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Assessment of false discovery rate control  
in tandem mass spectrometry analysis  
using entrapment
 

Bo Wen    1, Jack Freestone2, Michael Riffle    1, Michael J. MacCoss    1, 
William S. Noble    1,3   & Uri Keich    2 

A critical challenge in mass spectrometry proteomics is accurately assessing 
error control, especially given that software tools employ distinct methods 
for reporting errors. Many tools are closed-source and poorly documented, 
leading to inconsistent validation strategies. Here we identify three 
prevalent methods for validating false discovery rate (FDR) control: one 
invalid, one providing only a lower bound, and one valid but under-powered. 
The result is that the proteomics community has limited insight into actual 
FDR control effectiveness, especially for data-independent acquisition (DIA) 
analyses. We propose a theoretical framework for entrapment experiments, 
allowing us to rigorously characterize different approaches. Moreover, 
we introduce a more powerful evaluation method and apply it alongside 
existing techniques to assess existing tools. We first validate our analysis 
in the better-understood data-dependent acquisition setup, and then, we 
analyze DIA data, where we find that no DIA search tool consistently controls 
the FDR, with particularly poor performance on single-cell datasets.

In mass spectrometry-based proteomics, controlling the false dis-
covery rate (FDR) among the set of reported proteins, peptides or 
peptide-spectrum matches (PSMs) is easy to get wrong. Most widely 
used FDR control procedures in proteomics involve target–decoy 
competition (TDC) where the observed spectra are searched against 
a bipartite database comprising real (‘target’) and shuffled or reversed 
(‘decoy’) peptides1. Ideally, these procedures would control the actual 
proportion of false positives among the reported set of discoveries, 
which is known as the ‘false discovery proportion’ (FDP); however, in 
practice, this is impossible because the FDP varies from experiment 
to experiment and cannot be directly measured2. Instead, we control 
the FDR, which is the expected value of the FDP, that is, its theoretical 
average over all random aspects of the experiment and its analysis. 
Although the TDC procedure can be rigorously proven to control 
the FDR in a spectrum-centric search, subject to several reasonable 
assumptions3, in practice, many analysis pipelines implement variants 

of the procedure that potentially fail to control the FDR. For example, 
PSM-level control using TDC is inherently problematic3,4. Similarly, 
most pipelines involve training a semisupervised classification algo-
rithm, such as Percolator5 or PeptideProphet6, to rerank PSMs, which 
in practice can compromise FDR control7.

Failure to correctly control the FDR can have serious negative 
implications. Most obviously, if a given analysis pipeline tends to 
underestimate the FDP—that is, if the pipeline claims that the FDR is 
controlled, say, at 1%, but the actual average of the FDP is 5%—then the 
scientific conclusions drawn from those experiments may be inva-
lid. Perhaps more insidiously, invalid FDR control can also impact  
our choice of analysis pipelines and make comparison of instrument 
platforms and proteomics workflows impossible. To see why this  
is the case, consider a hypothetical tool that consistently fails to  
control the FDR. In a benchmarking experiment, if we compare  
the number of proteins detected by a collection of analysis tools,  
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An important caveat to all of these analyses is that an entrapment 
procedure aims to gauge the FDP among the discoveries reported  
by the tool; however, the tool itself is typically designed to control  
its expected value, the FDR. Hence, we should use reasonably large 
datasets in our entrapment analysis, where the FDP is typically 
close to the FDR (by the law of large numbers), or we should average  
the empirical FDP over multiple entrapment sets, which ameliorates  
the problem. Even in those cases, the random nature of the FDP implies 
that some deviations above y = x may be acceptable if they are small 
and rare.

With that caveat in mind, note that from a statistical perspective, 
the onus falls on the tool developer to establish that the method indeed 
controls the FDR, so ‘inconclusive’ (scenario 3 above) is a tentative 
strike against the tool. Furthermore, the FDR control should be uni-
versal. Consequently, a valid FDR control procedure should achieve 
scenario 1 for any reasonably large dataset.

We next present the three main approaches in the literature to 
estimating the FDP. For concreteness, we describe entrapment pro-
cedures that expand the peptide database; however, our arguments 
apply to any type of entrapment expansion, as established rigorously 
in Supplementary Notes 1 and 2. The first two methods aim to estimate 
the FDP in the combined, target + entrapment, list of original target and 
entrapment discoveries, whereas the third method aims to estimate 
the FDP in a stricter list, focusing only on the original target discoveries 
and excluding the entrapment discoveries.

The first method, which we refer to as the ‘combined’ method, 
estimates the FDP among the target + entrapment (𝒯𝒯 𝒯 𝒯𝒯𝒯) discoveries 
while taking into account r, which is the effective ratio of the entrap-
ment to original target database size

F̂DP𝒯𝒯𝒯𝒯𝒯𝒯 = Nℰ(1 + 1/r)
N𝒯𝒯 + Nℰ

, (1)

where N𝒯𝒯  and N𝒯 denote the number of original target and entrap
ment discoveries, respectively. In Supplementary Note 2.2, we prove 
that, under an assumption analogous to the equal-chance assumption  
that TDC relies on, equation (1) provides an estimated upper bound, 
that is, on average it overestimates the true FDP. Thus, the combined 
method can be used to provide empirical evidence that a given  
tool successfully controls the FDR among its discoveries (Fig. 1b).  
Notably, with r = 1, equation (1) reduces to Elias and Gygi’s original 
estimation of the FDR in the concatenated target–decoy database, 
which, in our case, is the target + entrapment database1. The combined 
estimation method has been used to evaluate the DDA analysis  
tool Mistle20.

Unfortunately, the combined estimation is often applied incor-
rectly to establish FDR control after removing the 1/r term

F̂DP𝒯𝒯𝒯𝒯𝒯𝒯 = Nℰ
N𝒯𝒯 + Nℰ

. (2)

The problem is that, as we prove in Supplementary Note 2.1, without 
the 1/r term and assuming that any entrapment discovery is indeed 
false, equation (2) represents a lower bound on the FDP. As such, this 
method can only be used to indicate that a tool fails to control the FDR 
(Fig. 1b), rather than as evidence of FDR control. In what follows we refer 
to Equation (2) as the ‘lower bound.’ Table 1 shows that multiple studies 
incorrectly used the lower bound to validate FDR control, including a 
recent benchmarking study to evaluate several widely used DIA tools 
for proteomics and phosphoproteomics DIA data analysis24. In that 
study, the lower bound was used both correctly to point out question-
able FDR control, as well as incorrectly as evidence of FDR control. The 
lower bound has also been used by The et al. to evaluate the ‘picked 
protein’ method for FDR control15, as well as for evaluation of the O-Pair 
method for glycoproteomics data12. However, they both followed the 

all using a fixed FDR threshold, then the liberally biased tool will  
have a clear (and unfair) advantage.

To address this concern, therefore, it is important to have a rigor-
ous procedure to evaluate the validity of the FDR control provided by 
a proteomics analysis pipeline. The standard way to carry out such an 
evaluation is via an ‘entrapment’ procedure8,9, which involves expand-
ing the tool’s input dataset so that its search space includes verifiably 
false entrapment discoveries. Most commonly this is done by expand-
ing the database with peptides taken from proteomes of species that are 
not expected to be found in the sample, so any such reported peptide 
is presumably a false discovery. Critically, the distinction between the 
original input and its entrapment expansion is hidden from the tool 
itself, so that the entrapment discoveries can subsequently be used 
to evaluate the tool’s FDR control procedure.

Designing an entrapment experiment involves making two major 
decisions: how the tool’s input should be expanded and how the entrap-
ment discoveries should be used to evaluate the tool’s FDR control 
procedure. In this work, we primarily focus on the second decision. 
This is motivated by a survey of published entrapment experiments, 
which suggests that, while conceptually simple, correctly carrying 
out an entrapment estimation can be tricky10–26. Indeed, our survey 
identified a variety of estimation methods, a few of which are invalid 
as either a lower bound or as an upper bound estimate, while others 
are often incorrectly used, drawing potentially incorrect conclusions 
in both cases.

