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CellNEST reveals cell–cell relay networks 
using attention mechanisms on spatial 
transcriptomics
 

Fatema Tuz Zohora1,2,6, Deisha Paliwal1,3,6, Eugenia Flores-Figueroa    1, 
Joshua Li1,4, Tingxiao Gao    1,3, Faiyaz Notta1,3,5 & Gregory W. Schwartz    1,2,3 

Dysregulation of communication between cells mediates complex diseases 
such as cancer and diabetes; however, detecting cell–cell communication 
at scale remains one of the greatest challenges in transcriptomics. 
Most current single-cell RNA sequencing and spatial transcriptomics 
computational approaches exhibit high false-positive rates, do not detect 
signals between individual cells and only identify single ligand–receptor 
communication. To overcome these challenges, we developed Cell Neural 
Networks on Spatial Transcriptomics (CellNEST) to decipher patterns 
of communication. Our model introduces a new type of relay-network 
communication detection that identifies putative ligand–receptor–
ligand–receptor communication. CellNEST detects T cell homing signals 
in human lymph nodes, identifies aggressive cancer communication in 
lung adenocarcinoma and colorectal cancer, and predicts new patterns of 
communication that may act as relay networks in pancreatic cancer. Along 
with CellNEST, we provide a web-based, interactive visualization method to 
explore in situ communication. CellNEST is available at https://github.com/
schwartzlab-methods/CellNEST.

Cell–cell communication (CCC) enables the complex coordination 
of cells, forming tissues and organs in multicellular organisms and 
accomplishing critical biological functions; however, aberrant commu-
nication among cells or atypical decoding of molecular messages can 
lead to and promote diseases such as cancer. CCC is involved in several 
hallmarks of cancer, such as tumor-promoting inflammation, inducing 
or accessing vasculature and activating invasion and metastasis1,2. It is 
crucial to pinpoint communication responsible for normal and aberrant 
cell and tissue function to inform the next generation of therapeutics.

CCC is mediated by ligand–receptor pairs, where a ‘sender’ cell 
produces ligand proteins that bind to matching receptor molecules on 
a ‘receiver’ cell2. Common techniques to identify CCC use single-cell 
RNA sequencing (scRNA-seq) data by matching highly expressed ligand 

genes from a sender cell type with highly expressed receptor genes 
from a receiver cell type, prioritizing ligand–receptor pairs with high 
‘ligand–receptor coexpression scores’. These scores represent the 
overall expression of the ligand–receptor pair. After identifying ligand–
receptor pairs, these methods diverge by determining confidence in 
each pair using statistical tests3–5, substituting receptor genes with 
pathways6 or using graph-based approaches7. Others, like CellChat8, 
use network analysis and pattern recognition approaches. NicheNet7 
uses signaling pathway networks and the PageRank algorithm. Despite 
advances proposed by these methods, detecting CCC remains a major 
challenge. One major limitation of existing approaches derives from 
the limited scope of the CCC definition. Rather than being limited to a 
single ligand–receptor pair, communication may act as a relay network 
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which limits the discovery of large patterns of communication. To 
address the need for an accurate, high-resolution method capable of 
predicting complex CCC relay networks, we require a sophisticated 
pattern-finding algorithm bolstered by deep learning.

To facilitate CCC detection, we can represent communication from 
spatial transcriptomic data as a knowledge graph, where cells or spots 
are vertices and edges represent different types of neighborhood rela-
tions. As our goal is to predict which relations are probable communica-
tion, a deep-learning option to unravel the communication network is 
a graph neural network (GNN)29. A GNN serves as an effective model for 
encoding topological structures in graph representations by generat-
ing a graph embedding. Variants of GNNs are already being applied 
to transcriptomic data, including a graph convolutional network for 
clustering30 and a GNN-based encoder for deconvolution and integra-
tion31. A newer addition to the transformer32 family is the graph atten-
tion network (GAT), a powerful tool that has already revolutionized 
other knowledge-graph-based problems, including social networks 
and molecular structures. As this model requires ground-truth data 
for supervised model training, we propose using a contrastive learning 
approach, Deep Graph Infomax (DGI)33, which excels in unsupervised 
learning problems.

