space representation. Still, further methods that 
can simultaneously learn and refine both gene–gene and cell–cell rela-
tionships while embedding network information may be of advantage.

Recent advances in the field of natural language processing and 
large language models have also been introduced into the domain of 
scRNA-seq. Whereas works such as that of Yang et al.13 focused on spe-
cific tasks such as supervised cell annotation, more recent efforts14–16 
have focused on developing foundational models trained on extremely 
large scRNA-seq atlases, comprising tens of millions of cells. Although 
these models demonstrate strong performance in capturing atlas-scale 
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This approach is designed to elucidate both gene-to-gene and 
cell-to-cell relationships. Analyses of model loss convergence 
and running times across different dataset scales are provided in  
Supplementary Figs. 2–4. We also demonstrate that scNET captures 
PPI network information contingent upon gene expression data  
(Supplementary Fig. 5).

In the following sections, we validate the advantages and accu-
racy of scNET gene and cell embeddings, pruned KNN graphs and 
reconstructed gene expression profiles. We show that the learned 
gene embedding space effectively captures functional groups and 
coannotations, while the cell embedding captures a refined cell–cell 
similarity. Moreover, we demonstrate that the reconstructed gene 
expression profiles offer substantial advantages in standard differential 
pathway enrichment analyses in scRNA-seq.

scNET gene embedding better captures functional annotation
To evaluate the utility of the acquired embedding space, we first tested 
whether the correlations in the embedding space accurately reflected 
known biological annotations and functions. We calculated the  
Gene Ontology (GO) semantic similarity value5,18,19 and coembedded 
coefficient for every gene pair. We then analyzed the distribution of the 
absolute correlation between these values and compared our results 
with those from other scRNA-seq data imputation tools, including sct.
transform20, SAVER21, Magic22, DeepImpute23, Cell-type-specific correla-
tion tool CSCORE24, the graph embedding tool scLINE12 and the newly 
publish fundamental model14. Our embedding space was characterized 
by a substantially higher mean correlation, averaging around 0.17, with 
some genes correlating up to 0.5. This improvement, compared with 
methods that do not use previous information, is a strong indication 
of the advantage of deeply integrating biological networks with gene 
expression data (Fig. 2a).

Next, we assessed how well our embedding space captures func-
tional annotations by clustering genes. Using the k-means algorithm 
with cluster numbers ranging from 20 to 80, we measured the per-
centage of clusters significantly enriched for one or more GO terms. 
Enrichment was calculated using the gene set enrichment analysis 

(GSEA) tool25,26. A notable improvement was observed across all clus-
tering ranges (Fig. 2b), affirming the enhanced clustering efficacy of 
scNET gene embedding. A related result appears in Fig. 2c–e, where 
we present a uniform manifold approximation and projection (UMAP) 
dimensional reduction of the genes for the counts (Fig. 2c), scLINE 
(Fig. 2d) and scNET (Fig. 2e) gene embedding spaces. The genes are 
colored by their k-means clusters (with K = 30). Our scNET embedding 
captures smaller, more well-defined clusters compared with both the 
original counts and scLINE. In Supplementary Fig. 6 we present an 
analysis aiming to show that our gene latent spaces capture different 
dynamics for different cell types.

Finally, to further demonstrate that scNET gene embeddings 
better capture functional information, we trained a three-layer multi-
layer perceptron classifier to predict GO annotations from the embed-
dings. We focused on GO annotations with at least 50 genes expressed  
in our dataset to avoid sparsity issues. The classifier was trained using  
a multilabel cross-entropy loss in a fivefold cross-validation setting.  
For each fold, we calculated the area under the receiver operating  
characteristic curve (AUROC) and the area under the precision-recall 
curve (AUPR). We also benchmarked scNET against three other  
methods (scGPT, scLINE and DeepImpute). The results demonstrate 
that scNET embeddings effectively capture functional annotation 
information in the gene representations (Extended Data Fig. 1).

