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Unifying the analysis of bottom-up 
proteomics data with CHIMERYS
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Lizi Mamisashvili1, Markus Schneider1, Siegfried Gessulat1, Tobias Schmidt    1, 
Bernhard Kuster    2,3, Daniel P. Zolg1 & Mathias Wilhelm    2,3 

Proteomic workflows generate vastly complex peptide mixtures that 
are analyzed by liquid chromatography–tandem mass spectrometry, 
creating thousands of spectra, most of which are chimeric and contain 
fragment ions from more than one peptide. Because of differences in data 
acquisition strategies such as data-dependent, data-independent or parallel 
reaction monitoring, separate software packages employing different 
analysis concepts are used for peptide identification and quantification, 
even though the underlying information is principally the same. Here, 
we introduce CHIMERYS, a spectrum-centric search algorithm designed 
for the deconvolution of chimeric spectra that unifies proteomic data 
analysis. Using accurate predictions of peptide retention time, fragment 
ion intensities and applying regularized linear regression, it explains as 
much fragment ion intensity as possible with as few peptides as possible. 
Together with rigorous false discovery rate control, CHIMERYS accurately 
identifies and quantifies multiple peptides per tandem mass spectrum 
in data-dependent, data-independent or parallel reaction monitoring 
experiments.

Mass spectrometry (MS)-based bottom-up proteomics is the mainstay 
technology for high-throughput protein identification and quantifi-
cation today1–3. The former is achieved by matching theoretical, pre-
dicted or library fragment ion mass spectra (MS2) to experimental MS2  
spectra, which contain sequence and amino acid modification informa-
tion on peptide precursor ions, measured in precursor mass spectra 
(MS1). Today, MS2 spectra are typically acquired in data-dependent 
(DDA), data-independent (DIA) or parallel reaction monitoring (PRM) 
mode. Peptide quantification either uses the precursor intensity from 
MS1 (DDA) or fragment ion intensities from MS2 (DIA and PRM) spectra. 
A central challenge for data analysis is the fact that most MS2 spectra 
are chimeric (they contain more than one peptide)4–6. This is because 
liquid chromatography–tandem MS (LC–MS/MS) systems cannot 

fully separate the vast number of peptides resulting from whole pro-
teome enzymatic digestion, in particular when short gradients or no 
liquid chromatography at all is employed, as exemplified by direct 
infusion-shotgun proteome analyses (DI-SPA)7.

DIA MS2 spectra are usually more complex than DDA MS2  
spectra because they are typically acquired with wider isolation win-
dows to maintain low MS cycle times (important for quantification) 
and hence contain fragment ions from many different precursors8. 
Although DDA and PRM MS2 spectra are normally acquired to minimize 
co-isolation, they are also chimeric, albeit to a lesser extent6. Because 
of the way that data acquisition approaches have evolved, the cor-
responding data types are analyzed differently9, making it difficult to 
compare them in an unbiased fashion10.
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-dependent scores for each PSM (Methods). Spurious PSMs are 
removed based on some of these scores. For example, PSMs are 
required to have at least three matched fragment ions, one of which 
must be the most abundant peak of the prediction and another one of 
which must be among the top three most-intense peaks of the predic-
tion. PSMs passing these criteria are used for deconvolution, where 
they compete for experimental fragment ion intensity in one con-
certed step; an approach fundamentally different from classic methods 
(Fig. 1a). PSMs with enough contribution to the experimental spectrum 
as measured by CHIMERYS coefficients and that pass additional score 
filters are handed to mokapot20 for PSM-level FDR control, specifically 
allowing for multiple PSMs per spectrum, similar to DIAmeter27.

We validated this FDR estimation on data with varying chimer-
icity by systematically increasing the isolation window width of 1-h 
single-shot measurements (pancreatic mouse cell digest) from 1.4 to 
20.4 Th using entrapment experiments (Supplementary Methods).  
Figure 1b shows that CHIMERYS’ peptide group-level q-values  
correspond to empirical q-values calculated based on entrapment 
identifications with the classic entrapment FDR (eFDR) approach, 
independent of isolation window width.

Figure 1c displays the confident identification of six precursors 
with relative contributions to the experimental total ion current rang-
ing from 4% to 54% from a 2-h HeLa DDA single-shot measurement in 
a mirror spectrum. Their predicted retention times differ from the 
scan’s observed retention time by 1.14 min on average, correspond-
ing to less than 1% deviation relative to the gradient length of 120 min. 
Notably, the experimental intensities for the y1, y1-NH3 and y1-H2O 
ions that are shared between five of these precursors (C-terminal 
lysine) align well with the sum of their predicted intensities, scaled 
by their respective CHIMERYS coefficients, which can be interpreted 
as the interference-corrected total ion current of a precursor in an  
MS2 spectrum (Methods). This exemplifies how the algorithm identi-
fies multiple peptides in chimeric spectra, while distributing intensities 
of shared fragment ions. Peptides identified by CHIMERYS recapitu-
late the expected quantitative ratios in a multi-organism-mixture  
experiment (Fig. 1d). This renders CHIMERYS suitable for approaches 
like wide-window DDA (also termed WWA or wwDDA)28,29 and the  
analysis of DIA data.

To assess the performance of the algorithm on DDA data, we 
analyzed a 2-h HeLa cell digest with 1.3-Th MS2 isolation windows. 
CHIMERYS identified 238,795 PSMs at 1% run-specific PSM FDR with 
>85% of MS/MS spectra yielding one or more PSMs (identification 
rate; Extended Data Fig. 1a). More than two-thirds of the identified MS2 
spectra contained more than one precursor (Extended Data Fig. 1b), 
confirming previous observations6. Fragment ions shared between 
different peptides were detected across the full MS2 m/z range with  
an expected higher frequency ≤200 m/z (Supplementary Fig. 1), render-
ing current strategies for handling chimeric spectra such as subtractive 
and multiplicative approaches error prone. Comparing these results to 
eight academic and commercial DDA search engines (Fig. 1e) revealed 
that CHIMERYS identifies many additional peptide groups (Extended 
Data Fig. 2a–c) in less time than was spent on data acquisition (Extended 
Data Fig. 2d). Most of these additional identifications were low abun-
dant (Extended Data Fig. 3a). As such, they had fewer matched fragment 
ions than shared peptide groups (median of 10 versus 17; Extended  
Data Fig. 3b) but still high normalized spectral contrast angles30 
(median of 0.69 versus 0.85; Extended Data Fig. 3c and Supplementary 
Discussion). Hence, they are readily distinguished from decoys using 
mokapot’s support vector machine score that aggregates CHIMERYS’ 
score set (Extended Data Fig. 3d). Reassuringly, CHIMERYS-unique 
peptide groups markedly increased the number of peptides per protein 
group in CHIMERYS compared to Sequest HT (Extended Data Fig. 3e). It 
is worth noting that some of these search engines do not control FDR at 
the same level, which has a substantial influence on such comparisons 
(Extended Data Fig. 3f,g and Supplementary Table 1). Controlling FDR 

DDA data are analyzed in a spectrum-centric fashion9. Database 
search algorithms for DDA data attempt to maximize identifications 
from chimeric spectra by submitting them for each precursor detected 
in the isolation window. Frequently, fragment ions explained by a given 
peptide are removed from the spectrum before it is searched again in a 
subtractive approach6,11. While often able to identify multiple peptides, 
this approach under-utilizes spectral information when fragments are 
shared between peptides, resulting in reduced sensitivity. When frag-
ment ions are not removed before an additional search (multiplicative 
approach), the same information may be used too often, resulting 
in reduced specificity. In the end, the central output of DDA search 
engines is one or multiple peptide-spectrum matches (PSMs) per 
experimental MS2 spectrum.

In contrast, DIA and PRM data analysis usually follows a peptide- 
centric approach that asks the question whether peptides from a pre-
defined list are detectable in the experimental data9,12. This approach 
requires spectral libraries, which can be generated from previous 
experimental data or predicted via machine or deep-learning models. 
Subsequently, the queried peptides are detected and quantified in MS1 
and/or MS2 spectra by extracting co-eluting (fragment) ion chroma-
tograms (XICs) based on the spectral library. Recently, library-free 
approaches such as DIA-Umpire13, PECAN14, directDIA15 (implemented 
in Spectronaut), MSFragger-DIA16 and diaTracer17 gained popularity due 
to their simplicity. In brief, these tools do not require the generation of 
a spectral library and instead identify peptides in DIA data given a set of 
query peptides by directly scoring experimental MS2 or ‘pseudo-MS/
MS’ spectra against theoretical spectra.

Because of the molecular complexity of proteomic samples  
and the large quantities of MS2 spectra of varying quality that are 
generated by LC–MS/MS, accurate false discovery rate (FDR) control 
is important, particularly in large-scale projects. While FDR control  
for DDA data is rather mature18–21, it is still a substantial challenge  
for DIA data. Constructing realistic decoy MS2 spectra and retention 
times is far from obvious, an issue increasingly realized and addressed 
by machine-learning models for peptide property prediction22–24.