In this work, we expose common errors in existing approaches and 
introduce a formal framework for entrapment experiments. This frame-
work allows us to rigorously establish properties of existing estimators 
and to propose a novel entrapment method that allows more accurate 
evaluation of FDR control for mass spectrometry analysis pipelines. We 
used entrapment analysis of several popular data-dependent acquisi-
tion (DDA) tools to validate that our framework yields results consistent 
with the field’s consensus that these tools generally seem to control the 
FDR. By contrast, a similar analysis of three popular data-independent 
acquisition (DIA) tools (DIA-NN11, Spectronaut and EncyclopeDIA27) 
finds that none of these search tools consistently controls the FDR at 
the peptide level across all the datasets we investigated. Furthermore, 
this problem becomes much worse when these DIA tools are evalu-
ated at the protein level. These results suggest an opportunity for the 
field: insofar as existing methods yield results with unexpectedly high 
levels of noise, we anticipate that reducing this noise by accurately 
controlling the FDR has the potential to yield better statistical power 
in downstream analyses.

Results
Many published studies use entrapment incorrectly
Before describing various methods for entrapment analyses, it is 
important to distinguish between methods that provide estimated 
upper bounds versus lower bounds of the FDP, and understand their 
limitations. The primary output of an entrapment procedure can be 
summarized by plotting the entrapment-estimated FDP as a function 
of the FDR cutoff used (or reported as a q value) by the evaluated tool. 
If the entrapment procedure provides an estimated upper bound on 
the FDP, then the entrapment analysis suggests that the actual FDP 
falls below the plotted curve. Conversely, the entrapment procedure 
may provide a lower bound, indicating that the actual FDP falls above 
the curve. Therefore, applying both an upper bounding and a lower 
bounding entrapment procedure to a given analysis tool can yield 
one of three outcomes (Fig. 1): (1) if the upper bound falls below the 
line y = x, then we can take this as empirical evidence suggesting that 
the tool successfully controls the FDR; (2) conversely, if the lower 
bound falls above y = x, then we can use it as evidence suggesting that 
the tool fails to control the FDR; (3) if the estimated upper bound is 
above y = x and the lower bound is below y = x, then the experiment 
is inconclusive.
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recommendation of ref. 9 and constructed an entrapment database that 
was much larger than the original target database. Specifically, they 
used entrapment databases with r ≥ 5, where the difference between 
the combined and lower bound methods would be 1/r ≤ 20%. Therefore, 

based on our analysis of the combined method’s validity in this work, 
their evaluation appears to be essentially valid. That said, using a large 
r means moving further away from the actual intended application of 
searching just the original target database.
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Fig. 1 | Entrapment strategy for FDR control evaluation. a, A schematic of a 
typical entrapment method. The target database is augmented with entrapment 
sequences, and the augmented database is used by the search tool to produce a 
ranked list of peptides. In this example, the entrapment is done via the common 
approach of database expansion and the tool is using decoys to control the 
FDR, but other methods can be used. The target/entrapment labels are hidden 
from the search engine but are revealed to the entrapment method, allowing it 

to provide an estimated FDP. Note that some entrapment estimation methods 
require additional inputs besides the count of the number of original and 
entrapment targets. b, Comparing the FDR reported or used by a given analysis 
tool (x axis) to the estimated upper bound (purple) and lower bound (orange) on 
the FDP produced by two different entrapment estimation methods allows us to 
conclude that the tool’s FDR estimates are valid (bottom) or invalid (top). Middle: 
if the bounds fall on either side of the line y = x, then the analysis is inconclusive.

Table 1 | Summary of previous entrapment analyses

Citation Tools analyzed DIA DDA Entrapment Entrapment Valid?

Peckner et al.10 Specter ✓ Other Foreign

Demichev et al.11 DIA-NN ✓ Sample Foreign

Lu et al.12 O-Pair ✓ Lower bound* Foreign ✓*

Sinitcyn et al.13 MaxDIA ✓ Sample Foreign

Lu et al.14 DIAmeter ✓ Sample Shuffled

The et al.15 Picked Protein Group FDR ✓ Lower bound* Shuffled ✓*

Lee et al.16 cTDS ✓ Sample Foreign

Na et al.17 Deephos ✓ Sample Foreign

Lancaster et al.18 Spectronaut ✓ Lower bound Foreign

Scott et al.19 GPS ✓ Lower bound Foreign

Nowatzky et al.20 Mistle ✓ Combined Foreign ✓

Yu et al.21 MSFragger-DIA, DIA-NN ✓ Sample Foreign

Penny et al.22 Spectronaut ✓ Sample Foreign

Zhang23 Mzion ✓ Lower bound Foreign

Lou et al.24 Benchmarking ✓ Lower bound Foreign

Strauss et al.25 AlphaPept ✓ Other Foreign

Bubis et al.26 Spectronaut ✓ Sample Shuffled

The final column indicates whether the entrapment method is deemed invalid to demonstrate FDR control. *Lu et al.12 and The et al.15 employed large entrapment databases (r ≥ 5), so while they 
used the lower bound, the difference from the combined method was rather small: for example, with r = 5 it is 20%.
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The third approach, which we refer to as the ‘sample’ estimation 
method, estimates the FDP only among the original target (𝒯𝒯) discov-
eries as

F̂DP𝒯𝒯 = N𝒯 × 1/r
N𝒯𝒯

, (3)

This approach has been employed to evaluate DIA-NN11, MSFragger-DIA21, 
MaxDIA13 and DIAmeter14. We argue that the sample-entrapment 
method is inherently flawed because, while typically underestimating 
the FDP, it can also overestimate it in some unusual cases (Supplemen-
tary Note 3). Hence, the sample estimation method cannot be used to 
provide empirical evidence that a tool controls the FDR nor that the 
tool fails to control the FDR.

Our literature review, summarized in Table 1, indicates that many 
publications fail to correctly employ the entrapment estimation. Only 
three of the studies we summarized in the table correctly use entrap-
ment estimation, and all three focused on DDA analysis12,15,20. A common 
mistake is to use the lower bound method, which cannot establish 
that a given method correctly controls the FDR18,19,23,24, or to use the 
problematic sample-entrapment method11,13,14,21. Further discussion 
of some of the studies in Table 1 is provided in Supplementary Note 4.

Note that, in addition to employing different methods to esti-
mate the FDP, the above studies also differ with respect to the entrap-
ment expansion, which, in this case, amounts to how the entrapment 
database is constructed. In the ‘shuffled entrapment’ approach, the 
entrapment sequences are derived analogously to decoy sequences 
by shuffling the corresponding target sequences, whereas in the ‘for-
eign entrapment’ approach they are taken from the proteome of some 
other species.

The paired method yields a tighter upper bound on the FDP
As noted above, the combined estimation method provides an esti-
mated upper bound. In practice, we observed that this method can 
often substantially overestimate the FDP, which motivated us to 
propose a complementary ‘paired estimation’ approach. By taking 
advantage of sample-entrapment pairing information, this method 
allows us to reduce the conservative bias of the combined method while 
still retaining its upper bound nature. As such, the paired estimation 
method is more likely to provide evidence of proper FDR control than 
the combined method is. For this method to work, say, in peptide-level 
analysis, we require that each original target peptide be paired with a 
unique entrapment peptide (so in particular, r = 1). In practice, this 
means that the paired estimation method requires a shuffling or rever-
sal to generate the entrapment peptides.