scNET coembedded network captures biological pathways
Next, we used the learned representation to construct a coembedded 
network that integrates PPI and coexpression information. We hypoth-
esize that this network could open new avenues for coexpression net-
work analysis in scRNA-seq, as it serves as a strong inference tool in bulk 
RNA-seq but has not yet been replicated in the domain of single-cell 
analysis. To this end, we leverage again the malaria-associated B cells 
dataset, pairwise absolute value correlations were computed in both 
the original and the embedding space, and thresholds were set at the 
50th, 75th, 95th and 99th percentiles. The Leiden27 algorithm was then 
used to estimate the modularity values of each network (Fig. 3a). Evi-
dently, scNET embedding space-based networks were substantially 
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more modular than their original space counterparts across all resolu-
tions. As the maximum modularity value was attained for both networks 
when the 99th percentile was employed as the threshold, this specific 
threshold was applied in the subsequent analyses. A representative 
sub-network of the resulting coembedded network is shown in Fig. 3b.

To further evaluate the resulting network, we used a previously 
described approach28 that attempts to quantify the ability of the net-
work to reconstruct Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways29. We focused on pathways comprising at least 30 genes 
expressed in the dataset. Each pathway was separated into a training 
and a test set, where each gene in the training set was assigned a value 
of 1. These membership values were then propagated (Methods) to 
score the rest of the genes and evaluate the quality of reconstructing 
the test set. The results are shown in Fig. 3c, scNET outperforming 
previous approaches.

Finally, we compared our integrated representation to both the 
PPI network and the original counts in reconstructing gene lists associ-
ated with different diseases30. Unlike KEGG pathways, these lists do not 

represent clear pathways but rather general associations of genes with 
conditions, allowing us to validate the performance of our method on 
less structured lists. To account for the large topological differences 
between the networks particularly, our coembedded network is much 
sparser due to the 99% cutoff. We assessed the predictive power of each 
network against a set of randomized networks (Methods). The coem-
bedded network achieved a mean z score of approximately 7, while the 
PPI and coexpression networks reached z scores of 3 and 0.5, respec-
tively (Fig. 3d); the full results can be found in Supplementary Fig. 7.

In Fig. 3e, we present the results of each network from different 
types of leukemias and lymphomas, as those diseases are strongly 
related to B cells. We observed that, in six out of the nine gene lists 
tested, our scNET coembedded network performed better than both 
other networks, while the PPI network achieved the highest score in 
the remaining three. The count-based coexpression network did not 
achieve the highest result in any of those lists. These results indicate 
that our newly integrated embedding performs better than both inputs 
of our model, demonstrating a synergistic effect in the integration.
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In Extended Data Fig. 2, we demonstrate how the coembedded 
network can be leveraged to identify unique genes that are differen-
tially associated with key molecules under different biological condi-
tions. Specifically, we applied this approach to a mouse glioblastoma 
multiforme (GBM) dataset31, focusing on the CD8+ T cell population. 
As previously described, the P-selectin knockout results in increased 
infiltration, activation and proliferation of CD8+ T cells compared with 
control CD8+ T cells. We sought to determine whether scNET could 
identify genes differentially associated with the marker of T cell activa-
tion and exhaustion PD1 (encoded by Pdcd1), in the control population.

First, we constructed differential coembedded networks using 
our model to learn distinct coembedded structures for the treatment 
and control samples. The differential network was then defined by 
applying the XOR operator to these networks. We focused specifically 
on the PD1 coinhibitory receptor, hypothesizing that the differential 
network could reveal genes with altered associations to this receptor. 
To investigate this, we applied network propagation (Methods) to 
assign an association (propagation) score to each gene. Our coembed-
ded network effectively captures functional associations and relation-
ships between genes. Thus, this approach would allow us to identify 
differential functional associations between conditions that may dif-
fer from standard DE-based analyses. We observed strong associa-
tions with genes involved in cytokine signaling and receptors, such as  
Il2ra and Ifng, as well as costimulatory genes like Cd28, Tnfrsf9 (also 
known as 4-1BB) and Tnfsf11. These differential functional associations 
with costimulatory and T cell activation genes may suggest a more 
pronounced regulatory role for PD1 in the control condition.

Evaluation of cell clustering
Next, we evaluated the ability of scNET to refine cell–cell similarity 
by utilizing two datasets from Usoskin et al.32, which include various 
sensory neurons from the dorsal root ganglia (DRG) and Tian et al.33, 
which comprises three different cancer cell lines. These datasets con-
tain ground truth labels (as opposed to postprocessing annotations 
determined by the analysis pipeline), making them suitable for bench-
marking.