In this work, we introduce a spectrum-centric and data acquisi-
tion method-agnostic algorithm for the analysis of MS2 spectra, imple-
mented in CHIMERYS. It deconvolutes any MS2 spectrum, regardless of 
whether it was acquired by DDA, DIA or PRM, thus unifying the analysis 
of bottom-up proteomics data. We build upon a concept introduced 
for the deconvolution of DIA spectra using spectral libraries8 and lever-
age deep-learning-based predictions of fragment ion intensities from 
INFERYS25 in conjunction with linear algebra for the deconvolution of 
MS2 spectra. The resulting signal contributions of each peptide identi-
fied in each MS2 spectrum can be combined into a quantitative readout. 
Applying the approach substantially enhances identification rates of 
PSMs, peptides, and proteins across all sample types in DDA, enables the 
hands-off processing of PRM data and matches the performance of alter-
native DIA software while maintaining accurate FDR control throughout.

Results
Deconvolution of chimeric DDA spectra
The core assumption behind CHIMERYS is that chimeric MS2  
spectra are linear combinations of pure spectra from co-isolated 
precursors. The algorithm is entirely spectrum-centric and employs 
non-negative L1-regularized regression via the LASSO26 to explain  
as much experimental intensity as possible with as few peptide  
precursors as possible (Fig. 1a). It uses highly accurate predictions 
of fragment ion intensities and retention times for target and decoy 
peptides instead of spectral libraries.

In brief, predicted MS2 spectra from precursors with predicted 
retention times that fall within a data-dependent retention time win-
dow and precursor isotope envelopes that (partially) overlap with 
the isolation window are compared to experimental MS2 spectra.  
Matching is based on multiple fragment ion intensity-free and 
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at a ‘lower’ level and counting identifications at a ‘higher’ level (for 
example counting peptides at PSM FDR) will usually overestimate the 
number of identifications. Identifications need to be reported at the 
same level at which FDR is controlled.

The gains observed for HeLa digests relative to Sequest HT (same 
protein grouping, as well as peptide group- and protein-level FDR 
estimation as CHIMERYS in Proteome Discoverer; PD) and MSFragger31 
(second highest number of identified peptide groups after CHIMERYS) 
were corroborated using CHIMERYS v.2.7.9 with more difficult bio-
logical samples at the protein group level (urine32, +21%/+11%; CSF32, 
+17%/+4%; plasma32, +10%/−10%; formalin-fixed paraffin-embedded 
(FFPE) material, +35%/+21%; secretomes33, between +33%/−4% and 
+71%/+27%, Arabidopsis thaliana34, +13%/+1%; Halobacterium34, 

+20%/+6% for Sequest HT/MSFragger; Extended Data Fig. 4a–f), as 
well as using CHIMERYS v.4.0.21 with samples enriched for phospho-
rylated, acetylated and ubiquitinated peptides at the precursor level 
(phosphorylation35, +64%/+36%; acetylation36, +98%/+8%; ubiquitina-
tion, +88%/+45% for Sequest HT/MSFragger; Extended Data Fig. 4g). 
Extended Data Fig. 4h visualizes prediction accuracy of INFERYS v.4.0.0 
for various post-translational modifications (PTMs). These data high-
light that CHIMERYS substantially increases the analysis depth of 
DDA data.

Revisiting legacy data using CHIMERYS
We conducted a retrospective study of HeLa single-shot analyses span-
ning many years and Orbitrap instrument generations. Despite many 
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differences that impair a fair comparison, a clear trend was observed, in 
that the higher the speed and sensitivity of the instrument, the higher 
the advantage of CHIMERYS over Sequest HT (Fig. 2a and Extended 
Data Fig. 5a).

Next, we investigated low-resolution ion trap data (ITMS), compar-
ing CHIMERYS to Sequest HT on unprocessed spectra and on spectra 
filtered for the top 15 most abundant fragments per 100-Th window 
(Fig. 2b). In contrast to Orbitrap data, we observed a notable improve-
ment by removing low-abundance peaks in ITMS spectra. Specifically, 
CHIMERYS identified 74% more PSMs, 35% more peptide groups, and 
30% more protein groups compared to Sequest HT on unprocessed 
spectra, while it identified 94% more PSMs, 47% more peptide groups, 
and 37% more protein groups on spectra preprocessed with a top 15 by 
100-Th filter from a HeLa digest. Both examples show that substantially 
more information can be extracted from legacy data by harnessing the 
information contained in chimeric spectra.

Optimizing data acquisition with deconvolution in mind
We assessed to what extent CHIMERYS’ capability to deconvolute highly 
complex spectra can be used to optimize data acquisition. First, we 

evaluated LC gradients with the goal to increase sample throughput per 
day (SPD; Methods). Figure 2c shows that CHIMERYS identified a similar 
number of peptide and protein groups from a 30 min measurement of 
a pancreatic mouse cell digest (48 SPD) as Sequest HT from a 120 min 
measurement (12 SPD), increasing throughput by a factor of four.

Next, we explored a possible increase in identification efficiency 
by widening the isolation window in DDA (between 1.4 Th and 20.4 Th; 
Fig. 2d,e and Extended Data Fig. 5b–d). The analysis revealed that 
the number of identified PSMs from a pancreatic mouse cell digest 
increased with wider isolation windows and began to plateau at >8 m/z. 
In high-load samples like these, this is likely due to the automatic gain 
control (AGC) limit, which together with the dynamic range of MS2 
spectra, limits the number of precursors in chimeric spectra with a 
sufficient number of detectable fragment ions. The number of unique 
peptide group (and protein) identifications reached its maximum 
already at a window size of 3.4 Th for this specific dataset and decreased 
for larger isolation windows. This is likely because more and more PSMs 
were from the same, high-abundant peptides that were now co-isolated 
more often. In contrast to that, it was previously shown for low-load 
samples that disabling the AGC limit together with extended injection 
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Fig. 2 | Optimizing data acquisition with deconvolution in mind. a, PSMs 
identified at 1% run-specific PSM-level FDR based on Sequest HT (orange), 
MSFragger (green) and CHIMERYS (blue) from 1-h HeLa single-shot 
measurements (n = 1), acquired using various Orbitrap generations. b, PSM, 
peptide group and protein group identifications based on Sequest HT (orange), 
MSFragger (green), CHIMERYS (blue) and CHIMERYS after removal of low-
abundance peaks (light blue) from a 1-h HeLa single-shot measurement (n = 1), 
acquired using collision-induced dissociation (CID) fragmentation with ion trap 
readout. FDR was controlled at 1% at the run-specific PSM, peptide group (only 
available for Sequest HT and CHIMERYS) and protein group level, respectively. 
c, PSM, peptide group and protein group identifications based on Sequest HT 
(orange), MSFragger (green) and CHIMERYS (blue) from pancreatic mouse 

cell single-shot measurements using various gradient lengths (n = 1). FDR was 
controlled at 1% at the run-specific PSM, peptide group (only available for 
Sequest HT and CHIMERYS) and protein group level, respectively. d, Distribution 
of the number of PSMs per MS2 spectrum from 1-h pancreatic mouse cell single-
shot measurements, acquired using different isolation window widths (n = 1). 
FDR was controlled at 1% at the run-specific PSM level. e, PSM, peptide group and 
protein group identifications based on Sequest HT (orange), MSFragger (green) 
and CHIMERYS (blue) from 1-h pancreatic mouse cell single-shot measurements, 
acquired using different isolation window widths (n = 1). FDR was controlled at 
1% at the run-specific PSM, peptide group (only available for Sequest HT and 
CHIMERYS) and protein group level, respectively.
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times enabled CHIMERYS to detect more unique peptides with very 
wide isolation windows29. There, the reduction in the number of  
MS2 scans due to the extended injection times resulted in a concomi-
tant decrease in the number of peptide identifications with classic 
search engines, which CHIMERYS could counteract by identifying many 
PSMs from these highly chimeric, wide-window scans.

Deconvolution of chimeric DIA spectra
CHIMERYS deconvolutes DIA spectra in the same way as DDA spec-
tra. The only difference is that DIA spectra are usually more chimeric. 
Exemplified by a high-load LFQbench-type multi-organism mixture 
dataset37, CHIMERYS identified an average of 529,993 PSMs per raw 
file at 1% run-specific PSM FDR, mapping to 66,888 unique peptide 
groups and 7,331 unique protein groups at 1% global peptide group 
and protein FDR, respectively, with an overall identification rate of 
>60% (Supplementary Fig. 2a). More than 82% of identified MS2 spec-
tra contained more than one precursor (Supplementary Fig. 2b) and 
shared fragment ions were more frequent than in DDA, emphasizing 
the need for spectrum deconvolution that assigns shared fragment 
ions pro rata to the contributing peptides (Supplementary Fig. 2c–j).