Given such paired entrapment peptides and still considering 
peptide-level analysis, the paired method estimates the FDP in the list 
of target + entrapment discovered peptides by

F̂DP
∗
𝒯𝒯𝒯𝒯𝒯𝒯 =

Nℰ + Nℰ𝒯s > 𝒯𝒯 + 2Nℰ > 𝒯𝒯𝒯s
N𝒯𝒯 + Nℰ

, (4)

where s is the discovery cutoff score, N𝒯𝒯s > 𝒯𝒯  denotes the number of 
discovered entrapment peptides (scoring ≥s) for which their paired 
original target peptides scores <s and N𝒯 > 𝒯𝒯𝒯s is the number of disco
vered entrapment peptides for which the paired original target peptides 
scored lower but were still also discovered. In Supplementary Note 2.3, 
we recast equation 4 so it can be applicable in our more general entrap-
ment framework. In addition, we introduce the ‘k-matched’ generaliza-
tion of the paired method that, in the case of peptide-level analysis for 
example, relies on a larger entrapment database, where each target 
peptide is uniquely associated with k entrapment ones (so r = k). Finally, 
we prove that, under an assumption akin to TDC’s equal-chance assump-
tion, both the paired method and its k-matched generalization are valid 
upper bounds in the same averaged sense that the combined method is.

Comparing estimation methods with controlled experiment 
data
We first demonstrate the qualitative differences among the above esti-
mation methods—lower bound, sample, combined and paired—using 
the ISB18 dataset, which consists of DDA data generated from a known 
mixture of 18 proteins28. We used the Tide search engine29 to carry out 
FDR control at the peptide level (Methods). Due to the relatively small 
size of the ISB18 dataset, we averaged each entrapment method’s esti-
mated FDP over multiple applications, each with different randomly 
drawn decoy and entrapment databases. Accordingly, our entrapment 
methods here are reporting the empirical FDR, that is, the average of the 
FDP estimates over the 100 drawn decoys and entrapments (Methods).

In the first experiment, the original target database consists of the 
ISB18 peptides, and the entrapment part consists of shuffled sequences 
with r = 1. We first focus on the paired and combined methods, both of 
which are estimating the FDP in the same list of target + entrapment dis-
coveries at the given FDR threshold. Notably, the paired method yields 
an estimated FDR curve that weaves very closely about the line y = x, 
which is firmly within the 95% coverage band of this estimate (Fig. 2a). 
By contrast, the entire 95% coverage band of the combined estimation 
lies above the diagonal, demonstrating the upper bound nature of this 
method. In particular, in this example, we can use the paired method to 
argue that the FDR seems to be controlled in this case (as we expect it to 
be), but we cannot make that argument using the combined estimate. 
As expected, the lower bound curve is below the diagonal but, as such, 
it is uninformative in this case. Finally, the fact that the sample method 
is also below the diagonal indicates that, similar to the lower bound, it 
is probably underestimating the true FDP here.

In the second experiment, we sought to obtain an independent 
evaluation of the entrapment methods themselves. We did this by 
taking advantage of the controlled nature in which the ISB18 dataset 
was generated to conduct a double entrapment experiment, which is 
designed to gauge how accurately the entrapment methods estimate 
the FDP. Specifically, we constructed an extended ‘original target’ 
database that consisted of the ISB18 peptides augmented by a much 
larger set of peptides from a foreign species (the castor bean): the 
ratio of ISB18-to-castor peptides was 1:636. We then applied the paired 
and sample-entrapment methods using shuffled sequences (r = 1) 
to estimate the FDP among the reported peptides. The controlled 
nature of the ISB18 dataset implies that any reported castor peptide is a  
false discovery. At the same time, with a ratio of 1:636 ISB18-to-castor 
peptides, it is reasonable to assume that any ISB18 reported peptide  
is a true discovery. Thus, we can directly estimate the FDP in each  
discovery list and compare it with the estimate produced by the  
entrapment procedures.

Given the very small proportion of native ISB18 peptides in the 
extended ISB18 + castor target database, it is not surprising that the 
combined and paired methods essentially coincide in this setup 
(Fig. 2b). Notably, though, both provide very accurate estimates of 
the FDP as confirmed by the independent, ‘direct’ castor-based esti-
mate, where the latter counts every entrapment or castor peptide as a 
false discovery. By contrast, the sample entrapment seems to substan-
tially underestimate the castor-based estimate because it is trying to 
estimate the FDP in the wrong list of discoveries—the ISB18 + castor 
ones—ignoring the fact that the tool was instructed to control the FDR 
in the larger set of ISB18 + castor + shuffled entrapments. Finally, the 
lower bound also underestimates the FDP, but that is not surprising 
given its definition.

Entrapment analysis on DDA search engines supports our 
theory
We next set out to further validate our analysis of the entrapment  
methods by applying them to gauge the peptide-level FDR control of 
four well-established DDA search engines—Tide29, Sage30, MS-GF+31 
and MSFragger32—using data generated from a complex sample, rather 
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than from a controlled mixture. For MS-GF+ we carry out peptide-level 
FDR control using the primary search engine scores, whereas for the 
other three search engines we use a machine learning post-processor: 
Percolator-RESET for Tide, Sage’s built-in linear discriminant analy-
sis, MSBooster33 for MSFragger. For this analysis, we use data from 24 
tandem mass spectrometry (MS/MS) analyses of the human cell line 
HEK293, searched against target + entrapment databases for which  
the human reference proteome was taken as the original target 
sequences and was paired with shuffled entrapment sequences (so 
r = 1). Thus, in addition to being derived from a more complex sample,  
this dataset is substantially larger than the ISB18 dataset, as is the origi-
nal target database. Having established that the sample estimation 
method is inherently problematic, from here onward we consider only 
the lower bound, combined and paired estimation procedures.

A priori, given the established nature of DDA FDR analysis, we 
expect all of these tools to produce valid FDR estimates. Accord-
ingly, the conclusions we draw from the analysis of the HEK293 data 
(Fig. 3) largely mirror those we drew from the Fig. 2a. Specifically, for 
all peptide-level analysis tools the paired method yields estimated FDPs 
that are quite close to the diagonal. The more conservative nature of 
the combined method is on display again: it is always above the paired 
estimation curve, with the latter already presenting an upper bound. 
More specifically, relying on the combined method, we might have res-
ervations on whether we have evidence that Tide+Pecolator-RESET and 
Sage control the FDR in this setup, but we can argue for such apparent 
evidence if we use the paired method. As expected, the lower bound 
seems to consistently substantially underestimate the FDP.

To gauge the possible impact of the inherent variability of the 
entrapment sequences and, where relevant, the decoy sequences, we 
again constructed 95% coverage bands for the estimates. Supplemen-
tary Fig. 1 shows that, for both Tide and Sage (for which generating these 
plots was fairly straightforward), the effect of this variability is marginal.

We reach similar conclusions when comparing our entrapment 
estimation methods using protein-level analysis in DDA data with 
MaxQuant34. Specifically, Supplementary Fig. 2a demonstrates that 
the paired method provides us with evidence of MaxQuant’s successful 
protein-level FDR control while the combined methods leaves a certain 
degree of uncertainty about it. At the same time, a comparison of the 

panels in Supplementary Fig. 2a,b shows that entrapment analyses 
based on shuffled and foreign sequences are in fairly good agreement 
with one another in this case as well.

Finally, we further validated our entrapment analysis by apply-
ing the combined, paired and lower bound estimates to peptide-level 
analysis procedures that do not rely on TDC to control the FDR. Specifi-
cally, we analyzed two such procedures in the spirit of the PSM-level 
one described in ref. 35. Both procedures rely on empirical P values that 
are estimated from the decoys generated by shuffling the peptides in 
the target database. The list of discovered peptides is then determined 
by applying either the Benjamini–Hochberg2 or Storey’s procedure36 
to the list of empirical P values (see Methods for details). To obtain 
further confidence in our analysis, each entrapment procedure was 
applied twice, once with shuffled and once with foreign (Arabidop-
sis) entrapment sequences. As expected, in all cases the combined 
method reported the highest estimated FDP, the lower bound reported  
the lowest estimate, and the paired method fell between those 
two (Supplementary Fig. 3). The fact that for both the Benjamini– 
Hochberg and Storey procedures, the combined estimate is well  
below the diagonal suggests that both are conservative in this case.  
This is further suggested by the substantially smaller number of dis-
coveries those two procedures make compared with TDC.

