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Artificial intelligence has revolutionized computational biology. Recent 
developments in omics technologies, including single-cell RNA sequencing 
and spatial transcriptomics, provide detailed genomic data alongside 
tissue histology. However, current computational models focus on 
either omics or image analysis, lacking their integration. To address 
this, we developed OmiCLIP, a visual–omics foundation model linking 
hematoxylin and eosin images and transcriptomics using tissue patches 
from Visium data. We transformed transcriptomic data into ‘sentences’ 
by concatenating top-expressed gene symbols from each patch. We 
curated a dataset of 2.2 million paired tissue images and transcriptomic 
data across 32 organs to train OmiCLIP integrating histology and 
transcriptomics. Building on OmiCLIP, our Loki platform offers five key 
functions: tissue alignment, annotation via bulk RNA sequencing or marker 
genes, cell-type decomposition, image–transcriptomics retrieval and 
spatial transcriptomics gene expression prediction from hematoxylin 
and eosin-stained images. Compared with 22 state-of-the-art models on 
5 simulations, and 19 public and 4 in-house experimental datasets, Loki 
demonstrated consistent accuracy and robustness.

Computational biology has advanced notably with artificial intelli-
gence (AI) for tasks such as gene expression enhancement, single-cell 
perturbation prediction, tissue annotation, diagnosis, primary tumor 
origin predictions and image retrieval from hematoxylin and eosin 
(H&E)-stained images1–7. Recently, foundation models like CLIP8, CoCa9 
and DeCLIP10 have been adapted to the field, fine-tuned with pathology 
images and captions, as seen in PLIP and CONCH11,12. These visual–lan-
guage foundation models support applications like text-to-image and 
image-to-text retrieval, histology image classification, captioning and 
diagnosis improvement.

Omics data, including transcriptomics and genetics, provide 
crucial insights into cell types in health and disease, enhancing our 
understanding of cellular heterogeneity, lineage tracing and disease 
mechanisms13–22. Combining omics data with histology images offers 

complementary information for both research and clinical applica-
tions, and has been used for predicting cancer outcomes, prognosis 
and response to neoadjuvant chemotherapy3. However, existing meth-
ods remain task specific and lack a unified multimodal AI model to 
integrate histology and omics data. Additionally, challenges remain in 
developing infrastructure to efficiently analyze sequencing data and 
pathology images together.

To address these gaps, we introduce omics and image pretraining, 
OmiCLIP, a transcriptomic–image dual-encoder foundation model and 
Loki platform, an infrastructure of multimodal analysis using OmiCLIP 
as a backbone. To train OmiCLIP, we curated the ST-bank dataset with 
2.2 million tissue patches from 1,007 samples across 32 organs with 
paired whole-slide images (WSIs) and 10x Visium spatial transcriptom-
ics (ST) data. Inspired by large language model-based single-cell models 
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depth, medium-to-low sequencing depth and high-to-low sequencing 
depth. We compared similarity scores between paired images and 
original transcriptomic embeddings, with paired images and downsam-
pled transcriptomic embeddings. These embeddings were encoded 
using OmiCLIP’s image and transcriptomic encoders, using PLIP and 
OpenAI CLIP as benchmarks (Extended Data Fig. 3c). Results demon-
strated OmiCLIP’s robustness across sequencing depths, highlighting 
its adaptability to datasets generated across different technologies.

The key advantage of contrastive-aligned visual–transcriptom-
ics pretraining is its unique capability to drive the development of 
cross-modality tissue analysis tools. As a proof of concept, we devel-
oped Loki, a unified AI platform for multimodal analysis. In Loki, five 
modules were implemented, including Loki Align for multi-section 
tissue alignment, Loki Annotate for multimodal tissue annotation, Loki 
Decompose for cell-type decomposition from transcriptomics or his-
tology, Loki Retrieve for histology image–transcriptomics retrieval and 
Loki PredEx for ST gene expression prediction from histology images 
(Fig. 1b). While these initial modules demonstrate its potential, Loki 
is designed to expand, supporting the development of more tools to 
further enhance multimodal tissue reconstruction and analysis. Loki 
could serve as the infrastructure that efficiently transfers transcrip-
tomics such as scRNA-seq, bulk RNA-seq data and even marker genes 
into pathology image analysis via the pretrained model (OmiCLIP) 
(Fig. 1d), streamlining workflows, accelerating analysis and minimiz-
ing sequencing cost in research areas such as three-dimensional (3D) 
tissue studies and pathology diagnosis.

OmiCLIP improves image and transcriptomics representations
OmiCLIP’s image embeddings capture the morphology of tissues, while 
its transcriptomic embeddings represent genomic characteristics. 
Since OmiCLIP includes both transcriptomics and image encoders, 
here we evaluated whether contrastive learning enhances the ability 
of each encoder to represent tissue types better than the initial encod-
ers. To assess clustering performance, we moved beyond qualitative 
visualizations and introduced quantitative metrics to assess the quality 
of the clustering. The uniform manifold approximation and projection 
(UMAP) visualizations showed that both embeddings clustered similar 
tissue types (Extended Data Fig. 2); however, the results were limited 
in their ability to quantify clustering quality and may have appeared 
unstable in some cases. Therefore, we computed the Calinski–Harabasz 
(CH) score29, a widely used clustering validation metric, which bal-
ances the dispersion between clusters with the cohesion within clusters 
(Methods). Higher CH scores reflect better clustering performance by 
indicating more distinct and internally consistent clusters.

First, we calculated CH scores across 95 tissue samples from the 
ST-bank dataset, which included expert-annotated cell types from 
breast, healthy heart, kidney cancer and lung tissues and heart tissue 
with myocardial infarction (Supplementary Table 2). These annotated 
cell types served as ground-truth cluster labels. Our results showed a 
significant increase (P value < 0.001; Extended Data Fig. 1) in CH scores 
for embeddings after contrastive learning compared to before, dem-
onstrating improved clustering performance.

Second, we expanded the CH score calculations to the rest of the 
ST-bank samples, where no cell-type annotations are directly available. 
For these samples, the clusters were identified by the Leiden algorithm 
on the ST (Methods). After contrastive learning, CH scores significantly 
increased in all organ types (P value < 0.05; Extended Data Fig. 2). 
OmiCLIP’s image embeddings also outperformed SOTA models like 
UNI7 and GigaPath30 by aligning image and transcriptomic data, not 
just image–image interactions. The results demonstrated OmiCLIP’s 
ability to capture tissue heterogeneity.

Loki Align aligns ST-to-ST and H&E image-to-ST data
Researchers recently began investigating spatial biology in 3D, reveal-
ing new insights into tissue organization and cellular interactions. 

like GenePT23 and Cell2Sentence24, we represented transcriptomics of 
a tissue patch by a ‘sentence’ of top-ranking highly expressed genes, 
separated by spaces (‘ ’). Using this large-scale set of transcriptomics–
histology image pairs, we trained the CLIP-based foundation model, 
integrating both genomic and image data. Building upon OmiCLIP, 
the Loki platform offers five core functions: tissue alignment, tissue 
annotation, cell-type decomposition, image–transcriptomics retrieval 
and ST gene expression prediction (Fig. 1). Loki provides several distinc-
tive features, including aligning H&E images with ST data, annotating 
tissue H&E images based on bulk RNA sequencing (RNA-seq) or marker 
genes and decomposing cell types from H&E images with reference to 
single-cell RNA sequencing (scRNA-seq). We evaluated Loki’s functions 
against 22 state-of-the-art (SOTA) methods on 5 simulation datasets, 19 
publicly available experimental datasets and 4 in-house experimental 
datasets, showing Loki’s consistent accuracy and robustness across 
tasks. We also investigated OmiCLIP’s embeddings for clustering and 
annotating scRNA-seq data and predicting The Cancer Genome Atlas 
(TCGA) participants’ risk levels (Supplementary Notes 1 and 2).

Results
Loki platform powered by contrastive-aligned visual–omics
Transcriptomics provides insights into cellular diversity within tis-
sues, making it a natural indicator of tissue diversity25. ST technologies 
bridge histopathology images and transcriptomics data, enabling the 
development of a foundation model that integrates both. We intro-
duce OmiCLIP, a visual–transcriptomics foundation model trained 
on ST-bank, which includes diverse histopathology images and over  
2.2 million paired transcriptomics from 113 studies (Fig. 1a–c and 
Supplementary Table 1). ST-bank covers 32 organ types, including 
conditions like health, cancer, heart failure and Alzheimer’s disease 
(Fig. 1b,c). We applied a quality-control pipeline to retain ST data with 
high-resolution H&E images. As the batch effects may strongly affect 
the generalization ability of the model, the adopted rank-based strat-
egies inspired by recent single-cell foundation models such as Gen-
eFormer26 and scFoundation27 successfully eliminate batch effects 
through rank-based approaches rather than relying directly on raw 
read counts or normalized gene expression values. Specifically, we 
standardized text descriptions of the associated images by convert-
ing all Ensembl gene IDs to gene symbols and removing housekeeping 
genes. To format transcriptomics for language models, genes symbols 
were ranked from high to low by expression levels and structured into 
sentences for the text encoder (Fig. 1a).

OmiCLIP was fine-tuned using CoCa9, a SOTA visual–language 
foundation framework, comprising an image encoder, a text encoder 
and a multimodal fusion decoder. The image and transcriptomics 
modalities were aligned in a common representation space utilizing 
contrastive learning (Fig. 1a and Extended Data Figs. 1 and 2). In this 
dual-modality space, paired image and transcriptomic embedding 
vectors were optimized to be similar.

To evaluate OmiCLIP’s reliability to image quality variability across 
samples due to technological limitations, we simulated low-quality H&E 
images by adding Gaussian noise and compared the similarity scores 
between the paired transcriptomic and original image embeddings, 
with paired transcriptomic and simulated low-quality image embed-
dings, which were encoded by OmiCLIP’s image and transcriptomic 
encoders. PLIP and OpenAI CLIP served as benchmarks (Extended 
Data Fig. 3a,b), and results demonstrated that OmiCLIP is robust to 
variations in image quality.