Comparison to other DIA search engines
We compared results obtained with CHIMERYS on DIA data to the 
library-free workflows implemented in DIA-NN38 and Spectro-
naut39 using entrapment experiments to validate FDR control in the 
run-specific context40 (Supplementary Methods provide context 
definitions and search parameters). The results show that CHIMERYS’ 
self-reported q-values correspond to empirical q-values calculated 
based on entrapment identifications (Extended Data Fig. 6a). DIA-NN 

and Spectronaut seemed to underestimate FDR based on all three or 
the peptide and concatenated entrapment approaches, respectively 
(Extended Data Fig. 6b,c). Recently proposed more stringent settings 
for Spectronaut41 had little, if any, effect on this issue (Extended Data 
Fig. 6d). Similar observations were made when analyzing the TimsTOF 
Pro data of the LFQbench-type dataset using DIA-NN and Spectronaut 
(Extended Data Fig. 6e,f). All subsequent analyses used the peptide 
eFDR approach. Using this approach, CHIMERYS v.4.0.21 finished the 
analysis of the dataset 4.9 times faster than DIA-NN and 1.7 times slower 
than Spectronaut (Extended Data Fig. 7a). Filtering at run-specific 
eFDR in addition to the algorithm-dependent self-reported FDR did not 
change the overall number of identifications (number of precursors 
identified in any number of replicates) for CHIMERYS, but it reduced the 
overall number of identifications for DIA-NN and Spectronaut to a level 
comparable to CHIMERYS. The number of precursors identified in two 
out of three replicates relative to the overall number of identifications 
(a measure for data completeness) did not change for CHIMERYS when 
filtering at run-specific eFDR in addition to the algorithm-dependent 
self-reported FDR (41% data completeness); however, doing so reduced 
data completeness for Spectronaut from 86% to 61% and for DIA-NN 
from 78% to 30% (Fig. 3a). CHIMERYS and Spectronaut substantially 
outperformed DIA-NN when requiring a precursor to be identified in 
all replicates at 1% algorithm-dependent self-reported FDR and at 1% 
run-specific eFDR (Extended Data Fig. 7b).

As expected, precursors filtered out based on eFDR have lower 
MS2 intensities (Fig. 3b) and fewer fragment ions (Fig. 3c); however, the 
extent to which this is observed differs substantially between the three 
tools. CHIMERYS considers more fragments for quantification than 
the other two search engines with default settings. Further, CHIMERYS 
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24.45 min and 24.74 min for the bottom XIC, respectively.
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is more rigorous in the inclusion of fragment ions. The latter is illus-
trated in Fig. 3d. The top panel shows fragment ion chromatograms 
exported from Spectronaut for a precursor confidently identified 
by all three search engines. The bottom panel shows fragment ion 
chromatograms exported from Spectronaut for the highest-scoring, 
Spectronaut-unique precursor that was entirely based on fragment 
ions with an F.PeakArea ≤ 1. Inspection of the corresponding raw 

data revealed that these fragment ions are missing in the relevant 
retention time range (Extended Data Fig. 7e and Supplementary  
Discussion). Both precursors were identified by Spectronaut with com-
parable scores and posterior error probabilities. Further investigations  
regarding the number and intensity of fragment ions (Extended Data 
Fig. 7c–e) suggest that precursors with less than three quantifiable 
fragment ions with an intensity exceeding 1 or those with (near-)zero 
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intensity should be removed; either categorically or by applying strin-
gent FDR control, which has a very similar effect (Extended Data Fig. 7f).

Accurate peptide quantification from chimeric PRM and DIA 
spectra
One of CHIMERYS’ distinguishing concepts is its spectrum-centric 
processing of chimeric spectra. Apart from peptide identification, 
it also derives spectrum-centric quantitative information in the 
form of CHIMERYS coefficients, which can be interpreted as the 
interference-corrected total ion current for a given precursor in this 
MS2 spectrum (Methods). If none of the matched fragments for a 
precursor are shared with another precursor and the predicted MS2 
spectrum matches perfectly to the experimental one, the coefficient 
is the sum of all matched fragment ions in the experimental MS2 spec-
trum. Hence, tracing the coefficient along retention time generates a 
pseudo-extracted-ion-chromatogram (XIC) that can be used to perform 
(relative) quantification of a precursor based on its MS2 signal in PRM 
and DIA data, but not in DDA data, which usually do not sample precur-
sors multiple times along retention time in MS2. This is different from 
standard approaches that create XICs for (a subset of) fragment ions 
of a given precursor, which need to remove interfered fragment ions 
from quantification to maintain high precision and accuracy (Fig. 4a). 
To assess the performance of our concept, we carried out a simple PRM 
assay, focusing on 52 peptides from 18 human proteins spanning five 
orders of magnitude of cellular abundance (Methods). Both CHIMERYS 
and Skyline recovered 47 out of 52 peptides from the targeted inclusion 

list and CHIMERYS’ automatically generated MS2-based quantification 
was in excellent agreement (Pearson correlation coefficient = 0.99) with 
the manually curated values obtained from Skyline (Fig. 4b). Without 
any additional effort, CHIMERYS identified and quantified 1,400 further 
peptides that were not designed to be in the assay but that happened 
to be co-isolated with the targeted peptides (Extended Data Fig. 8). 
CHIMERYS effectively automates the processing of PRM data because 
it removes the manual curation steps often required in Skyline. These 
include dealing with shared fragment ions and co-isolated peptides 
(both used in CHIMERYS but removed in Skyline).

Next, we compared the MS2-level quantitative precision and  
accuracy of CHIMERYS to DIA-NN and Spectronaut on the LFQbench- 
type dataset37. To avoid differences in quantification due to differ-
ent methods for determining peak integration borders, we com-
pared the three algorithms based on their implementation of peak 
apex quantification (Supplementary Methods provide DIA-NN- and 
Spectronaut-specific settings, as well as an explanation of the cor-
responding implementation in CHIMERYS). When filtering the data 
using eFDR as discussed above, the median quantitative precision of 
precursors (based on coefficient of variation; CV) was 26.9%, 29.1% and 
29.2% for CHIMERYS, DIA-NN and Spectronaut, respectively (Fig. 4c).

Similarly, precursor-level ratio distributions (Fig. 4d) as a meas-
ure of quantitative accuracy for the three different search engines 
were comparable at eFDR (mean log2 ratios ± s.d. for Escherichia  
coli, Homo sapiens and Saccharomyces cerevisiae of −1.90 ± 0.25, 
−0.03 ± 0.25 and 1.00 ± 0.29 for CHIMERYS, −1.86 ± 0.26, −0.03 ± 0.21 

FAIMS No FAIMS CHIMERYS CsoDIAq CHIMERYS CsoDIAq Shared Unidentified

0

500

1.0K

1.5K

Q1 isolation width

M
ea

n 
pe

pt
id

e 
gr

ou
ps

(r
un

­s
pe

ci
fic

, n
 =

 2
 e

ac
h)

a

0

500

1.0K

1.5K

Maximum ion IT

M
ea

n 
pe

pt
id

e 
gr

ou
ps

(r
un

­s
pe

ci
fic

, n
 =

 2
 e

ac
h)

b

0

500

1.0K

1.5K

MS2 resolution

M
ea

n 
pe

pt
id

e 
gr

ou
ps

(r
un

­s
pe

ci
fic

, n
 =

 2
 e

ac
h)

c

117

14

102

716

53

713

23

1
5

Pentose phosphate pathway
(–log10 q­value 4.73)

Glycolysis/gluconeogenesis
(–log10 q­value 7.35)

Carbon metabolism
(–log10 q­value 8.19)

Ribosome
(–log10 q­value 8.39)

h

100%

150%

200%

250%

300%

CHIMERYS
versus CsoDIAq

Pe
rf

or
m

an
ce

 p
ep

tid
e

gr
ou

ps
 (r

un
-s

pe
ci

fic
,

n 
= 

88
 to

ta
l)

d

0

50

100

150

CHIM
ERYS

Cso
DIAq

Pr
ot

ei
ns

(r
un

-s
pe

ci
fic

, t
op

 ra
w

 fi
le

)e

0

50

100

150

log2 apex intensity
(zoomed in)