DIA search engines fail to consistently control the FDR
Turning to tools for analysis of DIA data, we performed a more extensive 
evaluation. Specifically, we applied three different search engines—
DIA-NN, Spectronaut and EncyclopeDIA—to the ten DIA datasets 
listed in Supplementary Table 1. In the case of EncyclopeDIA, we only 
analyzed the four datasets for which we have gas phase fractionation 
runs. In each case, we applied all three entrapment estimation meth-
ods separately at the peptide level (for EncyclopeDIA) or precursor 
level (for DIA-NN and Spectronaut) and at the protein level for each 
search engine. Precursor-level analysis is analogous to peptide-level 
analysis except that each discovery is a (possibly modified) peptide 
and a corresponding charge state. In addition, because Spectronaut 
only estimates precursor-level FDR for each run, rather than for a full 
experiment, we only report precursor-level results for a single selected 
mass spectrometry run for each DIA dataset.
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Fig. 2 | Entrapment analysis using the ISB18 data. a, The entrapment-estimated 
FDR or the estimated FDP averaged over 100 sets of decoys and entrapments 
is plotted (with 95% coverage bands) as a function of the given FDR threshold. 
The FDP is estimated using four different entrapment methods with the original 
target database consisting only of the ISB18 peptides. b, The estimated FDR or 
the estimated FDP averaged over 100 sets of decoys and entrapments is plotted 
against the corresponding castor-based estimates. This experiment uses an 

original target database consisting of the ISB18 and castor peptides at a ratio 
of 1:636. The combined and paired curves visually overlap due to the small 
proportion of native ISB18 peptides in the ISB18 + castor database. The figure 
summarizes two different types of entrapment experiment, both using shuffled 
sequences with r = 1. The lists of discoveries for a and b were generated by 
searching with Tide, followed by peptide-level FDR control.
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The results of this experiment suggest that the precursor or 
peptide-level FDR control is frequently questionable, whereas protein- 
level FDR control is frequently invalid (Table 2). For example, for the  
human-lumos dataset (Fig. 4a) we observe that the precursor or 
peptide-level FDR control appears to be inconclusive, whereas the 
protein-level FDR control is apparently invalid: for example, the 
lower bound on EncylopeDIA’s FDP is above 6%. Indeed, keeping in 
mind that the true FDP is likely to be between the lower bound and 
the paired-estimated upper bound, we see that the protein-level 1% 
FDR control appears to be consistently invalid for EncyclopeDIA and 
Spectronaut and mostly invalid for DIA-NN. Although the peptide-level 
analysis indicates substantially better control of the FDR, there are still 
some datasets for which the results are inconclusive or worse. Notably, 
this is particularly the case for the single-cell (1cell-eclipse) data, where 
the lower bound on DIA-NN’s precursor-level FDP data is above 2.3% and 
Spectronaut’s FDP is above 3.8%. It is worth noting that DIA-NN’s and 
Spectronaut’s protein-level estimated FDPs are also highest on that 
particular dataset. Supplementary Figs. 4–9 complement these obser-
vations by providing for all datasets and DIA tools the lower bound, as 
well as the combined and paired-estimated FDPs for a wide range of 
FDR thresholds. In particular, the figures consistently demonstrate how 
the entrapment estimation methods compare with one another, with 
the combined method reporting the largest estimated FDP, the lower 
bound the smallest and the paired method in between the other two.

We also performed complementary experiments in which we 
varied the entrapment-to-original-target ratio r. Consistent with  

Lou et al. citelou2023benchmarking, we find that the estimated FDP 
among DIA-NN’s reported proteins generally increases with r (Supple-
mentary Figs. 10 and 11). On the other hand, Lou et al. only increased r  
up to r ≈ 1 and concluded that DIA-NN controls the FDR; however, 
because they were using the lower bound, that conclusion is invalid 
(Supplementary Note 4). By contrast, we explored higher values of r and 
found that even the lower bound is consistently substantially higher than 
the corresponding FDR thresholds, indicating quite clearly that DIA-NN 
apparently fails to control the FDR in those scenarios. For example,  
for r = 8 we see a lower bound of almost 7% (Supplementary Fig. 10). 
The same phenomenon was observed in the case of Spectronaut as 
well: for example, the lower bound is above 4% for r = 6 (Supplementary 
Fig. 12). While these observations do not imply that the FDP is as high 
when searching only the original target database, they do indicate that 
the tool struggles to control the FDR in some setups. In general, proper 
FDR control should be applicable to any realistic scenario.

To investigate the practical consequences of erroneous FDR  
control, we compared the number of discoveries reported at the 1% 
FDR threshold by DIA-NN to the number of discoveries we get if we 
use the paired method to guide our cutoff. Specifically, for each of  
the ten datasets analyzed in Table 2, we asked how many more  
discoveries DIA-NN reports at the 1% FDR threshold relative to how 
many discoveries we get when the (paired) entrapment-estimated 
FDP is at 1%. As shown in Fig. 4b, when the estimated FDP is in the 1–2% 
range, we see an estimated inflation of up to 6.7% in the number of 
discoveries at the precursor level and up to 4.7% at the protein level. 
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Fig. 3 | Comparing entrapment procedures using HEK293 DDA data. Each 
figure shows, for a given search procedure, the (shuffled with r = 1) entrapment-
estimated FDP in the combined list of target peptides that was reported at the 

given FDR threshold. The dashed vertical line is at the 1% FDR threshold, as are 
the numbers reported in text in the figure. ‘LDA’ refers to the linear discriminant 
analysis option in Sage.
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In the case of the single-cell proteomics dataset (1cell-eclipse), the 
estimated inflation rate is up to 48.3% at the precursor level and 44.2% 
at the protein level.

Discussion
Overall, our work identifies a lack of consensus in the field about  
entrapment estimation methods. Accordingly, we introduce a formal 
framework within which we can rigorously study entrapment esti-
mation methods. This framework, summarized in Supplementary 
Table 2, is equally applicable to PSM, peptide and protein-level analyses:  
provided the assumptions that we specify hold, the corresponding 
upper or lower bound nature of the estimates is guaranteed (though 
we generally caution against trying to control the FDR at the PSM 
level). Moreover, our framework is also applicable to what Madej and  
Lam referred to as ‘entrapment query protocol’37, where foreign  
spectra are used to expand the dataset in lieu of the common expansion 
through a peptide entrapment database.

Applying our entrapment procedures to DIA analysis tools 
we demonstrate that their FDR control at the peptide or precursor  
level occasionally seems to fail and typically fails at the protein level. 
Given the importance of protein-level analysis to mass spectrometry 
experiments, we believe that this result should serve as a call to further 
research into this problem. Keep in mind that this is not just a matter  
of rigorous statistics: often, the detected proteins are then further 
used to identify differentially expressed proteins, so incorrectly  
calling the detected proteins can adversely affect our ability to  
successfully accomplish our ultimate goal.

In general, an upper bound estimate such as the combined estima-
tion can only be used to show valid FDR control, and the lower bound 
to highlight invalid FDR control. However, if r is large, then the differ-
ence between equations (1) and (2) becomes negligible, so each of the 
methods can be reasonably used for making both arguments. That 
said, keep in mind that using r ≫ 1 creates a much larger combined tar-
get database, most of which is made of entrapment sequences. Thus, 
establishing FDR control in this somewhat atypical setup is not as con-
vincing as establishing it for smaller values of r (for example, r = 1, 2). Of 
course, when using smaller values of r we have to take into account that  
equation (2) is a lower bound and to establish FDR control we need  
to use the upper bound. Our paired entrapment estimation method, 
equation (4), and its k-matched generalization, Supplementary 
Equation 3, provide tighter upper bounds than the combined method, 
particularly for smaller values of r and larger fractions of the native 
peptides in the original target database.