For each dataset, we compared the performance of scNET with 
that of the original counts-based clustering, scLINE12, the established 
imputation method MAGIC22 and two state-of-the-art foundational 
models: scGPT14 and GeneFormer15. For the foundational models, we 
used the pretrained versions without more fine-tuning, as scNET and 
the other methods operate in an unsupervised manner (which is impor-
tant since true cell labels are often unavailable for newly generated 
scRNA-seq datasets). In Fig. 4, we present the UMAP embeddings for 
each method (scNET, counts, scLINE, MAGIC, scGPT, GeneFormer) and 
dataset (Usoskin et al.32, cancer cell lines). To systematically evaluate 
the embedding space, we employed Leiden clustering across a range 
of resolutions (0 to 1) and compared the maximum adjusted rand 
index (ARI) with the original cell labels (Fig. 4m,n). We observed that, 
compared with all other methods, scNET achieved the highest ARI in 
both datasets. The foundational models also demonstrated relatively 
weak performance on these datasets, suggesting that although they are 
designed to perform well on large atlas-sized datasets, their ability to 
distinguish cell types is reduced when applied in a zero-shot setting to 
unseen datasets. This highlights the need for the development of unsu-
pervised, single-dataset frameworks as complementary approaches to 
large foundational models in the scRNA-seq domain.

Upon close observation of the UMAPs, in the Usoskin dataset, we 
see that, in the original counts UMAP (Fig. 4b), tyrosine hydroxylase 
and nonpeptidergic cell types are clustered separately. However, after 
applying scNET, scLINE (Fig. 4a,c) and MAGIC (Fig. 4d), we observe 
better separation of these cell types. In the cancer cell line dataset, the 
original counts UMAP (Fig. 4h) shows that, whereas H228 and HCCB27 
form well-defined clusters, H1975 is split into two separate communi-
ties. This separation is preserved after applying scLINE and MAGIC 

(Fig. 4i,j), and only scNET (Fig. 4a) successfully clusters H1975 into a 
single, well-defined group in its embedding.

We also investigated the distribution of attention coefficients in 
the KNN graph after 30 epochs (prepruning) as shown in Supplemen-
tary Fig. 8c. A notable two-peak distribution was observed, with one 
peak near zero (low-quality edges) and another at one (high-quality, 
informative edges), indicating our model’s effective differentiation 
between edge qualities in the KNN topology.

Finally, using a well-characterized cell cycle dataset34, we examined 
cell state separation in UMAP representations. The original UMAP 
inadequately distinguished between S and G1 states, merging them 
into a single cluster. By contrast, UMAPs derived from our models 
(Supplementary Fig. 8a,b) demonstrated a clearer separation, with 
the S state cluster appropriately separated from the G1 and G2 clusters. 
This suggests a more accurate biological representation, even in the 
global structure. Leiden clustering in our embedding space yielded a 
maximum ARI of 0.46, surpassing the 0.35 ARI in the original normal-
ized count space.

scNET reduces zero inflation and improves pathway analysis
We hypothesized that the reconstructed gene expression not only accu-
rately reflects the original gene expression profiles but also integrates 
further information from the PPI network. This integration is expected 
to provide a more detailed characterization of pathway activation and 
complex biological processes in single-cell data.

To validate the quality of our reconstructed gene expression  
data, we first assessed whether the reconstructed gene expression 
accurately captures the unique expression dynamics of different cell 
populations. We applied scNET to the GL261a mouse brain tumor model 
dataset31, and visualized the reconstructed gene markers for different 
cell populations (Fig. 5a). The reconstructed cells clustered according 
to their cell types, demonstrating the ability of scNET ability to capture 
cell type distinctions. Moreover, the expression values of marker genes 
showed strong correlations with their respective cell populations.  
For instance, the expression of Cd4 and Cd8a corresponded accu-
rately to their respective T cell subsets; Cd14 effectively identified 
macrophages; and P2ry12 captured microglia cells with precision.