Pe
pt

id
e 

gr
ou

ps
(r

un
-s

pe
ci

fic
, t

op
 ra

w
 fi

le
)f

12

15

18

21

2 4 6 8 10 12 100 200 300 20 40 60 80 100 120

14 16 18 20 22 0 50 100 150

Protein intensity rank
(run-specific, top raw file)

lo
g 2 a

pe
x 

in
te

ns
ity

g

Fig. 5 | Direct infusion data. a–c, Mean number of peptide groups identified at 1% 
run-specific FDR by CHIMERYS in library-free DIA mode (blue) and the purpose-
built search engine CsoDIAq42 in spectral library mode (green) on a cohort of 
88 DI-SPA MCF7 samples taken from Meyer et al.7. Dotted lines indicate samples 
measured without FAIMS49. Figures show a subset of samples split by Q1 isolation 
width (total n = 8 samples, measured in duplicate) (a), maximum ion injection 
time (total n = 8 samples, measured in duplicate) (b) and MS2 resolution (total 
n = 8 samples, measured in duplicate) (c). d, Boxplot visualizing the ratio of the 
number of peptide groups identified at 1% run-specific peptide group FDR by 
CHIMERYS versus CsoDIAq in each sample. The bottom (lower hinge), center and 
top of the box (upper hinge) are the first, second (median) and third quartile of 
the data points. The upper whisker extends from the hinge to the largest value no 
further than 1.5 × IQR from the hinge. IQR, or interquartile range, is the distance 
between the first and third quartiles. The lower whisker extends from the hinge 

to the smallest value at most 1.5 × IQR of the hinge. All individual data points are 
shown (n = 88 raw files). The arrow refers to the raw file referenced in e–h. e–g, 
Peptide groups and proteins identified at 1% run-specific FDR by both CHIMERYS 
and CsoDIAq (shared, orange), exclusively by CIMERYS (blue) or exclusively by 
CsoDIAq (green) in the sample marked with an arrow in d. Bar plot of identified 
proteins (e). Histogram of log2-transformed peptide group intensity values (f). 
Rank plot of log2-transformed protein intensity values (g). h, Cytoscape-based 
KEGG functional enrichment, showing the top 1, 2, 3 and 6 most statistically 
significant terms based on proteins identified by CHIMERYS. The number of 
proteins in each pathway are depicted as pie charts, colored by whether they 
were identified exclusively by CHIMERYS (blue) or CsoDIAq (green), by both 
(orange) or by neither (gray). All functional enrichment data are available in 
Supplementary Table 2 (Supplementary Methods).
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and 0.98 ± 0.23 for DIA-NN and −1.86 ± 0.32, −0.05 ± 0.31 and 1.00 ± 0.35 
for Spectronaut, respectively). The above analysis demonstrates that 
CHIMERYS’ spectrum-centric way of quantifying peptide precursors 
matches the performance of Skyline on PRM data as a gold standard 
in the field and extends to full-scale DIA data. It also highlights the 
potential of CHIMERYS for scaling PRM assays to very large numbers 
of peptides without the need for manual intervention.

Digging deeper into direct infusion experiments
Recently, DI-SPA was shown to deliver proteomics insights at an unprec-
edented throughput7. As direct infusion experiments forfeit chroma-
tographic separation in favor of sample throughput, such data are not 
readily accessible to algorithms such as DIA-NN or MSFragger-DIA. 
CHIMERYS natively supports the processing of DI-SPA data, because 
its spectrum-centric deconvolution of MS2 spectra does not require 
the detection and scoring of elution peaks in fragment ion XICs. As 
such, CHIMERYS is the only library-free algorithm capable of analyzing 
DI-SPA data. A reanalysis of the data underlying Fig. 2 of the original 
DI-SPA publication7 with CsoDIAq42, a tool designed for the analysis 
of DI-SPA data, and CHIMERYS revealed that the TraML library used 
by CsoDIAq contained a substantial number of decoys that differed 
in sequence length from their corresponding targets (Extended Data 
Fig. 9a,b). Generating hybrid and fully predicted spectral libraries 
with and without matched decoys (Supplementary Methods) revealed  
that this mismatch between targets and decoys artificially increased 
CsoDIAq’s sensitivity (Extended Data Fig. 9c). Using matched decoys 
for both algorithms, CHIMERYS identified up to threefold more  
unique peptide groups in comparison to CsoDIAq at 1% run-specific 
peptide group FDR (Fig. 5a–d), resulting in up to threefold more 
identified proteins at 1% run-specific protein FDR (Fig. 5e). This is  
driven by ~twofold higher sensitivity of CHIMERYS compared to 
CsoDIAq (Fig. 5f,g). In turn, this leads to a substantial increase in sig-
nificantly enriched KEGG43 pathways (8 versus 17 for CsoDIAq and 
CHIMERYS; Supplementary Table 2) and their coverage with protein 
identifications (Fig. 5h). This demonstrates that CHIMERYS can unlock 
new biology hidden in previously acquired data that is inaccessible to 
other software solutions.

Head-to-head comparison of DDA and DIA data, facilitated by 
CHIMERYS
We showed that CHIMERYS can analyze DDA and DIA data using the 
same concept for the deconvolution of chimeric spectra, which ena-
bles directly comparing the two acquisition methods on data acquired  
from the same sample, without the need to process the data with  
different software packages. As one would expect, it identified more 
than twice as many PSMs from DIA (8-Th isolation window) compared 
to DDA (1.3-Th isolation window) data acquired on an Orbitrap QE 
HF-X (LFQbench-type dataset; Extended Data Fig. 10a); however, DDA  
identified 52% more peptide groups and 30.3% more protein groups 
compared to DIA (Fig. 6a and Extended Data Fig. 10b). Likely, this is  
due to the interplay between the AGC limit and the dynamic range in 
MS2 spectra, which we already observed for WWA data (see section  
above). In contrast, relative quantitative data completeness was 
higher for DIA than for DDA data when filtering for peptide groups that  
met 1% FDR in the global, but not necessarily the run-specific context 
and enabling ‘match between runs’ for DDA using the Minora Feature 
Detector in PD44 (78% versus 55.4% of peptide groups quantified in 
two out of three replicates per condition in DIA and DDA, respectively, 
Fig. 6a). This resulted in very similar numbers of peptide groups being 
quantified in two out of three replicates (56,322 and 52,161) for DDA 
and DIA, respectively.

Perhaps the more interesting comparison is that of DDA versus 
DIA using the same isolation window (here 2 Th). This has recently 
become possible because modern, fast-scanning instruments 
blur the border between DDA and DIA45. Interestingly, both 14 min  

(~100 SPD) and 30 min (48 SPD) gradients on an Orbitrap Astral46 
yielded similar numbers of PSMs, peptide and protein groups for  
DDA and DIA (Fig. 6a and Extended Data Fig. 10a,b). The small  
differences in favor of DIA are likely due to the higher scan rate of the 
Orbitrap Astral in DIA mode. Again, relative quantitative data com-
pleteness was much better for DIA than for DDA (97.9% and 98.7% of 
peptide groups quantified in two out of three replicates versus 56.3% 
and 61.7% for the 14-min and 30-min gradients, respectively; Fig. 6a). 
These data suggest that DIA and MS2-based quantification should be 
preferred over DDA and MS1-based quantification when performing 
label-free, single-shot measurements on fast-scanning instruments. 
Comparing CV distributions of peptide groups detected by DDA and 
DIA in the three datasets revealed that DDA was slightly more precise 
on the LFQbench-type dataset, whereas DIA was slightly more precise 
on the 30 min Orbitrap Astral dataset (Fig. 6b). Quantitative accuracy 
seemed to be generally better for DIA on the LFQbench-type dataset 
(Fig. 6c); however, closer inspection suggests that this is due to a prob-
lem with the samples rather than with MS1-based quantification per se, 
as the accuracy of MS1- and MS2-based quantification of the DIA data 
is comparable (Extended Data Fig. 10c). In fact, CHIMERYS’ MS2-based 
quantification was highly correlated (R = 0.88) to the MS1-based quan-
tification implemented in PD on the same raw data (Fig. 6d), suggesting 
that the two quantification methods could be combined in the future 
in CHIMERYS.
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Discussion
In many ways CHIMERYS returns to the very old concept of analyz-
ing tandem mass spectra, one at a time. At least for the task of pep-
tide identification, this so-called spectrum-centric approach places 
the core analytical evidence acquired by the mass spectrometer at 
the center of data analysis. This comes with a number of important 
advantages. First, any proteomic data type (DDA, DIA and PRM) can 
be treated the same, and CHIMERYS is the first software implemen-
tation that stringently follows this unifying philosophy. While some 
tools such as MSFragger16 and MaxQuant47 claim to unify DDA and 
DIA data analysis, these are not unifying algorithms but bundles of 
acquisition method-specific algorithms with a unified user interface. 
In contrast to that, a unifying algorithm natively supports the analysis 
of different data types. Second, in principle, there is no difference 
between identifying a single or multiple peptides from the same MS2 
spectrum and skilled scientists have done so since the early days of 
proteomics. The added sophistication is that artificial intelligence can 
predict the fragmentation of any peptide with outstanding accuracy 
so that it is possible to deconvolute even highly chimeric spectra 
by maximizing the explained intensity in an MS2 spectrum using 
a minimal set of peptides. Third, statistical methods for PSM-level 
FDR control are conceptually well worked out and have reached a 
very high level of practical refinement, again including the use of 
artificial intelligence that can predict the tandem mass spectrum of 
any target or decoy peptide with the same accuracy, ensuring fair 
competition between targets and decoys. Fourth, the plausibility of 
an identification can be further assessed (albeit not automatically) 
beyond statistics by visual inspection in the context of the full MS2 
spectrum and for example by looking for fragment ions that were not 
part of the deep-learning model and have thus not yet been used for 
identification. A current limitation of CHIMERYS in this context is that 
peptides carrying modifications that are not yet covered by the under-
lying deep-learning model escape detection. It can be anticipated 
that this limitation will diminish over time as deep-learning models 
start to emerge that are capable of generalizing to modifications or 
fragmentation methods they have not yet been trained for48 (Sup-
plementary Discussion provides a more in-depth look on extrapola-
tion). Similarly, CHIMERYS is currently limited to the analysis of data 
generated by mass spectrometers from Thermo Fisher Scientific; 
however, support for mzML and other vendor-specific formats will 
be available in a future version of CHIMERYS.