For sequencing depth variability across technologies, we first ana-
lyzed the sequencing depth ranges in ST-bank and categorized samples 
into high, medium and low sequencing depth groups, identified as 
11,792 unique molecular identifier (UMI) counts, 4,512 UMI counts and 
615 UMI counts, respectively. Second, we generated low sequencing 
depth ST simulations using the downsampling function implemented 
in scuttle28. We evaluated transitions from high-to-medium sequencing 
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Fig. 1 | Overview of the study. a, The workflow of pretraining the OmiCLIP 
model with paired image–transcriptomics dataset via contrastive learning. 
b, Workflow of the Loki platform using the OmiCLIP foundation model as 
an engine. Left diagram illustrates the size of the training data in different 
organs. Right diagram lists the existing modules of the Loki platform, 
including tissue alignment, cell-type decomposition, tissue annotation, ST 
gene expression prediction and histology image–transcriptomics retrieval. 

Created in BioRender.com. c, The heat map represents image embeddings 
and transcriptomic embeddings similarity across various organs and disease 
conditions. The color of the heat map reflects the OmiCLIP’s embedding 
similarities, with red indicating high similarity and blue indicating low 
similarity. HCM, hypertrophic cardiomyopathy; HBV, hepatitis B virus 
infection. d, Schematic illustration of Loki platform with transfer learning for 
3D tissue analysis. Created in BioRender.com.
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This requires tools to align multiple H&E images or ST sections, and 
even cross-align H&E images with ST slides. However, spatial distor-
tions and biological variations between sections make alignment chal-
lenging. To address this, we developed the module Loki Align to align 
ST-to-ST data, H&E image-to-H&E image, and H&E image-to-ST data. 
Loki Align first embeds patch-level transcriptomics or H&E images into 
a 768-dimension space using OmiCLIP, and then applies the adapted 
coherent point drift (CPD) method31 to align two embeddings, pre-
serving probability distribution and topology (Fig. 2a and Methods). 
We evaluated Loki Align on four datasets including two simulation 
datasets, a set of eight adjacent small intestine tissue sections, and a 
set of two adjacent ovarian carcinosarcoma sections. To ensure com-
patibility with datasets that may not be represented in the ST-bank, we 
used fine-tuning as a default setting for the Loki Align in the alignment 
tasks. Fine-tuning minimized contrastive loss between image embed-
dings and the paired text embeddings of the top-expressed gene name 
sentence (Methods). We further evaluated the zero-shot performance 
on an ovarian carcinosarcoma dataset.

First, we simulated paired H&E images and ST data by perturb-
ing gene expression and spatial locations with varying noise levels, 
covering diverse tissue types and disease types (Methods). We meas-
ured the distance between Loki-aligned data and the ground truth, 
and compared Loki Align with PASTE and GPSA, which are designed 
for ST section alignment32,33. At both high and low noise levels, Loki 
ST-to-ST alignment and Loki image-to-ST alignment ranked first and 
second, respectively, among the four methods (Fig. 2b), significantly 
outperforming PASTE and GPSA (P values < 0.001, Wilcoxon test). This 
superiority likely stems from PASTE’s design for linear transforma-
tions, which maintains topological integrity but struggles with spatial 
warping32, while GPSA aims to map readouts to a common coordinate 
system, risking topological fidelity33.

Second, we tested Loki Align on eight adjacent human small intes-
tine tissues sections34. Real-world datasets often present challenges 
due to distortions such as rotation, tilt, uneven slicing and missing 
fragments. For better performance, we fine-tuned OmiCLIP using 
the target slide’s H&E image and ST data. We aligned seven source 
ST datasets to target ST data and seven source H&E images to target 
ST data using Loki Align and applied PASTE and GPSA to align seven 
source ST datasets to target ST data. Loki Align successfully aligned all 
source sections to the target section. To evaluate the performance, we 
calculated the Pearson correlation coefficient (PCC) and Kendall’s tau 
coefficient. For ST-to-ST scenarios, we compared the aligned ST data 
and the target ST data. For image-to-ST scenarios, after aligning the 
H&E image to the target ST dataset, we compared the paired ST data 
corresponding to the H&E image with the target ST dataset. The median 
PCC for Loki’s image-to-ST and ST-to-ST alignment ranged from 0.67 to 
0.80 and 0.62 to 0.83, respectively (Fig. 2c). The median Kendall’s tau 

coefficient ranged from 0.16 to 0.27 for Loki’s image-to-ST and 0.18 to 
0.27 for ST-to-ST alignment (Supplementary Fig. 1a). On the vertical 
plane, Loki correctly aligned the same tissue types by image-to-ST and 
ST-to-ST alignment, while PASTE and GPSA twisted the tissues. PASTE 
rotated three source sections (sources 1–3; Fig. 2c) and the PCC and 
Kendall’s tau coefficient ranged from −0.25 to 0.39 and −0.06 to 0.13, 
respectively. GPSA found common coordinates in six of the seven slices 
but introduced tremendous distortions, resulting in a PCC of 0.27 to 
0.56 and Kendall’s tau coefficient of 0.06 to 0.13. Overall, Loki ST-to-ST 
and image-to-ST alignments outperformed the SOTA methods. To 
isolate the contributions of OmiCLIP embeddings versus the superior 
registration method (CPD), we applied CPD to both OmiCLIP embed-
dings and transcriptomic embeddings that was reduced to two prin-
cipal components using principal component analysis (PCA; Fig. 2c). 
OmiCLIP embeddings significantly improved the performance of align-
ment compared to PCA embeddings (P value < 0.001, Wilcoxon test).

Third, we assessed Loki Align’s performance on two adjacent 
human ovarian carcinosarcoma sections35 (Fig. 2d). With fine-tuning, 
Loki’s ST-to-ST and image-to-ST achieved the best performance, with 
median PCCs of 0.88 and 0.86, and Kendall’s tau coefficients of 0.21 and 
0.18, respectively. PASTE, GPSA and CAST36 had median PCCs of 0.26, 
0.43 and 0.71 and median Kendall’s tau coefficients of 0.03, 0.04 and 
0.09, respectively (P value < 0.01; Fig. 2e and Supplementary Fig. 1b). 
The spatial expression patterns of representative genes are shown in 
Supplementary Fig. 2.

Fourth, we evaluated Loki Align on a human breast cancer dataset37 
with paired 10x Visium and Xenium slides (Extended Data Fig. 4). We 
generated simulation data by performing rotation and translation 
of Xenium data. To perform the alignment, we first calculated tran-
scriptomic embeddings for the Visium slide using gene sentences 
derived from Visium transcriptomic data. For the Xenium slide, we 
created pseudo-Visium data by averaging gene expression values 
across pseudo-spots. These pseudo-Visium data were then used to 
calculate transcriptomic embeddings via the transcriptomic encoder 
of OmiCLIP. Finally, Loki Align was applied to align the transcriptomic 
embeddings of the Xenium slide with those of the Visium slide, with 
performance measured by the mean distance between the aligned 
and target spots. The resulting distance between the aligned Xenium 
slide and the target Visium slide was 0.08 mm, demonstrating that Loki 
Align effectively aligns Visium and Xenium slides with high precision.

Fifth, we evaluated the performance of three training strategies: 
pretraining plus fine-tuning, pure pretraining and pure training from 
scratch on ovarian carcinosarcoma samples (Supplementary Fig. 3). 
The best performance was achieved with pretraining plus fine-tuning, 
resulting in a median PCC of 0.86 and a Kendall’s tau coefficient of 0.17. 
Pure pretraining showed comparable performance, with a median 
PCC of 0.85 and a Kendall’s tau coefficient of 0.18. In contrast, training 

Fig. 2 | Tissue alignment. a, Schematic illustration of tissue alignment using ST 
and histology image with Loki Align. Created in BioRender.com. b, Performance 
comparison of tissue alignment on 100 low-noise and 100 high-noise simulated 
datasets, represented by the distance between ground truth and aligned 
simulated sample using Loki (ST-to-ST and image-to-ST) and baseline methods 
PASTE (ST-to-ST) and GPSA (ST-to-ST), respectively. P values were calculated 
using a one-sided Wilcoxon test. c, Alignment results on eight adjacent normal 
human small intestine samples using Loki (ST-to-ST and image-to-ST) and 
baseline methods PASTE (ST-to-ST), GPSA (ST-to-ST) and CPD (ST-to-ST), 
respectively. We colored the samples using the top three PCA components of 
OmiCLIP transcriptomic embeddings, mapped to red, green and blue color 
channels, respectively. For visualization, we stacked the eight samples together 
along the perpendicular axis before and after different alignment methods, 
respectively, and visualized from the side view. The source2 that has no spatial 
variable gene selected by GPSA to run it is marked as ‘not applicable’ (NA). 
Box plots show the comparison of tissue alignment performances on these 
seven source samples respectively and combined, represented by the PCC 

(and Kendall’s tau coefficient in Supplementary Fig. 1) of highly variable gene 
expression between target and source samples after alignment at the same 
location, using Loki and baseline methods (PASTE, GPSA and CPD using PCA 
embeddings as input), respectively. In the box plots, the middle line represents 
the median, the box boundaries indicate the interquartile range, and the whiskers 
extend to data points within 1.5 times the interquartile range. d, Tissue alignment 
of two adjacent human ovarian carcinosarcoma samples using Loki (ST-to-ST and 
image-to-ST) and baseline methods PASTE (ST-to-ST), GPSA (ST-to-ST) and CAST 
(ST-to-ST), respectively. We colored the samples as described in c. e, Alignment 
performance comparison using PCC and Kendall’s tau coefficient of the highly 
expressed gene expression between the target sample and the source sample at 
aligned locations, using Loki (ST-to-ST and image-to-ST) and baseline methods 
PASTE (ST-to-ST), GPSA (ST-to-ST) and CAST (ST-to-ST), respectively. In the box 
plots, the middle line represents the median, the box boundaries indicate the 
interquartile range, and the whiskers extend to data points within 1.5 times the 
interquartile range; n = 147.
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from scratch exhibited the lowest performance, with a median PCC of 
0.53 and a Kendall’s tau coefficient of 0.06. Overall, we recommend 
fine-tuning as a default setting for Loki Align, as it ensures compatibility 
with datasets underrepresented in the ST-bank.

Lastly, we examined whether Loki Align could leverage both 
modalities simultaneously for alignment over a single modality. To 
evaluate this, we integrated image embeddings and transcriptomic 
embeddings by averaging them and used the combined embeddings 
to align two adjacent ovarian carcinosarcoma samples. We then calcu-
lated the PCC and Kendall’s tau coefficient for the image embeddings, 
transcriptomic embeddings and averaged embeddings to assess per-
formance (Supplementary Fig. 4). The results indicated that the aver-
aged embeddings did not outperform single-modality embeddings. 
Altogether, by addressing spatial distortions and biological variability, 
Loki Align enables the accurate alignment of multiple H&E images and 
ST sections, thereby supporting advanced 3D reconstructions of tissue 
organization, particularly for cross-modality studies that combine 
H&E images and ST data.