Built with these state-of-the-art advances in artificial intelligence, 
we present CellNEST, a method that measures cell–cell communication 
and patterns between individual cells or spots by leveraging a GAT 
encoder model with DGI contrastive learning. We applied our model 
to five biological contexts across multiple tissues, species and tech-
nologies to map spatially resolved CCC34–36. Using new benchmarks 
for single-cell ligand–receptor pair detection and CCC relay networks, 
we found that CellNEST outperforms existing methods on both bio-
logical samples and synthetic data. We show that CellNEST can not 
only accurately reconstruct traditional single ligand–receptor signals 
between cells using both MERFISH and new Visium HD technologies, 
but also reports potential relay networks of communication based 
on repeated patterns observed throughout both two-dimensional 
(2D) and three-dimensional (3D) spatial transcriptomic samples. Of 
note, applying CellNEST to our cohort of patients with pancreatic 
ductal adenocarcinoma (PDAC) revealed critical CCC associated with 
PDAC progression and spatially associated with known PDAC subtypes 
linked with treatment response and overall survival. As demonstrated, 
CellNEST is not limited to a single technology or species. Rather, it is 
a transferable model applicable to data across domains. We believe 
that CellNEST is a major step forward in accelerating the applica-
tion of deep learning to spatial transcriptomics and other related 
knowledge-graph-based contexts. CellNEST is open source and publicly 
available at https://github.com/schwartzlab-methods/CellNEST with a 
Singularity image at https://cloud.sylabs.io/library/fatema/collection/
cellnest_image.sif.

Results
CellNEST infers communication in spatial transcriptomic data
Ligand–receptor pair-based communication depends on spatial dis-
tance; however, the majority of existing tools do not leverage positional 
information to detect CCC and collapse communicating units to cell 
types and clusters rather than spots and cells. To overcome these limi-
tations, we developed CellNEST for high-resolution, spatially resolved 
CCC detection (Fig. 1a).

Given a 2D or 3D spatial transcriptomic dataset at either spot 
or single-cell resolution and an existing ligand–receptor database, 
CellNEST scores each intercellular signal based on the coexpression 
of highly expressed ligand and cognate receptor genes (Fig. 1b–d). 
CellNEST may optionally incorporate signaling pathways downstream 
of the receiver’s receptor with ligand–receptor coexpression. To 
achieve single-cell- and single-spot-level communication identifica-
tion, CellNEST relies on a GNN, a class of deep-learning-based models, 
to identify which ligand–receptor pairs are highly probable to exist 

mediated by multiple pairs of cells. A relay network is formed when a 
ligand from one cell binds to a cognate receptor on another cell and 
induces the secretion of another ligand that binds to a third cell’s recep-
tor. This signal passing can extend across multiple cells. The frequency 
of these patterns may indicate higher confidence in CCC detection9–11.

Even with single ligand–receptor pair CCC detection, past efforts 
demonstrated high false-positive and negative rates2, which is in part 
due to using a single data modality (the transcriptome) from cells. 
Only 6% of genes exhibit significant expression changes in response to 
ligands, which may contribute to low accuracy without additional con-
text such as neighboring cells12. This spatial context is lost in scRNA-seq 
as the method requires tissue dissociation. As CCC is spatially depend-
ent, with juxtacrine and paracrine requiring cells to be in close proxim-
ity, scRNA-seq introduces challenges for true single-cell CCC detection 
instead of cell-type communication13.

Recently, methods such as Scriabin14 and GraphComm15 have been 
introduced to detect CCC from scRNA-seq data alone and map final 
results to spatial regions within tissue using corresponding spatial 
transcriptomic data; however, these approaches incorporate spatial 
position not to detect CCC, but to validate CCC that has already been 
identified from dissociated samples. These methods also do not report 
distant ligand–receptor interactions such as paracrine interactions, 
which constitute the majority of most ligand–receptor databases. To 
overcome these limitations, new CCC models that directly integrate 
the spatial context of gene expression are necessary.

Spatial transcriptomic technologies, such as Visium16 and multi-
plexed error-robust fluorescence in situ hybridization (MERFISH)17, 
measure the physical location of cells paired with their transcripts, 
providing new opportunities to detect CCC. Visium measures tran-
scriptomes of barcoded spots, each 55 μm in diameter and containing 
approximately 1–10 cells, while the recent launch of Visium HD (high 
definition) achieves single-cell spatial resolution at 2 μm. Alternatively, 
MERFISH achieves single-cell resolution, albeit with a smaller subset of 
genes. Critically, although this data modality promises to better inform 
CCC detection, there is an urgent need for new analytical approaches 
beyond single ligand–receptor pair inference.