Akin to other software tools, CHIMERYS also uses the information 
contained in the MS2 spectrum for peptide quantification; however, 
unlike all other DIA software, it does not set a fixed number of fragment 
ions to consider and instead always uses all the fragment ions that 
have led to an identification in a given MS2 spectrum, but in relative 
proportion to how much they contributed to the actual signal in the 
MS2 spectrum (important for the frequent case of fragment ions that 
are shared between peptide candidates). CHIMERYS uses the sum of 
these fragment ion intensities rather than the individual fragment 
intensities to find the apex of a chromatographic peak. This makes the 
overall quantification more robust against weak signals and spurious 
detections as encountered for example in single-cell proteomics data. 
The results indicate that quantitative precision and accuracy closely 
match that of PRM data, which are often considered to be the gold 
standard for peptide quantification. In this context it is interesting to 
note that CHIMERYS also automates the analysis of PRM experiments 
along the way.

We consciously decided to rate data quality over quantity, such 
that reported peptide identification and quantification results are 
rather conservative and other software tools may sometimes seem-
ingly outperform CHIMERYS (Supplementary Discussion); however, 
when applying rigorous and consistent criteria for peptide detection 
and quantification, these differences diminish. A perhaps unexpected 
finding in this regard is that DIA data are often not nearly as complete 

as default processing parameters of DIA search engines report. Again, 
and not surprisingly, this is particularly true for low-abundant samples 
or low-abundant peptides within a sample. The reasons for this could 
be manifold and investigating them comprehensively goes beyond the 
scope of the present study; however, it is worth mentioning that the 
most recent generation of mass spectrometers has driven sensitivity 
to the point of single ion detection. As a result, MS2 spectra have at 
least some low level of signal at nearly every m/z. Many of these may 
not even stem from peptides but will create a situation in which ‘some-
thing’ can be found everywhere and all the time, potentially leading 
to data completeness that bears little if any actual justification. In 
addition, the increasing volume and density of MS-based proteomic 
data keeps challenging the scalability of the assumptions underlying 
data-processing tools. Reassuringly, the community of proteomics 
software developers and users are increasingly aware of these recurring 
challenges, as it is in everybody’s best interest to ensure that software 
tools can be trusted and used at face value. CHIMERYS makes a valu-
able contribution in this context and a particularly exciting prospect 
is that the latest LC–MS/MS hardware along with the latest software 
solutions will soon overcome the historically grown divide in the field 
between DDA and DIA.
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Methods
Brief description of the CHIMERYS algorithm
Setup. The CHIMERYS workflow is a cloud-native web service with 
an application programming interface, orchestrated by Kubernetes 
on Amazon Web Services or on-premise. The environment consists  
of two major components: an INFERYS prediction server25, which  
delivers predictions via remote procedure calls to a CHIMERYS search 
algorithm instance, which matches these predictions to experimen-
tal spectra. We decided to set up a cluster of servers for predictions,  
rather than allowing them to be performed locally to reduce the  
runtime of CHIMERYS (Supplementary Discussion).

Description of the identification workflow. The CHIMERYS workflow 
follows the setup of classic search engines. After the in silico digest of 
the protein database and the generation of shuffled decoy sequences 
using a similar logic as the mimic21 entrapment generator (see section 
below), a coarse first search is performed to identify highly confident 
peptides for recalibration purposes. Notably, for a group of I/L iso-
mers, CHIMERYS only scores one representative. A fast fragment ion 
index implementation similar to MSFragger31 is used to determine a 
ranked list of suitable candidate peptides with isotope envelopes that 
(partially) overlap with the MS2 isolation window (plus tolerances). 
Fragment ion intensities for highly ranking candidate peptides are 
predicted for each spectrum, merged against the experimental MS2 
spectrum and subsequently, a set of counting-based (for example, 
number of matching peaks between predicted and experimental spec-
trum) and intensity-based scores (for example, normalized spectral 
contrast angle) are calculated. Candidate peptides that fall below 
certain cutoff criteria are removed and only the best-scoring PSM for 
a group of isobaric PSMs is retained. For example, PSMs are required 
to have at least three matched fragment ions, one of which must be the 
base peak (most abundant peak of the prediction) and another one of 
which must be among the top three most-intense peaks of the predicted 
spectrum. After the initial search, a linear discriminant analysis identi-
fies highly confident PSMs for the calibration of optimal prediction 
parameters of the fragmentation model (for example, normalized 
collision energy; NCE), refinement learning of the retention time model 
and recalibration of fragment ion m/z and match tolerances. Peptide 
classes with few confidently identified peptides are removed entirely 
from the search space (for example, peptides of length 7 carrying two 
missed cleavages and two oxidized methionine residues). In the main 
search, the above-described scoring functions are executed using the 
optimized settings and prediction parameters, albeit now also filtering 
candidate peptides based on their predicted retention time. CHIMERYS 
uses retention time tolerance windows that would allow the identifica-
tion of all peptides confidently identified in the initial search. In brief, 
we calculate the absolute difference of experimental and predicted 
retention times after refinement learning for all PSMs identified at 
1% FDR in the initial search. The 100% quantile of these differences 
is the basis for the initial retention time window (±100% quantile of 
absolute differences between experimental and predicted retention 
time), which is then expanded further by multiplying it with a security 
factor of 2.5. The scoring is repeated to arrive at a set of high-scoring 
candidate peptides as input for the deconvolution function, where 
the candidate peptides simultaneously compete for experimental 
fragment ion intensity in one concerted step.

Essentially, CHIMERYS treats chimeric spectra as linear combina-
tions of pure spectra. Here, predicted spectra for high-scoring candi-
date peptides serve as the source of pure spectra, which is why 
CHIMERYS is dependent on accurate fragment ion intensity predic-
tions. The intensities of each predicted spectrum are normalized to a 
total sum of 1. Let P  be a collection of predicted spectra for high-scoring 
candidate peptides, each comprising a set of intensities Ip,m, where 
p = 1, 2,… ,P  is an index over the predicted spectra and m = 1, 2,… ,M   
is an index over mass channels. The mass channels are defined by the 

peaks of the experimental spectrum that were within the recalibrated 
fragment ion match tolerance of at least one fragment ion from the 
collection of predicted spectra, as well as all unmatched fragment ions 
from said collection. As such, if two peaks from two different predicted 
spectra match to the same experimental peak, they will have the  
same mass channel. This is how CHIMERYS handles shared fragment 
ions. Hence, one can represent the predicted spectra of all candidate 
peptides as a PxM  matrix of intensities Ip,m. The CHIMERYS coefficients 
βp then define a combined spectrum as the linear combination of  
the predicted spectra, scaled by the corresponding coefficients.  
This combined spectrum has a set of intensities:

Im =
P
∑
p=1

βpIp,m

CHIMERYS uses non-negative L1-regularized regression via  
the LASSO to optimize the CHIMERYS coefficients βp such that they 
minimize the following objective function:

M
∑
m
(I expm − ITmβ)