Loki Annotate deciphers H&E images with bulk RNA-seq data
Next, we evaluated Loki’s capability to analyze H&E images using 
bulk RNA-seq data, which is commonly used in both basic research 
and clinical practice. During OmiCLIP pretraining, the cosine simi-
larities between paired ST and histology images were maximized, 
allowing the similarity between the H&E image of tissue patches 
and tissue-type-specific bulk RNA-seq data to indicate tissue-type 
enrichment. We developed Loki Annotate to annotate H&E images 
using tissue-type-specific bulk RNA-seq data as a reference. We used 
OmiCLIP to encode tissue patches from a WSI and the tissue-specific 
bulk RNA-seq data, then calculated the cosine similarity between the 
encoded embeddings (Fig. 3a). Higher similarity values indicate greater 
presence of the tissue type.

We evaluated Loki Annotate on breast cancer, normal breast, 
and heart failure tissues. In three breast cancer tissues, H&E regions 
corresponding to tumor tissue showed high similarity with the bulk 
RNA-seq data from tumor biopsies, which include tumor-related mark-
ers such as COL1A1 (ref. 38) and ACTB39 (Fig. 3b and Supplementary 
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Fig. 3 | Tissue annotation using bulk RNA-seq data. a, Schematic illustration 
of tissue annotation using H&E image and reference bulk RNA-seq data from 
different sources, with OmiCLIP paired image and transcriptomic embeddings. 
b, Histology WSIs of breast cancer, heart failure and normal breast samples. The 
major tumor regions, fibroblast cell-enriched regions and adipose regions are 
annotated by pathology experts in black lines. Heat map shows the similarity 

of WSIs to the corresponding reference bulk RNA-seq of tumor, fibroblast and 
adipose, respectively. The color of the heat map reflects the similarities between 
WSIs and reference bulk RNA-seq data, with red indicating high similarity and 
blue indicating low similarity. CLAM attention heat maps were generated using 
CLAM with default parameters.
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Fig. 4 | Tissue annotation using marker genes. a, Schematic illustration of tissue 
annotation using H&E image and reference marker genes. The annotation result 
is decided by choosing the candidate texts with the highest similarity score to the 
input image query. For Loki, we used the text content of marker gene symbols of 
each tissue type. For the PLIP model, we used the text content of natural language 
description of each tissue type. b, Examples of similarity scores of images and 
texts calculated by Loki and OpenAI CLIP model, respectively. c, Comparison 
of zero-shot performances, represented by weighted F1 scores, across four 
datasets using Loki and OpenAI CLIP, respectively. Number of test samples for 
each dataset: CRC7K (n = 6,333); WSSS4LUAD (n = 10,091); LC25000 (n = 15,000); 
and PatchCamelyon (n = 32,768). d, Comparison of zero-shot performances, 

represented by weighted F1 scores, across four datasets using Loki, PLIP and 
incorporating Loki and PLIP models by average similarity (shown in a; Methods), 
respectively. e, Comparison of zero-shot performances, represented by 
weighted F1 scores of each tissue type in the CRC7K dataset using OpenAI CLIP 
model, Loki, PLIP model and incorporating Loki and PLIP models, respectively. 
f, Confusion matrix of the CRC7K dataset using Loki (left), PLIP model (middle) 
and incorporating Loki and PLIP models (right), respectively. The ground-truth 
labels are presented in rows and the predicted labels are presented in columns. 
ADI, adipose tissue; NOR, normal colon mucosa; TUM, colorectal carcinoma 
epithelium; LYM, lymphocytes; MUC, mucus; DEB, debris; MUS, smooth muscle; 
STR, cancer-associated stroma.
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Fig. 5). Similarity scores within the tumor regions were significantly 
higher than those outside (P value < 0.05, Wilcoxon test). Addition-
ally, higher similarity scores were consistent with higher diagnos-
tic values of tumors calculated by clustering-constrained-attention 
multiple-instance learning40 (CLAM, a SOTA WSI tumor analysis model; 
Fig. 3b). Next, we tested the similarity between H&E images of heart 
failure tissues and fibroblast RNA-seq data, as well as between H&E 
images of normal breast tissues and adipose RNA-seq data. The simi-
larity scores in the corresponding pathology annotated regions were 
remarkably higher than the non-corresponding regions (Fig. 3b and 
Supplementary Fig. 5). In summary, Loki Annotate effectively anno-
tates H&E images by using tissue-type-specific bulk RNA-seq data as 
a reference.

Loki Annotate annotates H&E images based on marker genes
When bulk RNA-seq is unavailable, Loki Annotate can also annotate 
tissues using predefined marker genes, similar to the workflow of using 
bulk RNA-seq data without fine-tuning. We created tissue-specific 
gene lists using well-established markers, such as ‘TP53, EPCAM, KRAS, 
…, DSP’ for tumors (Fig. 4a and Supplementary Table 3). As with the 
bulk RNA-seq approach, we used OmiCLIP to encode tissue patches 
from histology images and the gene name sentence composed from 
the marker gene list. We applied Loki Annotate to four benchmark 
histopathology datasets including CRC7K41 (eight tissue types), WSSS-
4LUAD42 (normal and tumor), PatchCamelyon43 (normal and tumor) and 
LC2500044 (benign and malignant). Tissue-type annotation was deter-
mined by cosine similarity derived from the dot product of normalized 
text embeddings and H&E image embeddings, with the highest cosine 
similarity score assigned as the predicted tissue to the query image. 
Based on these annotations, precision was defined as the proportion 
of correctly predicted tissues (true positives) of all predicted tissues, 
while recall was defined as the proportion of correctly predicted tis-
sues of all actual tissues. The F1 score was calculated as the harmonic 
mean of precision and recall, which was used to measure classification 
performance. We measured annotation performance using F1 score and 
compared our results to the OpenAI CLIP model. Our analysis showed 
that Loki consistently outperformed OpenAI CLIP across all four data-
sets (Fig. 4b,c). The F1 scores of Loki ranged from 0.59 to 0.96, while the 
F1 scores of OpenAI CLIP ranged from 0.03 to 0.34 (Fig. 4c).

Several studies have developed visual–language foundation mod-
els using paired histopathology images and captions11,12. Given that 
transcriptomics and natural language provide complementary infor-
mation, we investigated whether their combination could improve 
annotation performance without additional training. We applied PLIP, 
a visual–language foundation model for pathology image analysis, to 
annotate the tissue images by descriptive prompts, such as convert-
ing ‘tumor’ to ‘an H&E image patch of colorectal adenocarcinoma 
epithelium’ in the CRC7K dataset. Overall, PLIP performed comparably 

to Loki, with F1 scores ranging from 0.5 to 0.93 (Fig. 4d). We then com-
bined Loki and PLIP by averaging their similarity scores of an H&E image 
and a given tissue type (Fig. 4a and Methods), resulting in the best per-
formance across all four benchmark datasets (Fig. 4d,e). In CRC7K, PLIP 
misclassified 63% of colorectal adenocarcinoma epithelium images as 
cancer-associated stroma, while Loki misclassified 15% of tumor images 
as normal colon mucosa. Notably, combining Loki and PLIP achieved 
a 93% recall rate, demonstrating that combining transcriptomic and 
natural language enhances overall performance compared to each 
modality alone (Fig. 4f).

Loki Decompose maps cell types in H&E image using 
scRNA-seq
Since OmiCLIP can project the Visium ST data and H&E images to a 
shared embedding space, we developed Loki Decompose, a feature to 
decompose cell types in both ST data and H&E images, using scRNA-seq 
as a reference. Inspired by ST decomposition models like Tangram and 
CytoSPACE45,46, we used OmiCLIP to encode the patches (the same size 
as a Visium spot) of an H&E image and scRNA-seq transcriptomic profile 
into this embedding space. As an application of Tangram with OmiCLIP 
embeddings instead of gene expression data, Loki Decompose applied 
Tangram’s nonconvex optimization algorithm47 to deconvolute the 
OmiCLIP embeddings of an H&E image patch or the embeddings of 
a Visium spot’s transcriptomic profile rather than raw gene expres-
sion data, providing the cell-type composition of an image patch or 
a Visium spot (Fig. 5a). We assessed Loki Decompose on our in-house 
triple-negative breast cancer (TNBC) dataset, a human colorectal can-
cer dataset48 and a brain dataset49,50.

First, we performed a Xenium experiment on the in-house TNBC 
sample and captured paired H&E images. We generated pseudo-Visium 
data from the Xenium data as a benchmark for evaluating Loki Decom-
pose, using publicly available scRNA-seq data as a ref. 51. The Xenium 
data classified tissue into three main cell types: cancer epithelial cells, 
immune cells and stromal cells (Fig. 5b and Extended Data Fig. 5a,b). 
We used Loki to decompose pseudo-Visium spots and H&E images, 
using paired sequencing and image data from one-fourth of a WSI for 
fine-tuning followed by cross-validation (Methods). Decomposition 
accuracy was evaluated using Jensen–Shannon ( JS) divergence and 
the structural similarity index measure (SSIM). These metrics were 
calculated by comparing the predicted cell-type proportions to the 
ground truth derived from the Xenium data. Since JS divergence and 
SSIM operate on different scales, we standardized their values by cal-
culating z-scores among different methods (details in Methods). The 
z-score for JS divergence was inverted (that is, multiplied by −1), as lower 
values indicate better performance. Finally, we averaged the z-scores 
of JS divergence and SSIM to calculate an overall impact score, which 
provides a unified metric for comparison across methods. Loki Decom-
pose in ST mode and image mode ranked as the top two methods with 