Although methods have been developed to detect CCC directly 
from spatial transcriptomic data, most existing methods are unable to 
detect CCC relay networks at single-cell resolution in situ (Extended 
Data Table 1). NICHES18 uses k-nearest neighbors to identify proximal 
cells and calculates their ligand–receptor coexpression scores. NICHES 
then collapses cells to neighborhoods using principal component 
analysis to discover niches of communication. COMMOT19 screens CCC 
in spatial transcriptomics via collective optimal transport. However, 
COMMOT requires a network pathway list as additional input, which 
increases its reliance on a priori information. Most of these methods use 
differentially expressed and variable ligand and receptor genes, only 
incorporating spatial information to limit potential communication to 
a neighborhood of cells. Recent methods, including NicheCompass20, 
Clarify21 and TENET22, model binary CCC between cells or spots and do 
not differentiate between types of ligand–receptor pairs. Therefore, 
these methods are unable to identify specific CCC signals and their 
associated strength across spatial regions of the tissue. HoloNet23 
represents a separate class of methods that are constrained for a given 
target gene and unable to generate an unbiased, global list of active CCC 
for a given tissue sample. CytoSignal24 multiplies ligand and receptor 
concentration between pairs of cells to calculate communication 
scores and uses a permutation test with cell rearrangements; however, 
CytoSignal combines all ligand–receptor pairs between a pair of cells 
into a single score, which prevents the method from ranking different 
ligand–receptor pairs according to their occurrence probabilities. 
SpaCCC25, Giotto26, TWCOM27 and CellChat’s spatial method28 focus on 
CCC at the level of cell types or clusters instead of single cells or spots, 
missing complex communication network components. Moreover, 
none of these existing methods attempt to identify CCC relay networks, 

http://www.nature.com/naturemethods
https://github.com/schwartzlab-methods/CellNEST
https://cloud.sylabs.io/library/fatema/collection/cellnest_image.sif
https://cloud.sylabs.io/library/fatema/collection/cellnest_image.sif


Nature Methods | Volume 22 | July 2025 | 1505–1519 1507

Article https://doi.org/10.1038/s41592-025-02721-3

based on reoccurring patterns of communication in a particular tissue 
region. For example, transforming growth factor (TGF)β1 signaling is 
upregulated in tumor cells across various cancers35. This signal occurs 
multiple times in cancer tissue along the boundary of tumor and non-
tumor cells, forming a distinct pattern that is not observed in other 
regions of the same tissue. Deep-learning models excel in detecting 
such hidden patterns; CellNEST leverages this strength by using a 
GAT37, an encoder model that records such patterns in the form of a 
vertex embedding. While some communication may involve a single 
ligand–receptor pair, more intricate patterns can exist, where CCC 
acts as a relay network with multiple ‘hops’ between cells9–11. CellNEST 
extends its pattern-finding capabilities to predict frequent arrange-
ments of coexpressed signaling, which may represent relay networks, 
and supports these predictions with evidence from protein–protein 
and transcription factor–target gene interactions38–40.

After data preprocessing, CellNEST converts spatial transcrip-
tomic data into a graph G = (V, E) with V cells or spots as vertices and 
E edges as some neighborhood relation between the pair of vertices 
(Fig. 1e). CellNEST inserts edges between a pair of cells or spots (herein 
referred to as vertices) i and j if they are proximal neighbors (by default 
within four spots in spot-based and 300 μm in cell-based experiments), 
with elevated ligand gene expression in i and elevated receptor gene 
expression in j (Supplementary Note 1).

G can be massive, containing thousands of vertices with millions of 
edges based on the number of expressed genes. Notably, E represents 
neighborhood relations and not CCC, as proximal cells do not always 
establish communication. Tissue context12, epigenetic factors41 and 
other signaling pathways7 may influence high ligand–receptor coex-
pression. CellNEST sifts through these putative relations to predict 
which edges are more likely to represent communication. For this 
purpose, we pass G to the core deep-learning module in CellNEST, the 
‘communication prediction step’, where a GAT model generates the 
vertex embedding (Fig. 1f).

The traditional GAT model requires ground-truth data for training 
an encoder, but this information is unknown from spatial transcrip-
tomic data. We instead chose to implement unsupervised training 
through DGI33, a contrastive learning approach (Fig. 1f). DGI compares 
encoder weights derived from the observed network with encoder 
weights from a ‘corrupted’ network of randomly shuffled and permuted 
vertices and edges. DGI maximizes weights from the observed network 
while penalizing weights from the corrupted network. As the model 
converges, CellNEST assigns higher attention scores to stronger neigh-
borhood relations (Fig. 1g). We use these attention scores to represent 
communication strength. To retain the most probable intercellular 
signals, we filter edges, retaining the top 20% of highest-scoring atten-
tion edges by default (Supplementary Note 2).