To further evaluate the reduction of zero inflation and the accu-
racy of marker gene expression, we calculated the AUPR for each cell 
type based on its respective marker gene. We compared the AUPR 
scores across the original counts data, scNET-reconstructed data, and 
the imputed data from MAGIC and DeepImpute (Table 1). Our results 
indicated that scNET consistently achieved higher AUPR scores across 
all cell types, providing strong evidence that the reconstructed data 
reliably captures the underlying gene expression dynamics.

Next, we evaluated the quality of differential gene expression anal-
ysis using the reconstructed gene expression data. We hypothesized 
that, by incorporating the PPI network, the reconstructed gene expres-
sion would better capture differential pathways between clusters and 
cell populations, thereby improving biological inference. We focused 
on four main cell populations in the dataset: T cells, macrophages, 
microglia and cancer cells. We applied standard differential gene 
expression analysis35, and the resulting differentially expressed genes 
for each cluster were used to calculate enriched KEGG pathways using 
GSEA. In Fig. 5b, we present the top 20 most enriched pathways for each 
cell population. Our analysis revealed that the scNET-reconstructed 
data captured relevant pathways associated with each population. 
For example, T cells were enriched in pathways such as ‘T cell recep-
tor signaling pathway’, ‘human T cell leukemia virus 1 infection’ and 
‘TH17 cell differentiation’. Microglia showed enrichment in pathways 
related to their interactions with neurons, such as ‘glutamatergic 
synapse’ and ‘retrograde endocannabinoid signaling’. Cancer cells 
were enriched in proliferation and metabolism pathways such as ‘cell 
cycle’, ‘oxidative phosphorylation’ and ‘DNA replication’ and also in 
neurodegeneration-related pathways such as ‘Parkinson’s disease’, 
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consistent with known mechanistic similarities in GBM36. Macrophages 
were upregulated in pathways associated with their functions, such as 
‘lysosome’, ‘cytokine-cytokine receptor interaction’ and ‘phagosome’, 
which is also shared with microglia.

For comparison, we performed the same analysis on the  
original gene expression data (Fig. 5c). The results indicated a strong 
bias toward macrophages, with significant enrichment in pathways 
that are not typically associated with this cell population, such as 

‘apoptosis’, ‘B cell receptor signaling’ and ‘Alzheimer’s disease’.  
By contrast, other cell populations showed significantly fewer path-
way enrichments. This suggests a bias in the original data toward  
macrophages, which scNET was able to correct.

Finally, we tested whether scNET’s reconstructed gene expression 
could identify differential dynamics within the same cell population 
under different biological conditions. We used a dataset that includes 
both control samples and samples treated with P-selectin inhibition, the 
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treatment reduce tumor growth and improve survival in a GBM mouse 
model. Our analysis focused on the CD8+ T cell population, which, 
according to Yeini et al.31, exhibits increased tumor infiltration and 
activation following P-selectin inhibition. However, standard scRNA-seq 
analysis did not indicate notable changes at the transcriptomic level 
compared with the control, making this population an ideal candidate 
to test the ability of scNET to detect more upregulated pathways.

Given the known association between P-selectin inhibition and 
increased populations of activated CD8+ T cells, we aimed to determine 
whether a pathway-based approach using the scNET embedded space 
could reveal such associations. We selected nine KEGG pathways related 
to T cell activation37–40, including pathways such as ‘T cell receptor 
signaling’ and ‘NF-κB’. We used the differential expression analysis on 
the scNET framework, alongside the original counts, to assess the dif-
ferential enrichment of each pathway using GSEA25. Our analysis found 
significant enrichment for eight of the nine T cell-related pathways 
within the scNET network, whereas none were detected when using 
the original counts.

To validate the specificity of these results, we constructed a nega-
tive set of pathways unrelated to T cells. Using the MSigDB immune 
signature module26, we compiled a comprehensive gene repository 
relevant to T cells. An exhaustive search within this database identified 
776 T cell-associated signatures. We selected genes present in at least 
1% of these signatures and identified pathways that are depleted with 
respect to those genes (using a hypergeometric score). These pathways 
included ‘ribosome’, ‘spliceosome’ and ‘fatty acid biosynthesis’, which 
served as our negative set. Using the same GSEA analysis, scNET yielded 
lower enrichment scores relative to the original counts, indicating a 
high level of specificity (Fig. 5d).