2
+ λ||β||1

subject to the coefficients βp having non-negative values. Here, M is 
the number of mass channels, I expm  is the experimental intensity for the 
mass channel m, Im = (I1,m, I2,m, I3,m,…, IP,m) is a vector of predicted inten
sities for each predicted spectrum from the collection at mass channel 
m, β = (β1,β2,β3,… ,βp)  is a vector of CHIMERYS coefficients and 
λ||β||1 = λ∑P

p |βp| is the LASSO regularization term (L1-regularization). 
λ may be varied to vary the strength of the regularization, and therefore 
the strength of the constraint on the number of nonzero coefficients. 
CHIMERYS optimizes λ automatically by fitting multiple models  
with different regularization strengths and selecting the best model 
with the most regularization by inspecting the corrected Akaike infor-
mation criterion. As such, CHIMERYS models the experimental spec-
trum as a function of the matrix of candidate peptides. By using 
L1-regularization together with the corrected Akaike information 
criterion, it aims to best explain the experimental spectrum with the 
fewest number of candidate peptides possible. Notably, this algorithm 
accounts for the presence of shared fragment ions. The above- 
mentioned optimization procedure will effectively ‘distribute’ their 
intensity to the corresponding candidate peptides according to the 
optimized CHIMERYS coefficients. The more similar the sequences of 
two co-eluting peptides are, the more fragments they share and the 
more similar their predicted spectra will be. This is particularly true 
for positional isomers of PTM-containing peptides that often share 
many fragment ions. However, also unmodified peptides with the same 
amino acid composition can have very similar, but also completely 
dissimilar sequences and hence predicted spectra. The calculation of 
CHIMERYS coefficients is the same, no matter how many fragment ions 
are shared between two co-eluting peptides. The only exception are 
isobaric peptides. Currently, if two candidate peptides are isobaric, 
CHIMERYS will only insert the best one for a given spectrum into the 
collection of predicted spectra mentioned above. This is similar to 
MS1-based quantification, where only the best-scoring peptide is 
matched to an MS1 signal based on precursor m/z and retention time. 
However, positional isomers usually have some site-determining ions 
that are isomer-specific and, depending on the PTM and its localization, 
fragment ion intensities might also differ between them. Hence, in the 
future, CHIMERYS might report multiple isomers per scan if their 
predicted spectra are sufficiently different from one another such that 
the LASSO regression assigns both of them a non-negative CHIMERYS 
coefficient.

The CHIMERYS coefficient for each candidate peptide represents 
its contribution to the experimental spectrum. A coefficient >0 indi-
cates that this candidate peptide was used to explain the experimental 
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spectrum. Based on the resulting coefficient, a subsequent round 
of intensity-based scoring is executed. Here, the coefficients of the 
candidate peptides can be used to predict the proportional intensity 
of all but one candidate peptide, add them together and subsequently 
subtract this sum from the actual experimental MS2 spectrum to cal-
culate what we call a ‘shadow spectrum’, which is the experimental 
spectrum with the contributions of all interfering peptides removed. 
Next, the above-mentioned figures of merit are calculated based on 
these shadow spectra without the interference of other peaks in the 
spectrum. Notably, this also works for fragment ions that are shared 
between candidate peptides. Candidate peptides that fail to meet 
certain quality criteria (for example, minimum number of most abun-
dant peaks shared between predicted and experimental spectrum) are 
filtered out. A list of all remaining target and decoy PSMs per spectrum 
that received a coefficient >0 and met all quality criteria including all 
calculated scores is generated as input for the PSM-level error estima-
tion in mokapot20.

FDR estimation using mokapot. For error control, the initial imple-
mentation of CHIMERYS utilized Percolator21 v.3.0.5 to aggregate all 
calculated scores for all target and decoy PSMs generated in a dataset. 
As Percolator runtime scales poorly with large input files, we exchanged 
it with the Python-based reimplementation termed mokapot20. To 
ensure scalability to large input PSM lists while controlling the com-
pute resources, we rewrote large parts of mokapot’s logic to allow 
streaming of data from disk, introduced RAM limits and implemented 
more-performant data structures. The changes made to mokapot 
have since been merged into the main branch (https://github.com/
wfondrie/mokapot). Mokapot is executed using the following para
meters: Training FDR of 1%, a training subset of 400k and ten iterations 
for training. We specifically prevent mokapot from only retaining the 
top-scoring PSM per spectrum. Afterwards, the resulting PSM-level 
q-values, support vector machine scores and posterior error prob-
abilities are attached to the corresponding PSMs. Peptides containing 
leucine/isoleucine (I/L) isomers in the search space are added back to 
the results with identical scores and are flagged as ‘ambiguous’.

MS2 quantification workflow. CHIMERYS determines raw file-specific 
peak apex retention times as the CHIMERYS coefficient-weighted 
mean of retention time deltas relative to the gradient length based on 
PSMs meeting 1% run-specific PSM-level FDR. If an external inclusion 
file was used, PSMs meeting 1% run-specific PSM-level FDR including 
their relative retention times and CHIMERYS coefficients from the list 
are also considered. If no PSMs meet 1% run-specific PSM-level FDR 
for a given precursor in a given raw file, the apex for said precursor in 
this raw file is calculated using the same logic as above but based on 
PSMs meeting 1% run-specific PSM-level FDR in other raw files and the 
inclusion file. CHIMERYS in its current implementation then estimates 
maximum integration borders per raw file as the 99% quantile of peak 
widths at base (not full width at half maximum) from precursors with 
at least three PSMs surviving a run-specific PSM-level FDR threshold 
of 1%. These maximum integration borders are then applied to each 
precursor in this raw file, leading to relatively wide integration borders, 
particularly for low-abundant precursors. Afterwards, quantification 
of PRM and DIA data is performed by either trapezoidal integration of 
the CHIMERYS coefficients from each precursor in a set of consecutive 
MS2 spectra sharing the same isolation window within the integra-
tion borders, or by using the highest CHIMERYS coefficient within 
the integration borders as the elution peak apex intensity. The latter 
implementation was used for the comparison to DIA-NN and Spec-
tronaut. One missing CHIMERYS coefficient in a series of consecutive 
MS2 scans with the same isolation window is allowed (gap scan) and 
a contribution of 0 is inserted to any further scan with missing data 
points, which act as boundaries for peak area integration. Notably, at 
this point, CHIMERYS coefficients are taken from PSMs irrespective 

of their run-specific PSM-level FDR; however, CHIMERYS coefficients 
will only be used from peptide precursors that meet CHIMERYS’ qual-
ity criteria (for example, a minimum of three peaks matched between 
the predicted and the experimental spectrum) and are located in the 
vicinity of the determined peak apex. Hence, at least one confidently 
identified PSM across all raw files is required to generate quantita-
tive values based on PSMs around the determined peak apex in each 
raw file. As such, CHIMERYS will quantify precursors that fail to meet 
run-specific precursor-level FDR thresholds. Users are free to filter 
their list of precursors at 1% global precursor-level FDR (precursor was 
confidently identified in at least one raw file) or additionally also at 1% 
run-specific precursor-level FDR. The latter will reduce data complete-
ness and is more conservative; however, we have shown that often, 
these quantifications are precise and accurate, so we recommend to 
work with precursors filtered to 1% global precursor-level FDR during 
exploratory data analysis and turn to run-specific precursor-level  
FDR for the validation of interesting hits.

Post-processing of CHIMERYS’ PSM-level outputs. CHIMERYS 
v.2.7.9 as showcased in this study is integrated into Thermo Fisher 
Scientific PD software v.3.1.0.622 (PD)44. A pre-release of PD v.3.2 was 
used to demonstrate the processing of PTM datasets with CHIMERYS 
v.4.0.21 (Extended Data Fig. 4g). Hence, PD starts CHIMERYS searches 
on Amazon Web Services by uploading an internal format containing 
only MS2 spectra and some auxiliary information, a fasta file and the 
search parameters to the CHIMERYS web service, which then pro-
cesses the data and generates a result file. The result file is then down-
loaded and post-processed by PD44. In this study, we used the default  
CHIMERYS processing and consensus workflows with minor modifica-
tions. In brief, all DDA data processing was carried out using the PSM 
Grouper node to generate peptide groups, which were then validated 
using the Peptide Validator node. For DIA data, we used a special PCM 
Grouper node, which enables the calculation of run-specific and global 
precursor-level FDR. MS1-based quantification was performed using 
the Minora Feature Detector with default settings. MS2-based quanti-
fication was performed using the MS2 Fragment Ions Quantifier node 
with default settings.

Data generation
Cell culture and sample preparation. Human HeLa (ATCC, CCL-2) and 
pancreatic mouse cells were cultured under standard conditions at 
37 °C with 5% CO2 in DMEM supplemented with 10% fetal bovine serum 
and 100 U ml−1 penicillin (Invitrogen). At around 80% confluence, cells 
were washed three times with PBS buffer before urea lysis (8 M urea, 
80 mM Tris, pH 7.6 and 1× protease inhibitor) was performed for 5 min 
on ice. Cell lysate was clarified by centrifugation (20,000g for 10 min).

In-solution protein digestion was conducted as follows. First, 
proteins were reduced with 10 mM dithiothreitol at 37 °C for 1 h, fol-
lowed by alkylation with 2-chloroacetamide at a final concentration 
of 55 mM for 45 min at room temperature in the dark while shaking 
on a thermo shaker. After the addition of five volumes of 50 mM Tris 
(pH 8), trypsin digestion was performed overnight by adding trypsin 
twice (1:100 dilution) after a primary incubation time of 4 h. Desalting 
was performed using Sep-Pak columns according to the user manual. 
Human brain FFPE samples were digested using an SDS lysis protocol 
followed by digestion with the SP3 approach as described in detail by 
Tüshaus et al.33.