As mentioned, the validity of an estimate hinges on whether its 
underlying assumptions are expected to hold, which in turn depends 
on how the entrapment procedure expands the input dataset. The most 
common expansion approach in analyzing MS/MS tools is to enlarge the 
database by adding to it foreign entrapment sequences. In this work, we 
chose instead to focus on shuffled entrapments because, as we argue 
in detail in Supplementary Note 5 and Supplementary Figs. 13–16, the 
use of foreign species raises complex questions associated with the 
choice of those species; for example, what is the ‘right’ evolutionary 
distance for the entrapment species, and whether the entrapment spe-
cies coincides with a potential source of contamination, as we found 
in our analysis of the commonly used HEK293 dataset. Such questions 
will need to be addressed before we can objectively agree on a way to 
use such foreign entrapment sequences.

Granted, the use of shuffled entrapment is not without its con-
troversy. In particular, Madej and Lam recently argued that using ran-
domly shuffled entrapment sequences to validate tools that rely on 
shuffled decoys to control the FDR amounts to circular reasoning37. 
While there is merit to this claim, there are many cases where this is 
not exactly the case.

First, these tools often use the decoy sequences differently than 
they are used by the entrapment estimation methods. For example, 
Percolator’s cross-validation scheme to improve the ranking of the 
PSMs can inadvertently misuse the target/decoy label when multiple 
spectra are generated from the same peptide species7. Because in this 
case the compromised FDR control stems from indirectly peeking 
at the target/decoy label but not at the target/entrapment label, the 
problem can be identified even when both the entrapment sequences 
and the decoys are shuffled. Similarly, there is no circular reasoning 
when applying shuffled-based entrapments to procedures such as 
Benjamini–Hochberg and Storey that use shuffled decoys to compute 
empirical P values.

Second, if we believe, for example, that Assumption 2a in Supple-
mentary Information holds, then the combined estimation method 
is valid regardless of which type of decoys the analysis tool uses to 
control the FDR. Note that the field has largely been comfortable with 
applying TDC that relies on an even stronger assumption than the  
latter: one that also requires the independence of false discoveries. As 
previously pointed out, shuffled sequences cannot account for errors 
due to homologs or more generally due to neighbors (that is, distinct 
peptides with similar spectra)38. However, our analyses here suggest 
that the same applies when using foreign species such as Arabidopsis) 
in the analysis of a human sample.

Table 2 | Entrapment analysis of FDR control of three DIA analysis tools

Dataset DIA-NN EncyclopeDIA Spectronaut

Precursor Protein Peptide Protein Precursor Protein

Human-astral 0.7–1.3 (?) 1.5–2.1 (X) – – 0.8–1.5 (?) 1.6–2.3 (X)

Human-qe 0.7–1.3 (?) 1.5–2.2 (X) 0.7–1.3 (?) 4.7–7.0 (X) 0.7–1.4 (?) 1.3–1.9 (X)

Human-tripletof 0.6–1.1 (?) 1.0–1.5 (X) 0.7–1.3 (?) 3.2–4.8 (X) 0.7-1.4 (?) 1.5–2.8 (X)

Yeast-lumos 0.6–1.0 (✓) 1.2–1.4 (X) 0.4–0.8 (✓) 4.3–5.2 (X) 0.8–1.5 (?) 1.3–1.6 (X)

Mouse-qe 0.7–1.3 (?) 0.8–1.1 (?) – – 0.7–1.4 (?) 1.3–1.9 (X)

Human-timstof2 0.6–1.1 (?) 0.8–1.2 (?) – – 0.7–1.5 (?) 1.4–2.1 (X)

Human-timstof1 0.7–1.2 (?) 0.8–1.2 (?) – – 0.7–1.3 (?) 1.1–1.7 (X)

100cell-eclipse 0.9–1.6 (?) 1.3–1.8 (X) – – 0.9–1.7 (?) 1.8–2.9 (X)

1cell-eclipse 2.3–4.7 (X) 2.0–3.5 (X) – – 3.8–7.6 (X) 3.0–5.6 (X)

Human-lumos 0.9–1.7 (?) 2.1–2.6 (X) 0.7–1.2 (?) 6.7–9.1 (X) 0.7–1.3 (?) 2.0–3.0 (X)

Each entry in the table lists the lower bound and paired-estimated upper bound on the empirical FDP among the target + entrapment discoveries reported by the DIA search engine at an FDR 
threshold of 1%. The entrapment procedures used shuffled entrapment sequences with r = 1 and were applied at both the peptide or precursor level and the protein-level. Each entry is followed 
by an indicator for whether the FDR control for this tool on this dataset is deemed valid (✓), invalid (X) or inconclusive (?). EncyclopeDIA results are provided only for the four datasets with gas 
phase fractionation data available. Note that the evaluation of each method is based on the full results presented in Fig. 4 and Supplementary Figs. 4–9.
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Indeed, utilizing a mixed foreign and shuffled entrapment 
approach we find perfect agreement between the shuffled-based com-
bined and paired estimates and the foreign-based one in the controlled 

ISB18 setup (Fig. 2b). Similarly, we find little difference when com-
paring the applications of the combined and lower bound methods 
to both Tide’s and Sage’s peptide-level analyses of the HEK293 data 
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Fig. 4 | Entrapment evaluation of the FDR control of DIA analysis tools. a, The 
FDR control evaluation on the human-lumos DIA dataset. DIA-NN, EncyclopeDIA 
and Spectronaut were applied to the human-lumos DIA dataset using shuffled 
entrapment with r = 1. The precursor or peptide-level estimated FDPs (top) and 
the corresponding protein-level analysis (bottom) are shown, with the line y = x 
included (gray) for reference. In the Spectronaut precursor-level plot, the x axis 
was set to show the maximum FDR threshold reported by the tool, which was less 
than the 1% threshold set in the analysis. The dashed vertical lines are at the 1% 

FDR threshold, as are the numbers reported in text in a and b. b, Comparing the 
number of precursor and protein discoveries reported at the 1% FDR threshold by 
DIA-NN to the inferred number corresponding to the 1% entrapment-estimated 
FDP (paired method). The numbers at the top are the entrapment-estimated 
FDPs using the paired method at 1% FDR threshold. The three numbers on each 
bar are the estimated inflation rate, the reported number of discoveries (n1) at 
1% FDR threshold and the entrapment inferred number of discoveries (n2). The 
estimated inflation rate (y axis) is calculated as 100% × (n1 − n2)/n2.
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using shuffled sequences and using foreign Arabidopsis sequences 
(Tide: Supplementary Fig. 3, bottom, Sage: Fig. 3, bottom left, and 
Supplementary Fig. 13, right). The same holds when comparing foreign 
and shuffled entrapment estimation methods applied to MaxQuant’s 
protein-level analysis (Supplementary Fig. 2), as well as applied to 
non-TDC-based procedures (Supplementary Fig. 3, first 2 rows).

Moreover, the lower bound method only requires that the entrap-
ment sequences are not present in the sample (Assumptions 1a and 1b 
in Supplementary Note 2.1). As long as this holds, using this estimate 
to conclude that a tool apparently fails to control the FDR involves 
no circular reasoning. In particular, our analysis of DIA tools, which 
mostly relies on the lower bound estimate, is valid even though we 
used shuffled sequences.

Regardless, it is clear that the topic of entrapment expansion 
and its impact on the validity of our entrapment assumptions such 
as Assumption 1 merits further research. Indeed, considering Madej 
and Lam’s entrapment setup, originally proposed in ref. 39, where 
foreign spectra are used to expand the dataset in lieu of a peptide 
entrapment database, one can consider a shuffled-based rather than 
a foreign-based expansion, for example, by applying the spectrum 
shuffling protocol of ref. 40. Future research could consider all four 
possible expansions: shuffled versus foreign and database versus 
spectrum set, including possibly mixing the strategies as in our double  
entrapment analysis of the ISB18, as well as using more than one  
expansion method.