Fig. 5 | Cell-type decomposition. a, Schematic illustration of tissue alignment 
using ST, reference scRNA-seq data and histology images with OmiCLIP paired 
transcriptomic and image embeddings after fine-tuning. b, H&E image of our 
in-house TNBC sample, characterized by Xenium into three major cell types: 
cancer epithelial, immune and stromal cells. c, Performance comparison of 12 
decomposition methods using JS divergence, SSIM and impact scores. z-scores 
of JS divergence (or SSIM) across methods were calculated based on the average 
JS divergence (or SSIM) among cell types. The impact score of each method is 
the average of the z-score of JS divergence and SSIM (Methods). The green color 
indicates decomposition tools. The blue color indicates the performance of 
replacing OmiCLIP embeddings with other transcriptomic foundation models’ 
embeddings. d, Cell-type decomposition results on three major cell types of the 
TNBC sample using the image by Loki and using ST by Tangram, with Xenium 
data as ground truth. The color of the heat map reflects the z-score, calculated 
by the probability distribution of each cell type. e, H&E image of the human 
colorectal cancer sample and cell-type distribution within the Visium-HD capture 

area. f, Bar plot shows the accuracy of decomposition on four major cell types 
by Loki using ST or image mode, and by Tangram using ST. Error bars indicate 
the standard deviation and the center values represent the mean. For both JS 
divergence and SSIM, adjusted P value > 0.1 using a two-sided Wilcoxon test.  
g, Whole-slide (20 mm × 13 mm) human colorectal cancer cell-type 
decomposition. Different tissue regions are annotated by the pathologist as 
ground truth. Heat map shows the cell-type distribution of fibroblast, tumor, 
intestinal epithelial, smooth muscle and immune/inflammatory cells, with 
color reflecting the density of each cell type. CLAM attention heat maps were 
generated using CLAM with default parameters. h, Cell-type decomposition 
results on the brain sample. Left, brain anatomic references with zoom-in 
H&E image patches of L1 (VLMCs, astrocytes), L2/3, L4/5, L6 and white matter 
(WM; oligodendrocytes), respectively. Created in BioRender.com. Right, heat 
map shows the cell-type distribution of VLMCs, astrocytes, L2/3, L4/5, L6 and 
oligodendrocytes, with color reflecting the distribution of each cell type.
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impact scores of 1.32 and 1.11, respectively, outperforming other SOTA 
methods52 including Tangram, Spatial Seurat53, CARD54, CytoSPACE, 
Cell2location50, SpatialDWLS55 and RCTD56, with impact scores ranging 
from 0.87 to −1.82 (Fig. 5c,d and Extended Data Fig. 5c). As single-cell 
foundation models such as GeneFormer26, scGPT57 and scFoundation27 
can also provide the transcriptomic embeddings, to further evaluate 
the approach, we replaced OmiCLIP gene expression embeddings 
with those from single-cell foundation models GeneFormer, scGPT 
and scFoundation. Results showed that scGPT, scFoundation and Gen-
eFormer ranked 6th, 8th and 9th, respectively (Fig. 5c and Extended 
Data Fig. 5c).

Second, we evaluated Loki Decompose using pseudo-Visium 
data generated from whole-genome sequencing Visium-HD data of 
human colorectal cancer as a benchmark (Fig. 5e). We fine-tuned 
OmiCLIP on regions with paired sequencing and image data (Meth-
ods). Remarkably, the transcriptomic embeddings for scRNA-seq 
data effectively captured cell heterogeneity, even without training on 
scRNA-seq data (Extended Data Fig. 6a and Supplementary Note 1). 
Loki Decompose successfully predicted the spatial distribution of key 
cell types (Extended Data Fig. 6b). We developed a technique inspired 
by non-maximum suppression (NMS)58 to refine spatial probabilistic 
maps, enhancing decomposition performance by reducing ambigu-
ity in complex spatial scenarios and focusing predictions on the most 
confident cell-type assignments. Using JS divergence and SSIM scores, 
Loki Decompose based on either the ST data or the H&E images was 
comparable to Tangram, which used gene expression as input (Fig. 5f).

Third, we extended the analysis to the entire WSI (20 mm) of the 
same human colorectal cancer tissue (Fig. 5g), segmenting it into 
image patches matching Visium spot size. Similarly, we used OmiCLIP 
to encode image patches and transcriptomics of scRNA-seq and then 
decomposed those using scRNA-seq data. Loki Decompose accurately 
predicted densities of tumor, fibroblast, intestinal epithelial, smooth 
muscle, immune and inflammatory cells, aligning closely with pathol-
ogy annotations (Fig. 5g). Additionally, our predicted tumor cell density 
matched that of CLAM40, further validating Loki Decompose’s robust-
ness (Fig. 5g).

Fourth, to test Loki Decompose in a more challenging scenario, 
we applied it to a brain tissue, where neurons share similar morphol-
ogy. Our dataset included vascular and leptomeningeal cells (VLMCs), 
astrocytes, and neurons from layers 2/3 (L2/3), layers 4/5 (L4/5) and 
layer 6 (L6), as well as oligodendrocytes (Fig. 5h and Supplementary 
Fig. 6). VLMCs and astrocytes are concentrated near the cortical surface 
and pial borders (for example, layer 1), while oligodendrocytes are 
more prevalent in deeper layers and within white matter tracts49. To 
decompose the mouse brain cortex slice, we applied a workflow similar 
to the one for other decomposition tasks. First, we fine-tuned OmiCLIP 
using adjacent Visium data and H&E images, then segmented the WSI 
into patches, corresponding to Visium spot size. The transcriptomic 
encoder of OmiCLIP was used to encode the scRNA-seq data from the 
Allen Institute atlas49, while the image encoder was used to encode the 
H&E image. Finally, Loki Decompose was applied to predict cell-type 
distributions within the brain cortex H&E image. Loki Decompose 
accurately predicted the distribution of VLMCs, astrocytes, neurons 

from L2/3, L4/5 and L6 and oligodendrocytes, aligning closely with 
brain anatomic ref. 49.

Lastly, we tested the performance of decomposition using three 
training strategies: pretraining plus fine-tuning, pure pretraining and 
pure training from scratch on TNBC samples (Extended Data Fig. 7). The 
analysis showed that pretraining plus fine-tuning had the best perfor-
mance, achieving a mean SSIM score of 0.30 and a mean JS divergence 
of 0.40. In contrast, pure pretraining resulted in a mean SSIM score of 
0.13 and a mean JS divergence of 0.43, while pure training from scratch 
performed the worst, with a mean SSIM score of 0.00070 and a mean JS 
divergence of 0.44. Although pure pretraining achieved a comparable 
JS divergence score to the pretraining plus fine-tuning method (0.43 
versus 0.40), it showed a notable decline in the SSIM (0.13 versus 0.30), 
underscoring the importance of fine-tuning for optimal performance. 
Therefore, we strongly recommend fine-tuning the model for this task 
to achieve optimal results.

Altogether, Loki Decompose effectively inferred cell-type frac-
tions from H&E images and ST data, demonstrating its potential to 
enhance spatial tissue analysis by utilizing H&E images to reduce 
experimental costs and processing time, particularly in multi-section 
tissue studies.

Loki Retrieve enables H&E image-to-transcriptomics retrieval
One of the basic functions of contrastive learning models is retrieval. 
Leveraging such ability of OmiCLIP, we developed Loki Retrieve to 
identify and retrieve transcriptomics data corresponding to a given H&E 
image. Using OmiCLIP’s image encoder, query images were encoded to 
embeddings to retrieve the most similar transcriptomic entries from 
the ST-bank dataset in the aligned latent space (Fig. 6a). We presented 
the top 50 most similar transcriptomics results, as demonstrated by 
the ST-paired images from the ST-bank dataset (Fig. 6b). Then, we sys-
tematically evaluated our model on diverse datasets including four 
independent histopathology datasets of colorectal cancer, lung cancer 
and lymph node metastasis, along with eight in-house tissues of heart 
failure, Alzheimer’s disease and breast cancer human tissues (Sup-
plementary Fig. 7). Because ground-truth transcriptomics data were 
unavailable, retrieval accuracy was assessed by measuring similarity 
between the query image and the retrieved transcriptomics-paired 
images. Overall, Loki Retrieve significantly outperformed OpenAI CLIP 
and PLIP by a large margin (Fig. 6c,d; P value < 0.05), achieving median 
similarity scores ranging from 0.7 to 0.9.

We further evaluated image-to-transcriptomics retrieval perfor-
mance by calculating the rank of the correct pair using Recall@K (5% 
and 10%). This metric measures the proportion of correctly retrieved 
data within the samples retrieved using the top-K quantile (Methods). 
We used four reserved samples from ST-bank as validation datasets 
including brain, heart, kidney and breast tissue samples and four inde-
pendent ST studies as a test dataset, including desmoplastic small 
round cell tumor, colorectal cancer, vascular and colon samples (Sup-
plementary Table 4). Results demonstrated that Loki notably out-
performed both OpenAI CLIP and PLIP across all validation datasets. 
Specifically, Loki achieved Recall@5% of 0.125 and Recall@10% of 
0.227 for brain (average 2.3-fold higher than OpenAI CLIP and 2.5-fold 

Fig. 6 | Image-to-transcriptomics retrieval. a, Schematic illustration of image-
to-transcriptomics retrieval on the ST-bank dataset. b, Example image-to-
transcriptomics retrieval results. For each example image from adipose tissue, 
colorectal adenocarcinoma epithelium, lymphocytes, smooth muscle and 
normal colon mucosa, the retrieved top 50 most similar transcriptomics are 
shown by the paired image from the ST-bank dataset. c, Image-to-transcriptomics 
retrieval similarity scores across the four validation datasets—CRC7K, WSSS4LUAD,  
LC25000 and PatchCamelyon—using Loki, OpenAI CLIP and PLIP. In the box 
plots, the middle line represents the median, the box boundaries indicate the 
interquartile range, and the whiskers extend to data points within 1.5 times the 
interquartile range. d, Image-to-transcriptomics retrieval similarity scores across 

the eight in-house human tissues: heart failure (HF), Alzheimer’s disease (AD), 
metaplastic breast cancer (MPBC) and TNBC, using Loki, OpenAI CLIP and PLIP. In 
the box plots, the middle line represents the median, the box boundaries indicate 
the interquartile range, and the whiskers extend to data points within 1.5 times 
the interquartile range. e, Image-to-transcriptomics retrieval evaluation across 
four validation datasets and one test dataset using Loki, OpenAI CLIP and PLIP, 
with random baseline. The top-K quantile most similar transcriptomics were 
retrieved. We report Recall@K for K ∈ {5%, 10%} (Methods). f, Example image-to-
transcriptomics retrieval results. The retrieved transcriptomics are shown by  
the paired image.
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higher than PLIP), Recall@5% of 0.186 and Recall@10% of 0.291 for 
heart (average 3.2-fold higher than OpenAI CLIP and 3.1-fold higher 
than PLIP), Recall@5% of 0.173 and Recall@10% of 0.297 for kidney 
(average 3.2-fold higher than OpenAI CLIP and PLIP) and Recall@5% 
of 0.140 and Recall@10% of 0.240 for breast (average 2.6-fold higher 
than OpenAI CLIP and PLIP; Fig. 6e). On the test dataset, Loki further 
demonstrated substantial improvements, achieving Recall@5% of 0.117 
and Recall@10% of 0.208 (average 3.1-fold higher than OpenAI CLIP and 
3.0-fold higher than PLIP; Fig. 6e and Supplementary Table 4). Together, 
these results confirm Loki’s superior performance in accurately retriev-
ing paired transcriptomic information from images.