Discussion
Identifying how pathways and complexes are differently activated 
across various biological conditions is essential for a comprehensive 
understanding of the biological shifts observed in comparative system 
analyses. In bulk RNA-seq, coexpression and differential coexpression 
analysis are fundamental inference tools. However, these approaches 
have not been as effective in scRNA-seq due to its zero-inflated nature 
and the diminished correlation typical of this data type. Consequently, 
developing innovative tools to overcome these limitations and further 
identify and analyze condition-specific pathway activation is vital for 
single-cell genomics to fully realize its considerable potential.

In this study, we introduced a cutting-edge deep learning frame-
work, scNET, that integrates scRNA-seq data with PPI networks. Unlike 
traditional datasets, where the separation to samples and features is 
distinctly separated, our integrated dataset presents a unique duality. 
Here, cells are represented as vectors of gene expression measure-
ments, and genes are characterized by vectors of expression across 
various cells. We posit that a model capitalizing on this dual nature will 
achieve superior performance.

Subsequently, we formulated a autoencoder model, which is 
based on a GNN architecture. Our proposed model incorporates two 

graphs and a node feature matrix. One network captures relationships 
depicted by rows, representing samples, while the other outlines rela-
tionships demonstrated by columns. Through this dual-graph encoder, 
values in the node feature matrix flow between the networks, enabling 
synchronized signal propagation among similar cells (columns) and 
interacting genes (rows).

To assess the effectiveness of our approach, we introduced a metic-
ulous validation framework. This framework gauged our method’s 
proficiency in pinpointing pathways and functional coannotations 
relative to related work in the field. Our findings underscore the ben-
efits of our approach for integrating a global biological network with 
context-specific gene expression. Through our model, we were able to 
discern distinct pathway activation within the GBM tumor microenvi-
ronment post-treatment (inhibition of P-selectin). This sheds light on 
the functional implications of the treatment, which remained elusive 
when relying solely on traditional differential gene expression analyses 
or coexpression analyses in the original unique molecular identifier 
space. This evidence propounds that our integrated embedding space 
offers a more insightful lens for comprehending intricate biological 
systems, focusing on the broader spectrum of pathways rather than 
individual gene expressions.

It is important to note that, although PPIs incorporate crucial 
information about gene interactions, they do not encompass key 
regulatory events that are mediated indirectly, such as those involv-
ing transcription factors. These interactions play a notable role in 
regulating gene expression within cells, and their inclusion is essen-
tial for a comprehensive understanding of gene–gene relationships. 
However, integrating them into the existing framework may not be 
straightforward. For instance, it is known that the expression of many 
transcription factors remains stable across different conditions, but 
their localization and phosphorylation can vary as a result of activation. 
These indicators obtained through technologies such as single-cell 
assay for transposase-accessible chromatin sequencing, could further 
improve the scNET embedding.

In addition, we have presented a unique approach for constructing 
a more refined cell–cell similarity graph. By implementing an atten-
tion mechanism on the KNN graph, we effectively pruned suboptimal 
edges, relaxing the underlying assumption that each cell inherently 
resembles a fixed set of K other cells. Although our study aimed primar-
ily to elucidate and validate our gene embedding space, the ability of 
our model to accurately capture cell–cell relationships has emerged as 
a promising aspect. This paves the way for innovative computational 
methods that leverage attention mechanisms to discern cell-to-cell 
similarities in scRNA-seq data.

Beyond scRNA-seq, KNN is a well-established method for data 
imputation in machine learning41. Our proposed framework integrates 
this approach into its architecture, providing a more cohesive way to 
address noise and missing values, and enabling the model to refine 
the relations between different objects. Consequently, we believe our 
innovative framework transcends scRNA-seq data applications and can 
be applied to other datasets that exhibit similar dual characteristics.
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Methods
Gene expression datasets
The following scRNA-seq datasets have been used in this study:

	 1.	 Human malaria-associated B cells: described in ref. 42,  
containing 7,044 cells over 19,374 genes.

	 2.	 Mouse visual cortex: described in ref. 43, containing 65,540 
cells over 25,187 genes.

	 3.	 Human cell line: described in ref. 33, containing 902 cells over 
16,468 genes from three different human cell lines (H1975, 
H2228, HCC827).