Finally, to facilitate future entrapment analyses, we have produced 
an open source software tool, FDRBench, that provides two main func-
tions: (1) build entrapment databases using randomly shuffled target 
sequences or using sequences from foreign species and (2) estimate 
the FDP using the lower bound, combined and paired methods.
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Methods
TDC protocols for controlling the FDR
TDC. Initially introduced by Elias and Gygi1, the following variation of 
the original TDC procedure was subsequently proved to control the 
FDR3: the input is a list of pairs (Wi, Li), where Li = +1 for a target PSM, 
peptide or protein, Li = −1 for a decoy, and Wi is its corresponding score.

The pairs are ordered in decreasing order of their score Wi, and  
for each k, we find Dk, the number of decoys in the top k pairs and 
T = k − Dk the number of targets. Given the desired FDR level α, TDC 
sets the rejection/discovery index at

K = K (α) ∶= max {k ∶ Dk + 1
max{Tk, 1}

≤ α} . (5)

Finally, TDC reports all targets among the top K pairs.
Assuming that a pair corresponding to an incorrect discovery is at 

least as likely to be a decoy as it is to be a target, that is, that P(Li = − 1) ≥ 1/2 
independently of everything else (including of the score Wi),  
TDC rigorously controls the FDR3,41 among its reported discoveries.

Peptide-level TDC with PSM-and-peptide. PSM-and-peptide is a 
TDC-based procedure for peptide-level analysis introduced in ref. 4. 
This method involves a double competition: the first is a PSM-level com-
petition where each spectrum is searched against the concatenated 
target–decoy database, and the best matching peptide is assigned to 
it (where ties are broken randomly). This defines the (optimal) PSM 
associated with each spectrum, and then each target or decoy peptide 
is assigned a score, which is the maximum of the scores of all PSMs that 
this peptide is part of. PSM-and-peptide introduces a second level of 
competition to define the scores and labels by utilizing the pairing 
between each target and its shuffled decoy. Specifically, it keeps only 
the higher scoring peptide from each target–decoy pair. Any peptide 
with no matching PSM is assigned the lowest possible score, and all ties 
are randomly broken. This procedure defines the pair’s winning score 
Wi and its label Li = ±1, indicating whether the higher scoring peptide 
was the target or the decoy. TDC is then applied as above to this list of 
scores and labels (W, L).

Controlling the FDR using the Benjamini–Hochberg and 
Storey
Our peptide-level FDR control using the Benjamini–Hochberg and 
Storey’s procedures began with a Tide target–decoy search without 
competition. For each target (an original or entrapment target) or 
decoy peptide, the highest scoring PSM was selected based on the 
Tailor score42, and the peptide score was then defined as the score of 
the selected PSM. Next, a P value was assigned to each target peptide 
score and was defined as the proportion of decoy peptides with a score 
as high as the assigned one. For FDR control using Benjamini–Hoch-
berg, the P values of peptides were adjusted using the function p.adjust 
with the method parameter set as BH (Benjamini–Hochberg) in R. The 
adjusted P values were then taken as FDR thresholds for downstream 
analysis. For FDR control using Storey’s procedure, the function qvalue 
from the R package qvalue (version 2.34) was used with its default 
parameters. The returned q values were then taken as FDR thresholds 
for downstream analysis.

Datasets
The MS/MS data used in this study include a wide range of datasets 
from different vendors, different MS instruments, data acquisition 
strategies and species. As shown in Supplementary Table 1, a total of 
12 datasets were used in the study, including 2 DDA datasets and 10 DIA 
datasets. All the raw data were downloaded from public databases. The 
raw data were converted to mgf or mzML format files using MSConvert 
in ProteoWizard (version 3.0.24031)43. For datasets generated using 
staggered isolation windows, demultiplexing was enabled when using 

MSConvert. This excludes the ISB18 data, where ms2 files were obtained 
from ref. 4. Among the ten DIA datasets, four include gas phase frac-
tionation DIA runs, which were used to build chromatogram libraries 
for EncyclopeDIA analysis. Two of the datasets were from a previous 
single-cell proteomics study (dataset ID: PXD023325).

Entrapment database generation via random sequences
The shuffled entrapment databases were generated differently 
for precursor-level and peptide-level FDR control evaluation than  
they were for protein-level analysis. In both cases, the original target 
protein sequences for human (UP000005640, 20597 proteins), yeast 
(UP000002311, 6060 proteins) and mouse (UP000000589, 21701 
proteins) were downloaded from UniProt (02/2024).

For precursor/peptide-level analysis, the original target proteins 
were first in silico digested into peptides using trypsin (without proline 
suppression) with one missed cleavage allowed. The original target 
peptides database consisted of those with lengths between 7 and 35 
amino acids. Then for each original target peptide, we attempted to 
generate a paired random entrapment peptide as follows. Specifically, 
the original peptide was shuffled while keeping the C-terminal amino 
acid fixed and then searched against all original target peptides as well 
as the previously generated random peptides to ensure it is distinct 
from all of those. If it was not, we retried to generate such a distinct shuf-
fled peptide up to an additional 20 times. If all those attempts failed we 
removed the corresponding peptide from the original target database. 
To generate r matching random entrapment peptides we repeated 
this shuffling process up to 20 + r times to try and obtain r distinct 
entrapment peptides for each original target peptide. A peptide for 
which we failed to generate r distinct shuffles after 20 + r attempts was 
removed from the original target database. Supplementary Algorithm 
1 summarizes this procedure in pseudocode.

In the protein-level FDR evaluation, for each original target pro-
tein, we generated a paired random entrapment protein as follows. We 
first in silico digested the original protein into peptides using trypsin 
(without proline suppression). In this step, all the peptides, irrespective 
of length and mass constraints, were retained and no missed cleavages 
were considered. Then, for each of these peptides we tried to generate 
a distinct randomly shuffled entrapment peptide (again, while fixing 
the C-terminal) as above. This was tried up to 20 additional times for 
each original peptide, and if all failed to generate a distinct peptide, 
then (in contrast to the peptide-level analysis) the entrapment peptide 
associated with the target peptide was identical to the target. Finally, 
each original peptide in the considered protein was swapped with its 
randomly generated one. Note that a peptide that appears in multiple 
proteins or multiple times within a protein was consistently swapped 
with its uniquely associated paired entrapment peptide in all the pro-
teins it appears. To create an r-fold entrapment protein database, we 
attempted to associate with each digested original target peptide r 
distinct randomly shuffled entrapment peptides as above. If we failed 
to do so in 20 + r attempted shuffles, then we randomly sampled with 
replacement r − n additional entrapment peptides from the n > 0 dis-
tinct shuffles that we managed to generate. If there were no distinct 
shuffles at all (n = 0), then the selected r entrapment peptides were 
all identical to the original digested peptides. We then used these r 
entrapment peptides to define r associated entrapment proteins as 
described above for r = 1.

Entrapment database generation via foreign species 
sequences
To generate protein-level entrapment databases using proteins from 
foreign species, a set of proteins from the selected foreign species were 
randomly selected as entrapment proteins to achieve the desired ratio 
of r entrapment-to-original target proteins (we used r ≥ 1).

To generate peptide-level entrapment databases, both original 
target proteins and the proteins from the foreign species were in 
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silico digested into peptides using trypsin (without proline suppres-
sion) with one missed cleavage allowed. Again, we only considered 
digested target and entrapment peptides with length between 7 and 35  
amino acids. Any foreign species peptides that matched an original 
target peptide were removed. Finally, we randomly selected as many 
of the remaining foreign peptides as needed to achieve the desired 
ratio of r entrapment-to-(remaining)-original target peptides (we 
used r ≥ 1). Supplementary Algorithm 2 summarizes this procedure 
in pseudocode.