Loki PredEx predicts ST gene expression from H&E images
Building on the success of Loki Align, Annotate and Decompose in 
analyzing tissue across the H&E image and transcriptomics data, we 
developed Loki PredEx to predict gene expression for image patches. 
Loki PredEx computes a weighted sum of gene expression from ref-
erence ST spots where weights are determined by similarity scores 
between the query image and ST data, both encoded by OmiCLIP 
(Supplementary Fig. 8 and Methods). Several studies have explored 
predicting gene expression from H&E images using AI models59–62. 
We compared Loki PredEx with them on a normal human heart data-
set comprising 39 samples. Loki accurately predicted highly variable 
gene expression, as demonstrated by the spatial distribution of the 
predicted gene expression (Extended Data Fig. 8). To evaluate the per-
formance, we used mean squared error (MSE) and PCC as two metrics. 
Loki PredEx demonstrated superior performance, achieving the best 
results based on MSE scores in 28 of 39 cases, and ranking as the best 
in 16 of 39 samples based on PCC compared to Hist2ST, HisToGene, 
BLEEP and mclSTExp (Extended Data Fig. 9a). These results showed the 
robustness of OmiCLIP in predicting ST data across diverse datasets 
(Extended Data Fig. 9b). A major limitation of deep learning models 
like HisToGene is their heavy hardware requirements. Models like His-
ToGene and Hist2ST were optimized for smaller legacy ST datasets, 
with fewer spots. For instance, HisToGene is typically trained on less 
than 7,000 spot–image pairs. However, with modern ST technolo-
gies such as Visium, slides contain over 4,000 spots, pushing memory 
demands above 300 GB and complicating GPU-based training. In our 
experiments, training HisToGene on over 80,000 spots from 35 tissues 
required 4 h on 16 2.60 GHz Intel Xeon Gold 6348 CPUs for 100 epochs 
and Hist2ST took 31 h under similar conditions. Loki PredEx avoids 
these resource-intensive training needs, providing a more efficient 
alternative. Together, Loki PredEx delivers accurate ST gene expres-
sion predictions, and avoids these resource-intensive training needs, 
providing a more efficient alternative based upon the use of pretrained 
weights, highlighting its potential as a scalable infrastructure.

Discussion
Existing dual-modality foundation models in computational biology11,12 
primarily combine images with textual descriptions, proving their 
utility in histopathology annotation and analysis. However, the natural 
language descriptions lack molecular insights for disease characteriza-
tion. Our study first suggests that publicly available ST datasets provide 
sufficient volume and diversity to pretrain a foundation model bridging 
tissue morphology with genomics. The success of the development 
of our foundation model could represent a substantial step toward 
understanding molecular mechanisms regulating tissue phenotypes 
in health and disease.

We presented OmiCLIP, a high-performance histopathology 
image–omics foundation model by contrastive learning. Unlike 
visual–language foundation models, OmiCLIP integrates molecular 
insights with pathology images, complementing language descrip-
tions. Benchmark results indicate that OmiCLIP performs comparably 
to, and in some cases surpasses visual–language foundation models 
in tissue annotation, suggesting that marker genes could serve as 

effective tissue labels independent of language. Notably, our anno-
tation of tissue types incorporating both language description and 
marker genes shows promise for triple-modal foundation modeling 
of image, transcriptomics and language. Using marker genes as a label 
could potentially facilitate molecular investigation-related studies 
such as drug repurposing, immune response prediction and disease 
mechanism discovery.

A key question is whether OmiCLIP’s transcriptomic encoder 
generalizes to other sequencing techniques like bulk RNA-seq and 
scRNA-seq. We evaluated the information of transcriptomic embed-
dings by cell annotation of scRNA-seq data (Supplementary Note 1) 
and tumor classification of bulk RNA-seq data (Supplementary Note 2).  
Our results show that OmiCLIP’s transcriptomic embeddings efficiently 
cluster participants with cancer without specific training and accu-
rately annotate cell types with even 1% of labeled cells.

Loki could potentially enhance 3D tissue analysis by integrating 
imaging and molecular modalities in a scalable and efficient manner. 
Emerging 3D histology and omics techniques already show prom-
ise in improving diagnostic accuracy by preserving native 3D tissue 
morphology, leading to better prognostic predictions and ultimately 
improved patient care63–66. However, challenges remain in spatial dis-
tortions and aligning molecular data across different modalities. Loki 
addresses these by aligning tissue slices and integrating ST, histology 
and scRNA-seq data, enabling a more comprehensive understanding 
of tissue architecture and cellular interactions, which is crucial for 3D 
tissue analysis. Incorporating Loki into workflows facilitates detailed 
molecular and spatial features analysis across tissue sections, sup-
porting automated, scalable and high-resolution 3D tissue analysis.

Loki provides an AI-powered platform supporting the expansion of 
additional tools in a unified framework. Among the existing modules, 
Loki Annotate automates annotation and interpretation of molecular 
and spatial tissue features using associated or external RNA-seq data or 
marker genes. Loki PredEx predicts spatial gene expression from histol-
ogy images, reducing reliance on costly and laborious ST experiments. 
These modules, leveraging contrastively aligned embeddings, enable 
efficient multimodal tissue reconstruction and analysis, providing a 
scalable solution to the growing demand for high-resolution tissue 
studies. Loki’s ability to integrate diverse data types across tissue sec-
tions minimizes cost and complexity while accelerating workflows in 
enabling deeper insights into biological systems.

Compared to billion-scale datasets for developing visual–language 
models in the general machine-learning domain, the major limitation 
of this study is pretraining data size. We expect that continued use of 
training datasets may further improve the zero-shot performance. 
However, several biomedical multimodal foundation models were 
efficiently trained on million-scale datasets by removing duplicates 
and noise11,12,67, a strategy we used to optimize training efficiency.

Notably, as a contrastive learning framework, OmiCLIP is not 
generative and cannot directly generate the accurate transcriptomic 
profile of the query image. Instead, it retrieves tissues with the most 
similar transcriptomic profiles to the query tissue. While it effectively 
embeds transcriptomic and histology data at the patch level, it does 
not inherently generate new data, such as reconstructing a WSI with 
gene expression patterns. However, OmiCLIP’s patch-level embed-
dings could support generative approaches, such as diffusion models, 
to reconstruct WSIs with ST details. Future studies could refine the 
transcriptomic encoder using RNA-seq datasets like scRNA-seq and 
bulk RNA-seq data. Although ST-bank includes 32 organ types, rare 
conditions may be underrepresented. We suggest fine-tuning align-
ment and decomposition tasks to ensure compatibility with datasets 
that are not covered in ST-bank (Extended Data Fig. 10).

Unlike single-cell foundation models like scGPT57, Geneformer26 
and scFoundation27, our approach models omics data as text, effectively 
bridging molecular and visual modalities. Representing gene expres-
sion data as text leverages natural language processing models to 
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embed biological information into a high-dimensional space, offering 
several advantages over using gene expression values directly. First, 
text embeddings integrate omics data with various biological entities 
such as pathways, functional annotations68 and cell types69, extending 
the model’s capabilities beyond tissue alignment and decomposition, 
making it adaptable to a broader range of biological tasks. Second, 
this approach aligns with other multimodal foundation models, and 
allows incorporation of proteomics, metabolomics and DAPI images 
into the same unified space. In contrast, raw gene expression values 
lack flexibility for such integrations and require additional preprocess-
ing. Third, text-based foundation models trained on billions of tokens 
provided robust text embeddings, like GenePT23, demonstrating that 
gene embeddings from textual descriptions can match or surpass 
models trained on extensive gene expression datasets. This supports 
our approach of utilizing text-based embeddings to capture rich bio-
logical information efficiently.

While integrating two modalities enhances information capture, 
it may also introduce noise or misalignment, potentially overshad-
owing benefits. If one modality dominates, performance gains from 
dual-modality fusion may be minimal.

Loki Decompose is valuable in scenarios where sequencing costs 
limit transcriptomic profiling. By estimating cell-type proportions 
from images, researchers can preselect, screen or perform batch 
processing of samples cost-effectively for exploratory studies and 
large-scale screenings. Loki Retrieve utilizes curated reference images 
for ground-truth comparisons, aiding validation and interpretation, 
especially when training data for prediction models like Loki PredEx 
are scarce. Together, our approach contributes to a unified, scalable 
framework for multimodal analysis.

To conclude, we created ST-bank, a dataset of over 2 million 
pathology-specific image–transcriptomics pairs. We developed 
OmiCLIP to integrate these data, forming a visual–omics foundation 
model. Leveraging OmiCLIP, we built Loki, an infrastructure enabling 
multimodal analysis for tissue alignment, tissue annotation, cell-type 
decomposition, histology image–transcriptomics retrieval and ST gene 
expression prediction. These capabilities represent a fundamental 
step toward bridging and applying foundation models in genomics 
for histopathology.
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use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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Methods
Training dataset curation
We curated a large dataset of histopathology image–transcriptom-
ics pairs using publicly available 10x Visium datasets (Supplementary 
Table 1). H&E images were cropped to match ST spot sizes, and text sen-
tences were generated by combining the top 50 expressed genes per spot 
into sentences. For example, the top-expressed genes in one spot, for 
example, SNAP25, ENO2, CKB, GRIN2C and CAMK4, will be combined into a 
sentence: ‘SNAP25 ENO2 CKB GRIN2C CAMK4 … MTOR VPS13D’. Data pre-
processing involved removing duplicates and excluding low-resolution 
H&E images (<2,000 × 2,000 pixels), and normalizing raw count matrices 
following standard protocols using Seurat70 and Scanpy71. For datasets in 
transcripts per million or fragments per kilobase of transcript per million 
fragments mapped formats, which cannot be normalized to standard 
gene expression profiles, were retained unchanged. Quality control was 
applied to filter out contaminated, extremely low-quality or damaged 
cells, retaining only those with over 200 expressed genes. Ensembl gene 
IDs were converted to gene symbols for consistency. Housekeeping genes 
were removed to ensure a more biologically relevant analysis. These steps 
resulted in ST-bank, a pathology-specific image–transcriptomics caption 
dataset of 2,185,571 pairs.