	 4.	 Mouse embryonic stem (mES) cell cycle: described in ref. 44, 
containing 275 cells over 23,506 genes, each gene is labeled  
according to its cell cycle state (G1, G2/M, S).

	 5.	 GBM mouse model: described in ref. 31, containing 9,175 cells 
over 18,531 genes from control and treatment (inhibition of 
P-selectin) samples.

	 6.	 Usoskin’s DRG: described in ref. 32, containing 799 cells over 
25,334 genes from the DRG of the mouse identified by known 
markers associated with their function.

	 7.	 Glioma tumor-reactive CD8+ T cells: as described in ref. 45, 
this dataset contains 4,231 T cells over 14,202 genes from 
the mouse glioma tumor microenvironment. All T cells were 
H-2Kb-SIINFEKL dextramer-positive (Dext+).

Data prepossessing
scRNA-seq expression data was preprocessed using standard Scanpy 
package35 pipeline (v.1.9.1). In brief, the pipeline consists of the  
following steps:

	 1.	 log normalization: feature counts for each cell are divided by 
the total counts for that cell and multiplied by a scale factor, 
finally log1p is applied.

	 2.	 Variance-based filtering: scNET learns to reconstruct a subset of 
expressed genes that exhibit high variance across the dataset, 
as described below. To identify these genes, we used the highly_
variable_genes function, which calculates gene-wise variance 
after mean normalization. The default cutoff was applied to 
obtain the final subset of highly variable genes.

	 3.	 Dimensionality reduction: principal component analysis and 
UMAP are calculated from the scale-normalized data matrix, 
where each feature normalized expression is scaled across the 
cells. The number of principal components for the clustering 
was selected manually based on an elbow plot showing the gain 
in variance with each further vector.

	 4.	 KNN graph: KNN was calculated for each cell in the data and  
a KNN graph was constructed in the reduced principal  
component analysis space.

	 5.	 Scaling: we found that our model works best with scaled gene 
expression data. Therefore, we applied standard scaling to the 
log-normalized expression, where each gene’s expression is 
normalized to have a mean of 0 and s.d. of 1.

A weighted human PPI was used46, filtering edges with scores 
lower than 0.5. The filtered network spans 14,136 proteins and 111,790 
interactions. We further removed all nodes corresponding to genes 
that were not expressed in the scRNA data (zero expression across all 
the cells). To construct the node feature matrix from the normalized 
gene expression matrix, we filtered out genes that were not represented 
by an edge in the network or were not expressed in the scRNA data.

The encoder
Our proposed model integrates scRNA-seq and PPI data by learning a 
gene and cell embeddings that effectively capture both the network 
structure and the expression information while also reducing the noise 
level of the data. Specifically, our encoder architecture (Fig. 1) consists 

of alternately applying a convolution layer to aggregate information 
between similar cells, therefore impute missing values and reducing 
noise level, and then applying another convolution layer on the trans-
posed matrix to aggregate information between interacting proteins. 
The aggregated information is then passed through a graph attention 
layer to produce the latent representation.

Graph convolution layer. A convolution layer47 aggregates for every 
node information from neighboring nodes to form the output node 
feature vector. Formally, we can define G = (V, E) with N = ∣V∣ nodes  
and adjacency matrix A ∈ RN×N and node feature matrix X ∈ RN×F. The 
output of a single convolution layer is σ( ̂Aδ(X )W ), where σ is the acti
vation function, δ is the dropout and ̂A = D̄−1/2ĀD̄−1/2, D is the diagonal 
degree matrix of the graph and Ā = A + I.

Graph attention layer. By incorporating an attention mechanism,  
our model refines the cell–cell similarity graph (KNN) by learning a 
weight for each edge in the graph. These weights represent the impor-
tance the model assigns to cell j when reconstructing the gene expres-
sion of cell i. We argue that the assumption that each cell is similar to a 
fixed number K of other cells is arbitrary and can lead to the inclusion of 
false edges. Therefore, in our framework, we use the learned attention 
weights as a basis for pruning low-quality edges.