Two sets of foreign species were used in this study. The first set 
of foreign species consisted of Arabidopsis thaliana and Saccharo-
myces cerevisiae. The protein sequences from these two species were 
downloaded from UniProt (02/2024). Specifically, 27448 proteins 
from A. thaliana (UP000006548) and 6060 proteins from S. cerevisiae 
(UP000002311) were used. The second set of foreign species consisted 
of Macaca mulatta, Callithrix jacchus, Papio anubis and Mus musculus. 
The protein sequences from these species were downloaded from 
UniProt (primates: 04/2024, mouse: 02/2024). Specifically, 21,590 pro-
teins from P. anubis (UP000028761), 21,893 proteins from M. mulatta 
(UP000006718), 22,027 proteins from C. jacchus (UP000008225) and 
21,701 proteins from M. musculus (UP000000589) were used.

FDR control evaluation procedures
Using the ISB18 controlled experiment data (with Tide). We used 
DDA spectra from an 18-protein mixture, called the ISB18, acquired 
from a controlled experiment28. We implemented our entrapment 
methods using two different setups: (1) randomly shuffled entrap-
ment sequences and (2) randomly shuffled entrapment sequences 
in the presence of foreign target sequences from the castor pro-
teome. We used the nine ms2 spectrum files and the castor proteome 
from ref. 4 and directly downloaded the in-sample protein database 
20130710-ISB18-extended.fasta from https://regis-web.systemsbiol-
ogy.net/PublicDatasets/database.

Here we used the following variant of the shuffling entrapment 
protocol described in the ‘Entrapment database generation via random 
sequences’ section. For approach 1, we created 100 randomly shuffled 
databases by digesting the 18-protein database using the tide- 
index command (default settings) from a recent version of Crux 
(v4.1.6809338)44 and randomly shuffling the resulting original target 
peptides 𝒯𝒯  while fixing both the C-terminal and the N-terminal amino 
acids in place. We implemented a narrow search of the combined spec-
trum files against each of the 100 combined target + shuffled entrap-
ment databases using tide-search (using the automatic fragment and 
precursor tolerance selection). Next, each entrapment method was 
used by considering three of the narrow search files, designating one 
of the randomly shuffled databases as 𝒯𝒯𝒯  and the remaining two ran-
domly shuffled databases as the decoys for 𝒯𝒯 𝒯 𝒯𝒯𝒯 . A small number of 
randomly shuffled peptides were problematic because they appeared 
in two different sets: the decoy set of 𝒯𝒯 , 𝒯𝒯𝒯  or the decoy set of 𝒯𝒯𝒯   
and some low complex target peptides were unable to produce three 
distinct random shuffles. Hence, any target peptide and their corre-
sponding shuffled peptides that contained such a problematic peptide 
were removed from the search files. Next, we joined the three search 
files and implemented peptide-level analysis using the PSM-and-peptide 
protocol with XCorr scores. Finally, we estimated the FDP using each 
of the entrapment methods. Because we have 100 randomly shuffled 
databases, we repeated the above analysis 100 times using a different 
choice of the three narrow search files, ensuring that each narrow search 
file is considered exactly three times in total. We then estimated the 
FDR by taking the average of our 100 FDP estimates. The 95% coverage 
bands that account for the decoy and entrapment sequence variability 
were computed for each FDR threshold as ±1.96 × σn/√n, where σn is the 
standard deviation of the n = 100 estimated FDPs at that threshold.

For approach 2, we prepared a new ‘original target’ peptide data-
base, 𝒯𝒯 , by combining the target sequences digested from the ISB18 

protein mixture and the foreign sequences digested from the castor 
proteome. We then followed the same steps in approach 1 to  
obtain 100 FDP estimations that were averaged to obtain an FDR esti-
mate using the paired and sample-entrapment methods. We also 
obtained 100 ‘direct FDP’ estimates, which rely on the number of  
discovered shuffled entrapment sequences and castor peptides to 
estimate the number of false discoveries. Specifically, the direct esti-
mate is the ratio of the number of castor and shuffled entrapment 
discoveries over the total number of (ISB18 + castor + shuffled entrap-
ment) discoveries. These FDP estimates were also averaged to obtain 
a ‘direct FDR’ estimate.

Tide. To evaluate the FDR control in Tide (within Crux v4.1.6809338)29 
in a more typical setting, the HEK293 DDA MS/MS data were analyzed 
using Tide. Specifically, a peptide-level paired entrapment database 
was first generated using the method described in the ‘Entrapment 
database generation via random sequences’ section. The Tide-index 
from the Crux toolkit (https://crux.ms/) was then used to randomly 
shuffle both the original target peptides and entrapment peptides 
in the peptide-level entrapment database to obtain decoys (while 
keeping the C-terminal amino acid fixed) and build an index later used 
for tide-search. Carbamidomethylation of cysteine was set as a fixed 
modification, and no variable modification was used in this step. Next, 
the HEK293 MS/MS data were searched against the combined database 
generated in the previous step using tide-search from the Crux toolkit 
with the following parameters: tailor-calibration, enabled; Sp scoring, 
enabled; precursor ion mass tolerance, 20 ppm; fragment tolerance, 
0.02 m/z; fragment offset, 0. All other Tide parameters were set as 
default. The FDR control of the Tide search result at the peptide level 
was performed using the single-decoy Percolator-RESET (version 
0.0.6)45 with specifying the Tailor score42 as the primary score (all other 
parameters were set as default).

Sage. To evaluate the peptide-level FDR control in Sage (version 
0.14.6)30, we generated the same target + shuffled entrapment database 
as described above for Tide. In addition, to demonstrate the evolution-
ary distance problem with foreign entrapment, we also used Sage with 
foreign peptide entrapments as described in section ‘entrapment 
database generation via foreign species sequences’. In both cases, the 
HEK293 dataset was searched against the target + entrapment data-
base using Sage with the following parameters: fixed modification, 
carbamidomethyl (C); no variable modifications; precursor ion mass 
tolerance, 20 ppm; fragment ion tolerance, 20 ppm; enzyme digestion 
was disabled; peptide length range, 7–35; isotope error range was set 
to ‘[0,0]’. All other parameters were set as default. Sage’s built-in FDR 
control procedure was used. The ‘peptide_q’ from Sage’s output was 
used as the peptide q value for downstream analysis.

MS-GF+. To evaluate the FDR control in MS-GF+ (version 2023.01.12)31, 
a peptide-level entrapment database was used that contained sample 
peptides, paired entrapment peptides and their paired decoy pep-
tides. The peptide-level entrapment database was generated using the 
method described in the ‘Entrapment database generation via random 
sequences’ section. Specifically, in generating the peptide database, 
three different random peptides were generated for each target pep-
tide, one decoy peptide was taken as paired entrapment peptide for the 
target while the other two decoy peptides were taken as decoy peptides. 
The HEK293 dataset was searched against the entrapment database 
using the following parameters: fixed modification, carbamidomethyl 
(C); no variable modifications; precursor ion mass tolerance, 20 ppm; 
range of allowed isotope peak errors, ‘0,0’; peptide length range, 7–35; 
instrument ID, 3 (Q-Exactive); fragmentation method, 3 (HCD); pro-
tocol ID, 5 (standard); N-terminal methionine cleavage was disabled. 
No enzyme digestion was applied. The parameter ‘-tda’ was set to 0  
to allow using the decoy peptides contained in the peptide database.  
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All other parameters were set as default. The ‘PepQValue’ from the out-
put of MS-GF+ was used as the peptide q value for downstream analysis.

FragPipe. To evaluate peptide-level FDR control of the FragPipe pipe-
line (version 21.1)21,32,33 on DDA data, the HEK293 dataset was searched 
against the same peptide entrapment database used in the MS-GF+ 
peptide-level FDR control analysis. The ‘Default’ workflow setting in 
FragPipe was used with several parameters changed as follows. The 
enzyme digestion was configured to disable in silico digestion. The 
setting of ‘Clip N-term M’ was disabled. No variable modification was 
used. The isotope error was set to zero. The calibration and optimiza-
tion setting was disabled. The ‘pin’ files generated by MSBooster33 
were combined and used for Percolator (version 3.6.4)5 analysis. The 
peptide-level result from Percolator was then used for downstream 
analysis.