Downstream evaluation datasets (details in Supplementary 
Note 3)
Tissue alignment. Simulated datasets were generated from ten human 
tissue slices including two breast cancer72,73, one colorectal liver 
cancer74, one liver cancer75, one prostate cancer76, one 10x Genomics 
prostate cancer, one 10x Genomics colon cancer, one embryonic lung77, 
one normal small intestine34 and one sleep apnea tonsil sample78. We 
simulated new ST experiments by perturbing both gene expression and 
spatial locations at different levels of noise, generating 10 simulated 
datasets per real dataset, totaling 200 datasets (100 low-noise, 100 
high-noise). Real-world data tests used a normal human small intestine 
Visium dataset34 of eight adjacent tissue slices, a human ovarian carci-
nosarcoma Visium dataset35 of two adjacent tissue slices and a human 
breast cancer Visium and Xenium dataset37.

Tissue annotation. Bulk RNA-seq data-based annotation used 
three normal human breast and three human heart failure histology 
images79,80 and three breast cancer histology images from TCGA. Pathol-
ogy experts annotated different tissue regions. Bulk RNA-seq datasets 
including 663 human adipose and 504 fibroblast samples from the 
Genotype-Tissue Expression Portal and three paired tumor biopsy 
samples from TCGA. Marker gene-based annotation included four data-
sets: CRC7K (6,333 colorectal adenocarcinoma images), WSSS4LUAD 
(10,091 LUAD images), LC25000 (25,000 lung and colon images) and 
PatchCamelyon (32,768 lymph node images).

Cell-type decomposition. We downloaded a human colorectal cancer 
dataset48 to create pseudo-Visium spots in the Visium-HD capture area. 
Pathology experts annotated different tissue regions. We collected an 
in-house TNBC patient-derived xenograft for processing on Xenium 
slides, to create pseudo-Visium spots with an external scRNA-seq refer-
ence of TNBC51 for decomposition. We also downloaded a mouse brain 
Visium dataset50 and a scRNA-seq dataset49 from the Allen Institute.

H&E image-to-ST retrieval. We collected our in-house heart failure 
patient tissue, paraffin-embedded Alzheimer’s disease patient tissue, 
and metaplastic breast cancer and TNBC patient-derived xenografts. 
The validation datasets included brain, heart, kidney and breast sam-
ples, and the test dataset included desmoplastic small round cell tumor, 
colorectal cancer, vascular and colon samples (Supplementary Table 4).

ST gene expression prediction. We used a normal human heart sam-
ple dataset81 of paired ST data and H&E images including 39 samples.

OmiCLIP model training
OmiCLIP consisted of an image encoder and a text encoder following 
CoCa9 settings. The image encoder was based on a standard vision 
transformer (ViT)82 with an input image size of 224 × 224 pixels. The 
text encoder was based on a causal masking transformer with input 
text length of 76 tokens. Regarding the initial embeddings of ST data, 
the initial text encoder was not trained from scratch but on LAION-5B83, 
including biological literature, which may explain its tendency to 
cluster similar tissue patches. The model was trained for 20 epochs, 
using one NVIDIA A100 80-GB GPU with a local batch size of 64. The 
output vectors of the image and text encoders with dimensions of 768 
were optimized by minimizing the contrastive loss on a given batch. 
All experiments were run in Python v.3.9. Detailed software versions 
are: CUDA v.12.2; torch v.2.3.1; torchvision v.0.18.1; scipy v.1.13.1; pil-
low v.10.4.0; scikit-learn v.1.5.2; pandas v.2.2.3; numpy v.1.25.0; and 
scanpy v.1.10.3.

OmiCLIP model fine-tuning
To improve performance on downstream tasks, OmiCLIP allows 
fine-tuning with user datasets. The fine-tuning dataset is created by 
preprocessing Visium data using a standard 10x Space Ranger pipeline 
and generating gene name sentences as describe in ‘Training dataset 
curation’, ensuring compatibility with the pretraining dataset format. 
Fine-tuning is done using contrastive loss9 between image embeddings 
and paired text embeddings of the top-expressed gene sentences. The 
contrastive loss is calculated according to equation (1):

LCon = − 1N
⎛
⎜⎜
⎝
∑

N
i log

exp ( x
T
i yi
σ
)

∑N
j=1 exp (

xTi y j

σ
)
+∑

N
i log

exp ( y
T
i xi
σ
)

∑N
j=1 exp (

yTi x j

σ
)

⎞
⎟⎟
⎠
, (1)

where xi and y j denote the normalized image and text embeddings, 
respectively. N denotes the batch size, while σ  represents the tempera-
ture parameter. The pretrained model was fine-tuned for ten epochs 
for the tissue alignment task and five epochs for the cell-type decom-
position task, using a local batch size of 64, minimizing the contrastive 
loss.

Loki Align
We first fine-tuned OmiCLIP using paired ST data and H&E image of 
the target sample. The fine-tuned OmiCLIP text encoder and image 
encoder then encoded ST data and image, respectively. We used a 
nonrigid point set registration algorithm based on the CPD method31, 
which iteratively aligns two point sets by minimizing the statistical 
discrepancies.

The algorithm initializes the transformation matrix W  to zero and 
sets the variance σ2 of point displacements as shown in equation (2):

σ2 = 1
DNM

M,N
∑
m,n=1

‖xn − ym‖
2. (2)

Where D is the point’s dimensionality, M,N  are the number of points in 
each set, and x, y are the source and target points in sets X  and Y , respec-
tively. Point sets are modeled as Gaussian mixture samples, with cor-
respondence probability matrix G computed as shown in equation (3):

gij = exp
− 1
2β2

‖yyyi−yyyj‖
2

. (3)

This forms the basis for expectation–maximization steps, which 
iterate until convergence. During the E-step, posterior probabilities P  
of correspondences update as given by equation (4):

Pmn =
exp−

1
2σ2

‖xxxn−( yyym+G(m,⋅)W )‖2

∑M
k=1exp

− 1
2σ2

‖xxxn−( yyyk+G(k,⋅)W )‖2 + w
1−w

(2πσ2)D/2M
N

. (4)
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In the M-step, W  updates according to equations (5)–(7):

(G + λσ2d(P1)−1)W = d(P1)−1PX − Y, (5)

Np = 1TP1,T = Y + GW, (6)

σ2 = 1
NpD

(tr (XTd (PT1)X) − 2tr ((PX)TT) + tr (TTd (P1)T)) , (7)

where the transformation weights W  are constrained to 0 ≤ W ≤ 1 . 
Parameters β > 0 controls transformation stiffness and the trade-off 
between data fidelity and smoothness, respectively.

We optimized CPD by adding the first two principal components 
of embeddings generated by OmiCLIP image encoder or text encoder, 
along with the original two-dimensional coordinates. The M-step was 
optimized by updating only the coordinates to minimize loss. We fur-
ther calculated the homography matrix with translation and rotation 
between spots before and after alignment to avoid tremendous distor-
tion. For PASTE, GPSA and CAST, we used their default configuration 
for tissue preparation and alignment in Visium data.

Loki Annotate
Bulk RNA-seq data. OmiCLIP enables zero-shot annotation by learn-
ing an aligned latent space for image and transcriptomic embeddings, 
eliminating the need for retraining. We used OmiCLIP text encoder 
to encode bulk RNA-seq data and image encoder for H&E images, 
then calculated cosine similarity between transcriptomic and image 
embeddings at spot level.

Marker genes. Annotation was determined by selecting candidate 
texts with the highest similarity score to image query. We evaluate 
this using four datasets: CRC7K, LC25000, PatchCamelyon and WSSS-
4LUAD. For Loki, text candidates were generated according to marker 
genes of each tissue type (Supplementary Table 3). For the PLIP model, 
text candidates were generated from tissue-type descriptions (Sup-
plementary Table 3). The OmiCLIP image encoder encoded images 
resized to 20 × 20 pixels, consistent with its pretraining. OpenAI CLIP 
and PLIP models used their default configuration and functions for 
image and text processing.

Multimodal annotation. For jointly using Loki and PLIP, we summed 
their normalized similarity scores. Let, sLoki (I,T ) and sPLIP (I,T ) represent 
the similarity scores between an image I  and text T  computed by Loki 
and PLIP, respectively. Normalized scores were obtained according to 
equations (8)–(10):

̂sLoki (I,T ) =
sLoki (I,T ) −minT′ sLoki (I,T′)

max
T′

sLoki (I,T′) −minT′ sLoki (I,T′)
, (8)

̂sPLIP (I,T ) =
sPLIP (I,T ) −minT′ sPLIP (I,T′)

max
T′

sPLIP (I,T′) −minT′ sPLIP (I,T′)
, (9)

scombine (I,T ) = ̂sLoki (I,T ) + ̂sPLIP (I,T ) . (10)

The candidate text T∗ with the highest combined similarity score 
was identified as given by equation (11):

T∗ = argmax
T
scombine (I,T ) . (11)

Loki Decompose
To decompose human colorectal cancer slices, we fine-tuned OmiCLIP 
using paired Visium ST data and H&E images. We then used fine-tuned 

OmiCLIP text encoder to encode scRNA-seq data and pseudo-Visium 
ST data, and image encoder to encode H&E images. For in-house TNBC 
human samples, we fine-tuned OmiCLIP using a quarter of a region 
(top-right, top-left, bottom-right or bottom-left) of pseudo-Visium 
ST data and H&E images, then encoded scRNA-seq data and ST data 
via the text encoder and H&E images via the image encoder. Similarly, 
for mouse brain cortex slices, we fine-tuned OmiCLIP using adjacent 
Visium ST data and H&E images, then encoded scRNA-seq data and 
H&E images accordingly.