LC–MS/MS. FFPE, gradient comparison and wwDDA data were acquired 
on a micro-flow LC coupled via a HESI source to an Q Exactive HF-X 
hybrid quadrupole-Orbitrap mass spectrometer (Thermo Scientific). 
Optimization of the micro-flow LC setup as well as technical details 
were previously published by Bian et al.32. In brief, peptide separation 
was performed on an Acclaim PepMap 100 C18-HPLC-column (15-cm 
length, 1-mm inner diameter, 2-µm particle size; 164711, Thermo Fisher 
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Scientific) at 55 °C. Linear gradients with buffer A (0.1% v/v formic 
acid (FA) and 3% v/v dimethylsulfoxide (DMSO) in dH20) and buffer B 
(0.1% v/v FA and 3% v/v DMSO in acetonitrile) from 3% to 28% B were 
run at 50 µl min−1. Sample loading, column wash and equilibration 
was performed at 100 µl min−1. Source settings were applied as 320 °C 
capillary temperature, 3.5 kV spray voltage and 300 °C auxiliary gas. MS 
data were acquired at a normalized collision energy of 28%, in Top20 
mode, at an m/z range of 360–1,300, AGC target of 3E6 and 1E5, maximal 
injection time of 50 ms and 22 ms, resolution of 60 k and 15 k on MS1 
and MS2 level, respectively. The MS2 isolation window width was 1.4 Th 
in standard DDA runs and increased up to 20.4 Th for wide-window 
acquisition DDA as indicated in the figure legends.

Ion trap data were acquired with an Orbitrap Eclipse Tribrid 
mass spectrometer (Thermo Scientific) that was coupled to a Dionex 
UltiMate 3000 RSLCnano System (Thermo Scientific). Samples were 
transferred onto a trap column (75 μm × 2 cm, 5 μm C18 resin Repro-
sil PUR AQ; Dr Maisch). After washing with the trap washing solvent 
(5 μl min−1, 10 min), samples were separated on an analytical column 
(75 μm × 48 cm, 3 μm C18 resin Reprosil PUR AQ, Dr Maisch). A 70-min 
method, including a 50-min gradient, was performed with a flow rate of 
300 nl min−1 (4% B up to 32% B within 50 min). Solvent A was 0.1% v/v FA 
and 5% v/v DMSO in dH2O; solvent B was 0.1% v/v FA and 5% v/v DMSO 
in acetonitrile. MS1 scans were acquired with an Orbitrap resolution of 
60 k, within a scan range of 360–1,300 m/z, a maximum injection time 
of 50 ms, a normalized AGC target of 100% and RF lens of 40%, includ-
ing charge states 2–6, with an exclusion time of 25 s. MS2 scans were 
performed with the ion trap with a normalized AGC target of 200%, a 
maximum injection time of 25 ms and either with a higher-energy col-
lisional dissociation (HCD) collision energy of 31% (wwDDA) or with a 
CID collision energy of 35% (CID). The quadrupole isolation window 
varied between 0.4, up to 5.0 m/z as indicated in the figure.

Data for the instrument comparison were assembled from 1-h 
HeLa quality control runs, acquired over several years at the Chair of  
Proteomics and Bioanalytics at the Technical University of Munich.  
They were run on various LC systems, employed diverse instrument- 
specific settings, slightly different gradients and used different  
batches of HeLa digest, prepared in house.

Targeted assay generation. A simple PRM assay was devised by ran-
domly selecting 18 proteins and 2–3 peptides each across the whole 
measured intensity range from a 1-h HeLa run analyzed on an Orbitrap 
Fusion Lumos mass spectrometer (Thermo Scientific). A total of 51 
precursors were put into an inclusion list in addition to 14 precursors 
corresponding to a retention time standard. A 1-h HeLa sample was 
analyzed in PRM mode: MS2 spectra were acquired using 0.4-Th isola-
tion window, a maximum injection time of 100 ms, HCD collision at a 
normalized collision energy of 28% and readout in the Orbitrap at 15 k 
resolution.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The following external data were downloaded from PRIDE or MassIVE 
and processed with the respective search engines. In brief, body fluid 
data from Bian et al. (PXD015087)32, secretome data from Tüshaus 
et al. (PXD018171)33, Arabidopsis thaliana and Halobacterium data 
from Müller et al. (PXD014877)34, phosphorylation data from Frejno 
et al. (PXD013615)35, acetylation and ubiquitination data from Zecha 
et al. (PXD023218)36, triple species mix as well as HeLa data from the 
LFQBench-type dataset by Van Puyvelde et al. (PXD028735)37, Orbitrap  
Astral data extracted from Gutzman et al. (PXD046453)46 and DI-SPA 
data from Meyer et al. (MSV000085156)7. Notably, peptides con-
taining methionine residues were excluded from all analyses of the 

LFQBench-type dataset, as raw files might show differential oxida-
tion. The same applies to the Orbitrap Astral data from PXD046453. 
For the LFQBench-type dataset, technical replicates were analyzed 
(Supplementary Table 3). All other replicates are biological replicates. 
An itemized mapping of external data processed as part of this study 
to their source is available in Supplementary Table 3. The following 
datasets were generated in house: FFPE (biological replicates), gradi-
ent comparison, wwDDA, instrument generations and PRM data. An 
overview of the files generated is provided in Supplementary Table 4. 
The generated MS raw and search data of internal datasets from this 
study are available via PRIDE50 with the dataset identifier PXD053241. 
All fasta files used in this study are available via PRIDE50 with the data-
set identifier PXD053241. All Source and Supplementary Data files 
required to reproduce this study are available via PRIDE50 with the 
dataset identifier PXD053241.

Code availability
The mokapot version used in this study is available on GitHub (https://
github.com/wfondrie/mokapot/). The modifications to the mimic 
entrapment database generator are available on GitHub (https://github.
com/percolator/mimic/). A web version of the mimic tool can be found 
at https://mimic.msaid.io/. A demo version of PD and CHIMERYS can 
be requested at https://www.msaid.de/chimerys-demo or by con-
tacting the corresponding authors. The custom R scripts used for 
data analysis are available on GitHub (https://github.com/msaid-de/
chimerys-manuscript).
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Extended Data Fig. 1 | Chimeric DDA spectra. (A) Proportions of MS2 spectra with at least one (blue) or no PSM identification (gray) in a 2-h HeLa DDA single-shot 
measurement (n = 1). Data taken from the LFQbench-type dataset and acquired on an Orbitrap QE HF-X with 1.3 Th isolation windows. (B) Distribution of the number of 
PSMs per MS2 spectrum for the same data as in (A).
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Extended Data Fig. 2 | Overlap in identifications and runtime comparison. 
Venn diagram of PSM (A) and peptide group (B-C) identifications in a 2-h HeLa 
DDA single-shot measurement (n = 1) comparing CHIMERYS to the combination 
of other search engines at 1% PSM-level FDR (A), 1% peptide group-level FDR (B) 
or 1% FDR at different levels (C). The different FDR levels in (C) were the peptide 
group level for CHIMERYS, Sequest HT, Comet, MS Amanda and MaxQuant, the 

precursor level for MSFragger and the PSM level for Metamorpheus and MS-GF + . 
Data was acquired on an Orbitrap QE HF-X with 1.3 Th isolation windows and 
taken from the LFQbench-type dataset. (D) Runtime comparison for the analyses 
shown in (A). All search engines were run in a virtual Windows 10 environment 
with 8 cores and 64 GB of RAM to mirror the cloud environment of CHIMERYS.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-025-02663-w