MaxQuant. To evaluate protein-level FDR control of MaxQuant (version 
2.6.5.0)34 on DDA data, the raw files of the HEK293 dataset were searched 
against two protein-level entrapment databases separately using  
the following parameters: fixed modification, carbamidomethyl (C); 
variable modifications, oxidation (M); the default enzyme ‘Trypsin/P’ 
was used with a maximum of one missed cleavage site allowed; the 
setting of ‘Include contaminants’ was disabled; protein-level FDR 
threshold was set as 0.1. All other parameters were set to their default 
values. The first entrapment database was generated using the random 
shuffling method described in the ‘Entrapment database generation 
via random sequences’ section with r = 1. The second entrapment 
database was generated using the method described in section ‘entrap-
ment database generation via foreign species sequences’, in which the 
proteins from A. thaliana were used as entrapment proteins with r = 1. 
The protein files ‘proteinGroups.txt’ generated by MaxQuant were 
used for downstream analysis. The ‘Q-value’ from the files was used as 
protein q value for downstream analysis.

DIA-NN. For precursor-level FDR control evaluation of DIA-NN (version 
1.8.1)11, a peptide-level entrapment database, was used that contained 
the original target and their paired entrapment peptides for each 
DIA dataset. Each peptide-level entrapment database was generated 
using the method described in the ‘Entrapment database generation 
via random sequences’ section. DIA-NN analysis was performed using 
the following parameters: fixed modification, carbamidomethyl (C); 
no variable modifications; enzyme digestion was disabled; peptide 
length range, 7–35; precursor charge range, 2–4. The setting of ‘N-term 
M excision’ was disabled. The precursor FDR was set to 10%. All other 
parameters were set to their default values. For single run DIA data, the 
‘Q.Value’ from the main report was used as precursor q value for down-
stream analysis. For datasets with multiple runs, the ‘Lib.Q.Value’ from 
the main report was used as precursor q value for downstream analysis.

For protein-level FDR control evaluation, we ran DIA-NN in its 
library-free mode using an entrapment database as described in the 
‘Entrapment database generation via random sequences’ section. The 
enzyme and peptide length settings were the same as peptide-level 
entrapment database generation in the precursor-level FDR control 
evaluation. The precursor FDR threshold was set to 1%. All other param-
eters were set as the same with the precursor-level analysis. For single 
run DIA data, the ‘PG.Q.Value’ from the main report was used as the 
protein q value for downstream analysis. For datasets with multiple 
runs, the ‘Lib.PG.Q.Value’ from the main report was used as the protein 
q value for downstream analysis. If a protein group included ≥2 proteins 
and at least one of them was from the original target database, it was 
taken as an original target protein group.

EncyclopeDIA. We evaluated both the peptide-level and the protein- 
level FDR control of the gas phase fractionated (GPF) chromatogram 
library analysis workflow with EncyclopeDIA (version 2.12.30)27,46.

We first used Oktoberfest (version 0.6.2) with Prosit models (frag-
ment ion intensity prediction model: Prosit_2020_intensity_HCD, reten-
tion time model: Prosit_2019_irt)47,48 to generate two in silico spectral 
libraries for each DIA dataset that were later used for EncyclopeDIA 
analysis. In the spectral library generation step, carbamidomethyl  
of cysteine was considered as a fixed modification, and no variable 
modifications were considered. Precursor charges 2–4 were consi
dered. The normalized collision energy parameter was set to 27. The 
first spectral library was used for peptide-level FDR control analysis 
in which the input to Oktoberfest for library generation was a pep-
tide database in csv format containing the target peptides and their 
paired entrapment peptides as described in the ‘Entrapment database  
generation via random sequences’ section. The second spectral library 
was used for protein-level FDR control analysis in which the input to 
Oktoberfest for library generation was a protein database containing 
the target proteins and their paired entrapment proteins as described 
in the ‘Entrapment database generation via random sequences’ section. 
For the second library generation for each DIA dataset, trypsin (with-
out proline suppression) with one missed cleavage allowed was used  
and only peptides with lengths between 7 and 35 amino acids were 
considered in Oktoberfest. The methionine cleavage was disabled by 
making a minor change to the function of digest in Oktoberfest.

Next, for each FDR control evaluation analysis (peptide level or 
protein level), we generated a new spectral library by searching a set 
of GPF library DIA runs against the corresponding in silico spectral 
library using EncyclopeDIA.

Finally, we searched quant DIA runs against the GPF-derived spec-
tral library in each FDR control evaluation analysis. In the analysis, 
the V2 scoring of EncyclopeDIA was enabled except for the TripleTOF 
5600 dataset (PXD028735, human-tripletof). For protein-level FDR 
evaluation, the protein FDR threshold in the quant DIA analysis was set 
to 10% and the peptide FDR threshold was set to 1%. If a protein group 
included ≥2 proteins and at least one of them was from the original 
target database, it was taken as an original target protein group. For 
peptide-level FDR evaluation, the protein FDR threshold in the quant 
DIA analysis was set to 1%, and the peptide FDR threshold was set to 
10%. The EncyclopeDIA analysis was run through the nf-skyline-dia-ms 
workflow (https://nf-skyline-dia-ms.readthedocs.io).

Spectronaut. We evaluated both the precursor-level and the protein- 
level FDR control of the library-free analysis workflow (directDIA) in 
Spectronaut (version 18.7.240325.55695).

For evaluating the protein-level FDR control we constructed a 
protein database containing the original target proteins and their 
paired entrapment proteins as described in the ‘Entrapment database 
generation via random sequences’ section. We used Spectronaut with 
the following settings: enzyme specificity, trypsin (without proline 
suppression); maximum missed cleavages, 1; peptide length range, 
7–35; toggle N-terminal M, disabled. All other parameters were set as  
default. We used the ‘PG.Qvalue’ from Spectronaut output as the  
protein q value for downstream analysis. If a protein group included ≥2 
proteins and at least one of them was from the original target database, 
it was taken as an original target protein group.

For evaluating the precursor-level FDR control we constructed 
a peptide database containing the target peptides and their paired 
entrapment peptides as described in the ‘Entrapment database gene
ration via random sequences’ section. Because Spectronaut only esti-
mates precursor-level FDR for each run, this analysis was done using 
only one MS run from each DIA dataset. No variable modification was 
set and no enzyme digestion was applied. The peptide length range 
was set from 7 to 35; toggle N-terminal M was disabled. In addition, the 
precursor PEP cutoff, protein q value cutoff (experiment and run), pro-
tein PEP cutoff were set to 0.99. All the other Spectronaut parameters 
were set as default. We used the ‘EG.Qvalue’ from Spectronaut output 
as the precursor q value for downstream analysis.
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Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The MS/MS datasets used in this study were all downloaded from 
public databases. The ISB18 DDA data were download from https://
regis-web.systemsbiology.net/PublicDatasets/18_Mix/Mix_7/ 
ORBITRAP/RAW_Data/. The HEK293 DDA data were download 
from PRIDE with the accession number PXD001468. The DIA data-
sets were downloaded from Panorama, PRIDE, jPOST or MassIVE 
through the following accession numbers: PXD042704, PXD034525, 
PXD028735, PXD041421, PXD017703, PXD023325, PXD012988 and 
MSV000084000. The source data for reproducing the figures are avail-
able via Zenodo at https://doi.org/10.5281/zenodo.15073580 (ref. 49).

Code availability
We implemented the entrapment database generation methods as 
well as the different FDP estimation methods in a Java tool called  
FDRBench. The source code is available with an Apache license via 
GitHub at https://github.com/Noble-Lab/FDRBench. The scripts for 
reproducing the figures are available via GitHub at https://github.com/
Noble-Lab/FDRBench_manuscript.
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