Formally, for an input feature matrix X ∈ ℝN×F, an attention layer48 
aggregates information from all nodes to score a given node, account-
ing for network proximities. For a node i with degree d, we define:

x′i = W1xi + ∑
j∈N(i)

αi, jW2x j,

where N(i) are the neighbors of node i in the network and the attention 
coefficient is:

αi, j = sigmoid (
(W3xi)

T ⋅ (W4x j)
√d

) ,

and W1, W2, W3 and W4 are learned matrices.
In our implementation, we have modified the original activation 

function, replacing the node-wise softmax with a sigmoid function. 
This change means that the scores for the edges are not normalized by 
node, allowing us to prune global low-scoring edges as described below.

KNN graph pruning using attention coefficients. Using KNN to 
smooth expression across cells assumes that each cell is similar to an 
arbitrary K other cells in the dataset. However, this assumption may 
not be biologically accurate, as cells from different populations and 
states may be represented in varying numbers within the data. To 
address this, we propose using the learned attention coefficients to 
prune low-quality edges. Specifically, we compute and define the new 
edge set of the graph as:

E′ = {(i, j)|(i, j) ∈ E and αi, j > β}

where P10 is the 10th percentile and β is defined as max(0,P10).
As a result, the introduction of the attention layer not only helps 

the model to learn more meaningful latent representations for cells 
and genes but also allows the model to learn a new topology for the 
KNN network, enabling the graph to better capture cell–cell relations.

The complete autoencoder model
Our final autoencoder model is depicted in Fig. 1. First, the KNN graph, 
PPI network and gene expression matrix are fed into a three-layer 
dual-view encoder (three layers of the graph convolutional network 
of the cell and three layers of the graph convolutional network of the 
gene). Next, we utilize a single layer of graph attention to learn two 
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dense latent representations (using the KNN graph for the cell atten-
tion layer and the PPI for the gene attention layer), one for the genes 
and another for the cells. Finally, we apply an inner product decoder to 
reconstruct the PPI network and a three-layer fully connected decoder 
to reconstruct the gene expression.

At fixed intervals during training, we also prune the KNN graph 
as discussed above. After training, the model returns the embeddings  
of the genes and cells, along with the pruned KNN graph and the  
reconstruction of the gene expression. The loss function combines  
PPI reconstruction and gene expression reconstruction losses.

The inner product decoder is defined to be ̂A = σ(ZZT)  where  
Z is the latent representation of the genes and σ is the Sigmoid activa-
tion function. We denote with Zpos the set of edges in the trained PPI 
network, and with Zneg the set of randomly sampled negative edges s.t 
∣Zpos∣ = ∣Zneg∣. We then define:

ℒPPI = − ∑
z∈Zpos

log(z) − ∑
z′∈Zneg

log(1 − z′)

As described above, we first select a subset of genes that exhibit 
substantial variation across the dataset. We denote this subset as Mv. 
We then use the mean square error (m.s.e.) loss function on the genes 
in this subset to train the model. Formally, we define:

ℒv = m.s.e. (Mv, M̂v)

where M̂v is the reconstructed vector of expression levels of the genes 
in Mv.

Our final loss function is:

ℒ = λPPI ℒPPI + λv ℒv

Where λPPI and λv are hyper-parameters of the model.

Network evaluation
To assess the predictive power of various networks in our research, 
we focused on known functionality groups, such as those defined in 
KEGG pathways. Generally, each group was divided into training and 
test sets with a ratio of two-thirds to one-third. We then applied ran-
dom walk with restart approach49 to propagate membership from the 
training group to all other nodes. The propagation scores were used 
as membership scores to calculate area under the curve (AUC) scores 
for each network. In detail, given the adjacency matrix W and the node 
degree matrix D, the propagation is iteratively computed using the 
following formula:

Ft+1 = αW′Ft + (1 − α)F0

where F0 represents the input binary membership vector and 
W′ = D−1/2WD−1/2  is the normalized adjacency matrix of the network.  
To account for node centrality, we normalize the resulting vector F∞  
by dividing it entry-wise with the propagation scores obtained with  
an all − 1 input vector.