We used a nonconvex optimization algorithm implemented by 
Tangram to co-register OmiCLIP embeddings of scRNA-seq data with 
those of ST data or H&E images. We aimed to obtain a probabilistic 
mapping matrix M  aligning single cells to specific spots based on 
embedding similarities between scRNA-seq and ST data or scRNA-seq 
and H&E images. The mapping matrix M  of dimensions spots-by- 
cells quantifies the likelihood that a given single cell is located  
within a particular spot. The scRNA-seq data matrix S is structured as 
cells-by-embeddings, while the ST data or H&E image matrix G is for-
matted as spots-by-embeddings. The optimal mapping matrix  
M  is derived by minimizing the loss function L (S,M)  as shown in  
equation (12):

L (S,M) =
nembeddings
∑
k

cosdistance ((MTS)∗,k,G∗,k) . (12)

Here, cosdistance  denotes the cosine distance between OmiCLIP 
embeddings of the mapped single cells and those of ST data or H&E 
images. The loss function aims to minimize the cosine distance 
between the projected single-cell embeddings MTS and the embed-
dings of ST data or H&E images G, thereby ensuring that the embed-
dings of the single cells, when mapped, resemble those observed in 
the spatial data as closely as possible. Each element Mij  in the matrix 
represents the probability that celli correspond to spotj, integrating 
the cellular composition of the spatial spot. For Tangram, we used a 
uniform density prior for each spot without target count, aligning 
with Loki Decompose. To enhance efficiency, we adapted the mapping 
at the cell cluster level. The same settings were used for Loki, while 
Spatial Seurat, CARD, CytoSPACE, RCTD, Cell2location and spatialD-
WLS utilized their default configurations and tissue preparation and 
decomposition functions. For scGPT, scFoundation and GeneFormer, 
we used default configuration and tissue preparation functions 
before using the Tangram method with same default configurations 
to decompose cell types. To evaluate their performance, we used 
cell-type information from Xenium, Visium-HD and pathology annota-
tion as ground truth.

To improve decomposition performance in regions with complex 
cellular heterogeneity, we developed a refinement strategy inspired 
by NMS58. This method prioritizes the most probable cell type  
within each spot, reducing overlapping or ambiguous assignments 
when multiple cell types have comparable probabilities. This  
refined method is recommended in complex spatial scenarios, such 
as colorectal cancer. For N  total spots (indexed by i = 1,… ,N), and C  
cell types, we defined Pi,c  as the original probability of cell type  
c  at spot i. The NMS-based refinement follows two steps:  
selecting the highest probability cell type and suppressing others. 
The most likely cell type at each spot i was determined as given  
by equation (13):

c∗i = argmaxc∈C
Pi,c. (13)

Then refined probabilities P(NMS)i,c  was defined according to equa-
tion (14):

P(NMS)i,c = {
Pi,c, if c = c∗i ,

0,otherwise.
(14)
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This NMS-based refinement ensured that only the cell type with 
the highest likelihood remained at each spot, eliminating competing 
probabilities and improving spatial decomposition accuracy.

Loki Retrieve
Similarly to Loki Annotate, the retrieval results were decided by choos-
ing candidate transcriptomics with the highest similarity score to the 
image query.

k∗ = argmax
k∈K

sim (Iq, Ik) . (15)

Here, as shown in equation (15), K  indicates the set of all pairs, Iq 
indicates the image embeddings of a given query, Ik  indicates the 
transcriptomics embeddings and k∗ indicates the candidate transcrip-
tomics with the highest similarity score. We then calculated the similar-
ity between the embeddings of the query image and the image that is 
paired with the retrieved transcriptomics as the ground truth.

Loki PredEx
We applied 10-fold cross-validation to evaluate Loki PredEx’s perfor-
mance. In each fold, OmiCLIP was fine-tuned on the training set for 
ten epochs, and then we used the fine-tuned OmiCLIP text encoder to 
encode the ST data of training sets and the image encoder to encode 
the image of validation sets. For each spot in the validation set, cosine 
similarity between its image embeddings and all the transcriptomic 
embeddings in the training set was computed, and these weights were 
used to generate ST gene expression prediction for validation set spots 
via a weighted average as given by equation (16):

Xi =
∑jϵTwi, j ⋅ X j

∑jϵTwi, j
, (16)

where T  is the set of all spots in the training set, Xi is the predicted gene 
expression for validation spot i, wi, j is the similarity score between 
validation spot i and training spot j, and Xj is the gene expression for 
training spot j.

To benchmark performance, we compared Loki PredEx against 
HisToGene, Hist2ST, BLEEP and mclSTExp, on the same dataset. In each 
fold, the top 300 expressed genes in the validation set were selected 
for prediction. We followed default training settings: 100 epochs 
for HisToGene, 4 epochs for BLEEP, 90 epochs for mclSTExp and 110 
epochs reduced from 350 due to computational resource constraints 
for Hist2ST. By applying the same cross-validation procedure and 
evaluating the top 300 expressed genes in each fold, we ensured a fair 
comparison between Loki PredEx and baseline models.

Evaluation metrics and statistical analysis
In ‘OmiCLIP improves image and transcriptomics representations’, we 
used the Leiden algorithm in Scanpy71 to cluster ST with default param-
eters including a resolution of 1 and a sparse adjacency matrix derived 
from neighbor connectivity. We then calculated the UMAP embeddings 
with an effective minimum distance of 0.5 and three dimensions.

The CH score, also referred to as the variance ratio criterion, was used 
to evaluate clustering quality for a given dataset by comparing 
between-cluster dispersion and within-cluster dispersion. It was com-
puted using two sets of ground truth, a benchmarked dataset containing 
95 tissue samples from the ST-bank, which included expert-annotated 
cell types (Supplementary Table 2) and the Leiden clustering (described 
above) labels for samples without cell-type annotations. For a dataset 
with n points {x1,… , xn} divided into k  clusters {C1,… ,Ck}, CH score is the 
ratio normalized by the number of degrees of freedom for between-cluster 
and within-cluster dispersions, respectively, as given by equation (17):

CH = BCSS/(k − 1)
WCSS/(n − k) . (17)

Between-cluster sum of squares (BCSS) is calculated as the 
weighted sum of squared Euclidean distances from each cluster’s 
centroid to overall centroid, as given by equation (18):

BCSS =
k
∑
i=1
ni‖ci − c‖

2. (18)

Here, ni is the number of points in cluster Ci, ci is the centroid of 
cluster Ci, and c is the overall centroid. BCSS quantifies separation 
between clusters, with higher value indicating better separation. 
Within-cluster sum of squares (WCSS) measures the cohesion of the 
clusters with smaller values indicating tighter clustering and is the total 
squared Euclidean distances from each data point to its cluster cen-
troid, as given by equation (19):

WCSS =
k
∑
i=1

∑
x∈Ci

‖x − ci‖
2. (19)

The PCC, which ranges from −1 to 1, assessed tissue alignment and 
gene expression prediction. Given paired data {(x1, y1) ,… , (xn, yn)} con-
sisting of n pairs, PCC represented by rxy is defined in equation (20):

rxy =
n∑ xiyi −∑ xi∑ yi

√n∑ x2i − (∑ xi)
2
√n∑ y2i − (∑ yi)

2
, (20)

where n is the sample size, and xi, yi are the individual sample points 
indexed with i.

Kendall’s tau coefficient, which ranges from −1 to 1, assessed tissue 
alignment, as given by equation (21):

τ = P −Q
√(P +Q + T ) (P +Q + U )

, (21)

where P  denotes the number of concordant pairs, Q is the number of 
discordant pairs, while T  and U  represent ties occurring solely in x  or 
solely in y, respectively.

JS divergence, which ranges from 0 to 1, assessed cell-type decom-
position. To calculate JS divergence between two probability distribu-
tions P  and Q, we first computed the pointwise average distribution, 
as given by equation (22):

M = 1
2 (P +Q) . (22)

Then, we calculated Kullback–Leibler (KL) divergence of each 
distribution with respect to M: DKL (P||M) and DKL (Q||M). KL divergence 
is a measure of how one probability distribution diverges from a second 
distribution, as given by equation (23):

KL (P||Q) = ∑P (x) log ( P (x)Q (x) ) . (23)

JS divergence is the average of these two KL divergences as given 
by equation (24):

DJS (P||Q) =
1
2DKL (P||M) +

1
2DKL (Q||M) . (24)

The SSIM, which ranges from −1 to 1, assessed cell-type decomposi-
tion, where we considered the cell-type distribution in spatial as image. 
For two images x  and y, as shown in equation (25):

SSIM (x, y) =
(2μxμy + C1) (2σxy + C2)

(μ2x + μ2y + C1) (σ2x + σ2y + C2)
. (25)
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where ux and uy are the mean intensities of images x  and y, σ2x and σ2y are 
the variances of x  and y, σxy is the covariance between x  and y, C1 and 
C2 are small constants to stabilize the division when the denominators 
are close to zero.

MSE assessed ST gene expression prediction by comparing the 
Euclidean distance of the highly expressed gene expression between 
ground truth and prediction for each method within the same location.

The impact score assessed the performance of cell-type decom-
position. For each decomposition method m, we computed the mean 
JS divergence, JSm, and the mean SSIM, SSIMm, across all cell types as 
given by equations (26) and (27):

SSIMm = 1
N

N
∑
c=1
SSIM ( pc,qc) , (26)

JSm = 1
N

N
∑
c=1
JS ( pc,qc) , (27)

where pc and qc represent the ground truth and predicted proportions, 
respectively. N  represents the total number of cell types. We standard-
ized SSIM and JS divergence across methods to enable direct compari-
son, as they operate on different scales. The standardized metrics ZSSIMm 
and ZJSm are calculated according to equation (28):

ZSSIMm = SSIMm − μSSIM
σSSIM

, (28)

where μSSIM and σSSIM are the mean and standard deviation of SSIM 
across methods. Because lower JS divergence indicates better perfor-
mance, we inverted the standardized JS divergence values by multiply-
ing them by −1, as given by equation (29):

ZJSm = −
JSm − μJS
σJS

, (29)

where μJS and σJS are the mean and standard deviation of JS divergence 
across methods. To generate a unified metric for decomposition accu-
racy, we averaged the inverted JS divergence z-scores and the SSIM 
z-scores for each method as given by equation (30):

Impact scorem =
ZJSm + ZSSIMm

2 . (30)

F1 score, which ranges from 0 to 1, assessed zero-shot and linear 
probing methods as given by equation (31):

F 1 = 2 × precision × recall
precision + recall = 2 × TP

2 × TP + FP + FN . (31)

Here, TP represents true positives, FP represents false positives 
and FN represents false negatives. A higher F1 score indicates better 
overall performance in classification tasks. The weighted F1 score was 
calculated by averaging the F1 scores for each class, with each class’s 
contribution weighted based on its frequency in the data.

Recall@K assessed image-to-transcriptomics retrieval. Let Q be 
the set of all queries, and N  be the total number of queries. For each 
query q ∈ Q, the retrieval model outputs a ranked list of candidate 
targets as given by equation (32):

Rq = [cq,1, cq,2,… , cq,i] , (32)

where cq,i  is the ith highest-ranked candidate for query q  based on  
cosine similarity, and quantile (q) is the quantile of the smallest index i 
of the ground-truth target. Recall@K  is defined as the fraction of  

queries for which the ground-truth target occurs at rank K  or better as 
given by equation (33):

Recall@K = 1
N ∑

q∈Q
I [quantile (q) ≤ K] , (33)

where I [•] is an indicator function that takes the value of 1 if 
quantile (q) ≤ K  and 0 otherwise.