Extended Data Fig. 3 | CHIMERYS-unique identifications and FDR levels.  
(A) MS1 apex intensity distribution of peptide groups filtered at 1% global peptide 
group-level FDR and identified uniquely by CHIMERYS (green) or also by at least 
one other search engine tested as part of Fig. 1e (orange). The dataset was a 2-h 
HeLa DDA single-shot measurement (n = 1) from the LFQbench-type dataset, 
acquired on an Orbitrap QE HF-X with 1.3 Th isolation windows. (B) Distribution 
of the number of matched peaks between predicted and experimental spectra 
for the same data as in (A). (C) Distribution of the normalized spectral contrast 
angle after deconvolution between predicted and experimental spectra for the 
same data as in (A). (D) Distribution of the support vector machine score from 
mokapot for the same data as in (A), including targets with a global peptide 
group-level FDR exceeding 1% (blue). The support vector machine score 

distribution for decoys (gray) is overlayed. (E) Scatter-plot of the number of 
unique peptides per protein group identified by Sequest HT (x axis) or CHIMERYS 
(y axis) for the same data as in (A). Protein groups are filtered to 1% global protein 
FDR and peptides are filtered to 1% global peptide group-level FDR. (F) The 
number of precursors (left) or peptide groups (right) identified by CHIMERYS at 
1% run-specific PSM-, run-specific precursor- or global peptide group-level FDR. 
The dataset is a single 2-h HeLa DDA single-shot measurement (n = 1), acquired on 
an Orbitrap QE HF-X with 1.3 Th isolation windows and taken from the LFQbench-
type dataset. (G) Same as (F), but for 2-h DDA single-shot measurements from  
two different conditions, acquired in three replicates on an Orbitrap QE HF-X with 
1.3 Th isolation windows from the LFQbench-type dataset (n = 6).
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Extended Data Fig. 4 | Comparison of CHIMERYS to Sequest HT and MSFragger 
on various datasets. PSM, peptide and protein group identifications based 
on Sequest HT (orange), MSFragger (green) and CHIMERYS (blue) from 
measurements of human urine32 (A), CSF32 (B) and plasma32 (C), FFPE (D) and 
secretome samples33 (E), as well as from publicly available 1-h measurements 
of Arabidopsis thaliana and Halobacterium34 (F). FDR was controlled at the 
run-specific PSM, peptide group (only available for Sequest HT and CHIMERYS) 
and protein group level, respectively. (G) Comparison of phosphorylated35, 

acetylated36 and ubiquitinated36 precursors for Sequest HT (orange), MSFragger 
(green) and CHIMERYS v.4.0.21 (blue). FDR was controlled at the run-specific 
precursor level. The shaded proportion of the barchart displays precursors 
with a localization probability of >0.7 as calculated by ptmRS for Sequest HT, 
MSFragger or CHIMERYS (native localization). Note that ptmRS does not support 
ubiquitination. (H) Violin plot of the spectral angle comparing fragment ion 
predictions of INFERYS v.4.0.0 for unmodified and modified peptides to a  
hold-out dataset.
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Extended Data Fig. 5 | Instrument generations, gradients and wwDDA/
WWA. (A) PSM, peptide and protein group identifications based on Sequest HT 
(orange), MSFragger (green) and CHIMERYS (blue) from 1-h HeLa single-shot 
measurements, acquired using various Orbitrap generations (n = 1). FDR was 
controlled at 1% at the run-specific PSM-, global peptide group- (only available 
for Sequest HT and CHIMERYS) and global protein level, respectively. (B) PSM, 
peptide and protein group identifications based on CHIMERYS from pancreatic 
mouse cell single-shot measurements, acquired using different gradient lengths 
and isolation window widths (n = 1). FDR was controlled at 1% at the run-specific 
PSM-, global peptide group- and global protein level, respectively. (C) PSM, 
peptide and protein group identifications based on Sequest HT (orange), 

MSFragger (green) and CHIMERYS (blue) from 15 min pancreatic mouse cell 
single-shot measurements (n = 1). Data was acquired using HCD fragmentation 
with Orbitrap readout and different isolation window widths. FDR was controlled 
at 1% at the run-specific PSM-, global peptide group- (only available for Sequest 
HT and CHIMERYS) and global protein level, respectively. (D) PSM, peptide and 
protein group identifications based on Sequest HT (orange), MSFragger (green) 
and CHIMERYS after removal of low-abundance peaks (light blue) from 1-h HeLa 
single-shot measurements (n = 1). Data was acquired using CID fragmentation 
with ion trap readout and different isolation window widths. FDR was controlled 
at 1% at the run-specific PSM-, global peptide group- (only available for Sequest 
HT and CHIMERYS) and global protein level, respectively.

http://www.nature.com/naturemethods
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Extended Data Fig. 6 | Entrapment analyses on DIA data. Scatter plots of 
run-specific precursor-level self-reported (x axis) and entrapment FDR (y axis) 
from three different entrapment approaches (Supplementary Methods). Data is 
shown for CHIMERYS (A), DIA-NN (B), Spectronaut with default settings (C) and 
Spectronaut with more stringent settings41 (D) on triplicate 2-h DIA single-shot 

measurements from two different conditions (n = 6). Data was acquired on an 
Orbitrap QE HF-X with 8 Th isolation windows and taken from the LFQbench- 
type dataset37. (E) same as in (B), but for the corresponding TimsTOF Pro data.  
(F) same as in (C), but for the corresponding TimsTOF Pro data.
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Extended Data Fig. 7 | DIA data analysis with CHIMERYS, DIA-NN and 
Spectronaut. (A) Runtime comparison of CHIMERYS v.2.7.9, CHIMERYS v.4.0.21, 
DIA-NN v.1.8.1 and Spectronaut v.19 for the peptide eFDR approach. Runtimes 
include spectral library generation. (B) Precursors quantified by CHIMERYS, 
DIA-NN and Spectronaut in at least one (orange) or three (gray) out of three 
replicate measurements of two different conditions (n = 6) in a multispecies 
LFQbench dataset. Identifications are filtered at 1% run-specific precursor-
level FDR or additionally at 1% run-specific precursor-level eFDR based on 
the peptide eFDR approach (Supplementary Methods). (C) Peak areas from 
DIA-NN and Spectronaut for fragment ions from precursors surviving (gray) or 
not surviving (red) 1% run-specific precursor-level eFDR based on the peptide 
eFDR approach for the same data as in (B) (D) Apex intensities for precursors 
identified by Spectronaut at 1% run-specific precursor-level FDR for the same 
data as in (B). Precursors are colored by the number of fragment ions with Peak 

areas (F.PeakArea) > 1 that were not excluded from quantification by Spectronaut 
(curated fragments). (E) Example fragment ion XICs directly extracted from the 
raw file for the precursor at m/z 466.9506 identified by Spectronaut but not by 
CHIMERYS in Fig. 3d. All six library fragments are shown. XICs were extracted 
using the R package rawrr with 20 ppm fragment mass tolerance. (F) Precursors 
quantified by Spectronaut in at least one (orange) or three (gray) out of three 
replicate measurements of two different conditions in a multispecies LFQbench 
dataset (n = 6). Identifications in the 1st bar are filtered at 1% run-specific 
precursor-level FDR. Additionally, the 2nd bar is filtered at 1% run-specific 
precursor-level eFDR based on the peptide eFDR approach. Additionally, the 3rd 
bar is filtered by excluding precursors that are quantified based on less than three 
fragment ions with peak areas (F.PeakArea) > 1, which were not excluded from 
quantification by Spectronaut.
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Extended Data Fig. 8 | PRM and DIA quantification using CHIMERYS 
coefficients. (A) Venn diagram of peptides identified in a PRM dataset 
(n = 1) – targeting 52 peptides from 18 human proteins – by CHIMERYS at 1% 
peptide group-level FDR (blue) or Skyline (gray). (B) Mirror XIC of the top five 
experimental (above the x axis) and predicted fragment ion intensities, scaled 

by the corresponding CHIMERYS coefficients (below the x axis) for one of the 
targeted peptides in A. (C) Coefficient-based reconstruction of elution peaks 
for four different peptides identified by CHIMERYS in the data in (A), only one of 
which was targeted in the assay (IGGGIDVPVPR).

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-025-02663-w

Extended Data Fig. 9 | CsoDIAq results as a function of the chosen library. 
(A-B) Peptide length distributions for (A) the original DI-SPA library and (B) a 
library generated using the original DI-SPA library targets and decoys generated 
by CHIMERYS. (C) Boxplot visualizing the number of peptide groups identified 
by CsoDIAq at 1% run-specific FDR in each sample using different libraries 
(individual boxplots), including the ones shown in (A) and (B) (first and last, 
respectively, see also Supplementary Methods). The bottom (lower hinge), 

center and top of the box (upper hinge) are the first, second (median) and third 
quartile of the data points. The upper whisker extends from the hinge to the 
largest value no further than 1.5 * IQR from the hinge (IQR is the inter-quartile 
range, that is the distance between the first and third quartiles). The lower 
whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. 
All individual data points are shown (n = 88 raw files).
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Extended Data Fig. 10 | Comparison of DDA and DIA data. PSMs (A) and protein 
groups (B) identified by CHIMERYS in DDA or DIA data. For the LFQbench-type 
dataset, triplicate 2-h single-shot measurements from two conditions (n = 6) 
are shown. Data was acquired on an Orbitrap QE HF-X with 1.3 or 8 Th isolation 
windows for DDA and DIA, respectively. For the Orbitrap Astral datasets, 
triplicate 14 min or 30 min single-shot measurements from a HeLa sample (n = 3) 

are shown. FDR was controlled at 1% at the run-specific PSM level or at the global 
protein level, respectively. Match between runs was used for DDA data and for 
DIA data, peptide groups were quantified irrespective of their run-specific FDR. 
(C) Peptide group-level log2-ratio density plots for the same DDA and DIA data 
from the LFQbench dataset as in (A), quantified in MS1 using the Minora Feature 
Detector or in MS2 using CHIMERYS.
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