Furthermore, for the evaluation of networks with different  
numbers of edges, we implemented a topology-free evaluation frame-
work, comparing the predictive power of each network against a set  
of random permutation graphs, as outlined previously30. A database 
of 230 gene lists associated with various diseases was employed  
for this purpose. For each network, we generated 30 degree- 
preserving random networks to establish a background distribu-
tion. The gene lists were split into training and test sets, and network  
propagation seeded by the training set was employed to predict the  
test set. An AUC score was calculated for each network and trans-
formed into a z score using the distribution of scores on the randomized 
networks.

Implementation and training
The model was implemented using the Python and PyTorch50 (v.2.1.1) 
deep learning framework. Specifically, the graph convolution  
layers were implemented using the torch-geometric package51  
(v.2.1.1). To optimize the model during the training process, the Adam 
optimizer with a learning rate of 0.0001 was used with L2 regulation 
of 1 × 10−5.

The model was trained in Google Colab Pro+ platform using 
NVIDIA A100 40 GB random-access memory graphics processing unit. 
Training process comprised 250 epochs and, after every 10 epochs, 
AUROC values were calculated. At each stage, we saved the model  
and the KNN network that achieved the highest AUC score on the  
test set. The KNN network was pruned every 30 epochs at a maxi-
mum rate of 10% during each pruning. To avoid disconnection of cells  
from the graph each cell maintained at least five edges in the  
pruned graph.

To determine the hyperparameter values, we utilized a refer-
ence dataset42 and performed cross-validation using the receiver 
operating characteristic curve as the evaluation metric. We found 
that balancing the loss between PPI reconstruction and gene expres-
sion was optimal. Pruning exceeding 10% also resulted in a decline 
in performance. Finally, we observed that three layers of the expres-
sion decoder yielded the best result. The robustness of the model 
was further demonstrated by training it on more datasets, yielding 
consistent results.

The dimensions of the encoder are determined by the number 
of genes and cells in the dataset. Since the number of genes remains 
relatively consistent across different datasets, the primary variable 
becomes the number of cells. In an effort to reduce space complexity 
and introduce greater randomization during training, we propose 
a strategy of randomly splitting the edges of the KNN graph into 
mini-batches. Each batch utilizes a fraction of the original edges, 
typically one of five or one of ten, depending on the dataset size. This 
approach effectively lowers the random-access memory usage during 
training, while maintaining adequate performance.

For datasets with a relatively larger number of cells (above 10,000), 
the size of the model becomes too large for standard graphics process-
ing units. Consequently, in such scenarios, we divide the cells into 
independent subsets (or mini-batches) to be processed iteratively. 
In this setting, a new integrated pruned KNN graph will not be gener-
ated, but the model still learns to embed the cells into a unified space, 
incorporating refined cell–cell relations. We show that there is no 
notable batch effect following this process (Supplementary Fig. 1). 
For datasets containing fewer than 100,000 cells, we typically divide 
the data into ten subsets.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
In this study, we used publicly available datasets as detailed in Methods, 
accessible through Gene Expression and ArrayExpress. The specific 
datasets used are: malaria-associated B cells dataset (GSE149729), 
mouse visual cortex dataset (GSE102827), human cell line dataset 
(GSE118767), mES cell cycle dataset (E-MTAB-2805), glioblastoma data-
set (GSE156663), Usoskin’s DRG dataset (GSE59739), and the glioma 
tumor active CD8 T cells dataset (GSE154795).

Code availability
scNET is available for download via GitHub at https://github.com/
madilabcode/scNETincluding all the necessary files and conda environ-
ment, and as official python package via PyPi https://pypi.org/project/
scnet/. A notebook illustrating how to run the model using the Google 
Colab platform (recommended) is included as well.
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Extended Data Fig. 1 | GO annotation prediction. AUPR and AUROC of embedding based GO annotation prediction using MLP classifier in 5 fold cross-validation 
setting for scNET, scGPT, scLINE, and DEEP Impute.Standard SEM bars are presented for each bar.
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Extended Data Fig. 2 | Associations with Pdcd1. Dot plot displaying the top 30 genes with the highest propagation scores in relation to the co-inhibitory receptor 
Pdcd1 (PD-1). The propagation score for each gene is shown, with genes color-coded according to their known functional groups.
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