Two-sided Student’s t-test and Wilcoxon rank-sum test were used 
to assess statistical significance between models.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The normal human small intestine dataset used for the tissue align-
ment task can be found in https://doi.org/10.1038/s41467-023-
36071-5 (ref. 34). The human ovarian carcinosarcoma dataset used 
for the tissue alignment task can be found at https://doi.org/10.1016/j.
xgen.2021.100065 (ref. 35). The human breast cancer dataset used 
for the tissue alignment task can be found at https://doi.org/10.1038/
s41467-023-43458-x (ref. 37). The human colorectal cancer dataset 
including Visium, Visium-HD and scRNA-seq data of serial slices 
used for cell-type decomposition task can be found at https://doi.
org/10.1101/2024.06.04.597233 (ref. 48). The TNBC scRNA-seq data 
used for the cell-type decomposition task can be found at https://doi.
org/10.1038/s41467-018-06052-0 (ref. 51). The TNBC Xenium data 
generated in this study have been deposited in the Gene Expression 
Omnibus database under accession code GSE293199. The brain dataset 
including Visium data of serial slices used for cell-type decomposition 
task can be found at https://doi.org/10.1038/s41587-021-01139-4 (ref. 
50). The brain scRNA-seq dataset used for cell-type decomposition 
task can be found at https://doi.org/10.1038/s41586-018-0654-5 (ref. 
49). The histology images of the heart failure patient dataset used for 
the tissue annotation task can be found at https://doi.org/10.1038/
s41586-022-05060-x (ref. 80). The histology images of the normal 
human breast dataset used for the tissue annotation task can be found 
at https://doi.org/10.1038/s41586-023-06252-9 (ref. 79). The histology 
images of TCGA BRCA dataset used for the tissue annotation task are 
available from the NIH Genomic Data Commons (https://portal.gdc.
cancer.gov/). The bulk RNA-seq data used for tissue annotation task 
are available from the Genotype-Tissue Expression Portal (https://
gtexportal.org/home/) and TCGA (https://portal.gdc.cancer.gov/). 
CRC7k image patch data and labels can be found at Zenodo via https://
doi.org/10.5281/zenodo.1214456 (ref. 84). WSSS4LUAD image patches 
and labels can be found at https://wsss4luad.grand-challenge.org/. 
LC25000 image patches and labels can be found at https://github.com/
tampapath/lung_colon_image_set/. PatchCamelyon image patches 
and labels can be found at https://patchcamelyon.grand-challenge.
org/. The validation and test datasets used for the image–transcrip-
tomics retrieval task can be found in Supplementary Table 4. The 
normal human heart samples used for the ST gene expression predic-
tion task can be found at https://doi.org/10.1038/s41586-023-06311-
1 (ref. 81). The ST-bank database is available at https://github.com/
GuangyuWangLab2021/Loki/.

Code availability
Loki is implemented in Python and is available via https://github.com/
GuangyuWangLab2021/Loki/. The pretrained OmiCLIP weights are 
available via https://huggingface.co/WangGuangyuLab/Loki/.
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Extended Data Fig. 1 | Image and transcriptomic representations.  
a, Clustering performance on ST-bank data with cell type annotation. Left: 
clustering performance using transcriptomic embeddings generated from 
OmiCLIP model before and after training. Right: clustering performance 
usings image embeddings from OmiCLIP model before and after training. The 
Calinski-Harabasz scores were calculated on the embeddings (Methods) using 
the pretrained OmiCLIP transcriptomic (left) and image (right) encoders, 
evaluated for each organ type. Higher Calinski-Harabasz scores indicate better 
separation capability between clusters of the embeddings. In the box plots, the 
middle line represents the median, the box boundaries indicate the interquartile 

range, and the whiskers extend to data points within 1.5× the interquartile range. 
b, Image and transcriptomic embeddings of the lung, kidney cancer, healthy 
heart, and Myocardial Infarction (MI) heart samples. Each row corresponds to a 
WSI and showcases information from two modalities. The first column are H&E 
images showing tissue morphology; the second column are the heatmaps of ST 
data with the colors indicating the cell types; the third column are the UMAP of 
image embeddings colored by cell types before and after contrastive learning; 
the fourth column are the UMAP of transcriptomics embeddings colored by cell 
types before and after contrastive learning.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-025-02707-1

Sp
ina

l C
ord

Sm
all

 in
tes

tin
e

Sk
in

He
art

Othe
rs

Kid
ne

y

Br
ea

st

Br
ain Lu
ng

Em
bry

o

Liv
er

Ova
ry

Co
lon

Pr
os

tat
e

Ad
ipo

se

Ut
eru

s

Pa
nc

rea
s

To
ns

il

St
om

ac
h

Ca
lin

sk
i-H

ar
ab

as
z 

sc
or

e
Ca

lin
sk

i-H
ar

ab
as

z 
sc

or
e

Transcriptomic embeddings

Image embeddings Before contrastive learning
After contrastive learning

Prov-GigaPath
UNI

a

b Image embeddingsH&E staining image Spatial transcriptomics Transcriptomic embeddings
Before contrastive learning

Sp
in

al
Co

rd
Li

ve
r

Ca
nc

er
Br

ai
n

Ca
nc

er
Ki

dn
ey

Ca
nc

er

Leiden
clusters

U
M

AP
2

UMAP1

Sk
in

Ca
nc

er

After contrastive learning Before contrastive learning After contrastive learning

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1
U

M
AP

2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

Leiden
clusters

103

102

101

100

103

102

101

100

Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Image and transcriptomic representations analysis. 
a, Clustering performance on all ST-bank data. Top: clustering performance 
using transcriptomic embeddings generated from OmiCLIP model before and 
after training. Bottom: clustering performance usings image embeddings from 
OmiCLIP model before and after training, and image embeddings generated 
from UNI and Pro-GigaPath, respectively. The Calinski-Harabasz scores were 
calculated on the embeddings using the pre-trained OmiCLIP transcriptomic 
(top) and image (bottom) encoders, evaluated for each organ type. Higher 
Calinski-Harabasz scores indicate better separation capability between clusters 
of the embeddings. In the box plots, the middle line represents the median, the 
box boundaries indicate the interquartile range, and the whiskers extend to 
data points within 1.5× the interquartile range. Sample sizes are skin: 163, brain: 

119, breast: 97, heart: 73, kidney: 73, embryo: 73, others: 64, liver: 57, prostate: 
49, spinal cord: 44, ovary: 32, colon: 29, pancreas: 25, lung: 22, tonsil: 18, uterus: 
17, adipose: 15, small intestine: 14, and stomach: 12. b, Image and transcriptomic 
embeddings of the spinal cord, liver cancer, brain cancer, kidney cancer and skin 
cancer samples. Each row corresponds to a WSI and showcases information from 
two modalities. The first column are H&E images showing tissue morphology; the 
second column are the heatmaps of ST data with the colors indicating the ST data 
clustering using Leiden algorithm (Methods); the third column are the UMAP of 
image embeddings colored by ST Leiden clusters before and after contrastive 
learning; the fourth column are the UMAP of transcriptomics embeddings 
colored by ST Leiden clusters before and after contrastive learning.
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paired transcriptomic and image embeddings using OmiCLIP (original image 
and simulated low-quality image), PLIP (original image), and OpenAI CLIP 
(original image). In the box plots, the middle line represents the median, the 
box boundaries indicate the interquartile range, and the whiskers extend to 
data points within 1.5× the interquartile range. Sample sizes are 10 for each 

simulated condition. c, Cosine similarity of the paired image with transcriptomic 
embeddings using OmiCLIP (original transcriptomes and down sampled 
transcriptome from high sequencing depth to middle sequencing depth, middle 
sequencing depth to low sequencing depth, and high sequencing depth to low 
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(original transcriptome). In the box plots, the middle line represents the median, 
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Extended Data Fig. 4 | Visium and Xenium tissue alignment. Tissue alignment results on breast cancer sample using Loki Align. a, Source Xenium ST data. b, Target 
Visium ST data. c, Xenium ST data after Loki alignment.
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Extended Data Fig. 5 | Cell type decomposition of TNBC case study. a, Xenium 
data from our in-house TNBC patient sample, colored by Louvain clusters and cell 
types, respectively. b, H&E image, marker gene expression (KRT7, ATCG2, RORC), 
and cell type distribution in an example zoom-in region of the TNBC sample.  

c, Cell type decomposition results on 3 major cell types of the TNBC sample 
using ST by RCTD, CARD, scGPT, Spatial Seurat, scFoundation, GeneFormer, 
CytoSPACE, Cell2location, and SpatialDWLS, respectively. The color of the 
heatmap reflects the z-score, calculated by the enrichment of each cell type.
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Extended Data Fig. 9 | Comparison of ST gene expression prediction 
performances. a, Comparison of ST gene expression prediction performances, 
represented by MSE and PCC respectively on 39 normal heart tissues using Loki, 
Hist2ST, HisToGene, BLEEP, and mclSTExp, respectively. In the box plots, the 
middle line represents the median, the box boundaries indicate the interquartile 
range, and the whiskers extend to data points within 1.5× the interquartile range. 

b, Summarized comparison of ST gene expression prediction performances, 
represented by MSE and PCC respectively across all samples using Loki, 
HisToGene, mclSTExp, BLEEP, and Hist2ST respectively. In the box plots, the 
middle line represents the median, the box boundaries indicate the interquartile 
range, and the whiskers extend to data points within 1.5× the interquartile range.
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Function Software Fine-tune

Loki Align H&E image to ST 
alignment Loki only Suggested

Loki
PASTE

Loki Decompose scRNA-seq to H&E image Loki only Suggested
Loki

Tangram

Loki Annotate Tissue annotation by Bulk 
RNA-seq Loki only No need

Loki Annotate Tissue annotation by 
marker genes Loki only No need

Loki Retrieve H&E image-to-ST retrieval Loki only No need
Loki

HisToGeneLoki PredEx ST gene expression 
prediction by H&E image Suggested

Loki Align ST to ST alignment No need

Loki Decompose scRNA-seq to ST mapping No need

Extended Data Fig. 10 | Summary of the fine-tuning settings for downstream tasks. Recommendation settings for downstream tasks.
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