After predicting high-resolution CCC, CellNEST identifies highly 
communicating regions of tissue in the ‘output graph step’ by deter-
mining connected components (Fig. 1g,h). As CellNEST identifies CCC 
between each vertex along with associated signal strength, we provide 

a unique visualization that displays vertices colored by densely com-
municating regions of tissue, along with ligand–receptor pairs as an 
arrows whose thicknesses are determined by their attention scores 
(Fig. 1h). To complement the tissue visualization, CellNEST also gener-
ates histograms that display the counts of all ligand–receptor pairs in 
the top edges ranked by attention score and colored by the community 
they are found in within the tissue (Fig. 1i). With this extensive tool set, 
CellNEST is fully equipped as an end-to-end framework for spatially 
resolved CCC detection.

CellNEST pinpoints T cell homing signals in the lymph node. To 
determine the accuracy of our algorithm, we applied CellNEST to 
Visium data from a human lymph node34 (Fig. 2a–e). We hypothesized 
that CellNEST would identify the T cell homing signal of chemokine 
(C–C motif) ligand 19 with cognate CC-chemokine receptor 7 (CCL19–
CCR7) and place this CCC within the T cell zone42. The T cell zone was 
previously annotated using cell2location34 (Fig. 2a). We applied Cell-
NEST to the entire tissue and ranked all CCC based on their attention 
scores, keeping the ligand–receptor pairs with the top 20% highest 
attention scores and located within the T cell zone (Fig. 2b). Among 
the 12,605 possible ligand–receptor pairs in the database (Supple-
mentary Note 3), CellNEST identified CCL19–CCR7 as the second most 
abundant pair in the T cell zone, with strict thresholds above 20%. The 
topmost detected pair was CCL21–CXCR4, another T cell migratory 
signal43 (Fig. 2b). Of note, while CellNEST found CCL19–CCR7 as a top 
signal in the T cell zone based on attention score (Fisher’s exact test, 
P = 9.16 × 10−224), this pair’s coexpression score was not among the 
highest (Fig. 2c,d and Supplementary Table 1). Increasing attention 
score thresholds further confirmed T cell zones as the primary location 
for CCL19–CCR7 (Fig. 2e). Notably, these T cell zones were enriched 
with top genes encoding proteins downstream of CCR7 signaling, and 
incorporation of these genes into the model recapitulated these CCCs, 
further suggesting activation by CCR7 identified by CellNEST (Mann–
Whitney U-test, P = 6.42 × 10−164; Fig. 2f,g and Supplementary Fig. 1). This 
prioritization and localization suggest that CellNEST does not score 
edges based solely on input ligand and receptor expression. Instead, 
CellNEST focuses on hidden communication patterns to predict which 
edges are essential to represent the context of the tissue sample.

To compare the performance of CellNEST against other emerging 
methods for CCC detection, we applied NICHES, COMMOT, NicheCom-
pass, CytoSignal, CellChat, Giotto and TWCOM to identify CCL19–CCR7 
within the T cell zone (Fig. 2h,i, Supplementary Fig. 2a–i and Supple-
mentary Note 4). CellNEST outperformed all methods in localizing 
CCL19–CCR7 to the T cell zone. In addition to demonstrating robust 
performance on biological data, CellNEST also shows comparable 
computational efficiency to existing methods (Supplementary Fig. 2j,k 
and Supplementary Note 5).

CellNEST’s unique capability extends single ligand–receptor pairs 
to patterns of communication, which may indicate a relay network 
or other complex patterns. Although CellNEST detects any type of 

Fig. 1 | Overview of detecting cell–cell communication with CellNEST. 
a, A high-level flowchart of the main steps of the CellNEST method. b, Input 
tissue sample at either spot (for example, Visium; top) or cell resolution (for 
example, MERFISH, Visium HD; bottom). UMI, unique molecular identifier. 
c, Input ligand–receptor database containing known ligand and cognate receptor 
pairings. d, Preprocessing step, where genes with expression above a threshold 
percentile are considered active (left). Pairwise Euclidean distances between 
vertices are stored in a physical distance matrix (right). e, Input graph G = (V, E) 
generation step with V spots or cells as vertices and E edges as neighborhood 
relations, some of which represent communication (bottom). An input threshold 
distance is used for the neighborhood formation (blue arrow). From the graph, 
vertex features are represented as a one-hot vector matrix (top left). The edge 
feature matrix holds edge feature vectors containing three attributes: pairwise 
distance, ligand–receptor coexpression score and the ligand–receptor pair 

identity from the database in c. f, Communication prediction step using a GAT 
encoder through unsupervised contrastive learning with DGI. g, Output graph 
step visualizing edges with the highest attention scores. Attention scores 
range from 0 (white) to 1 (black), where 1 represents the strongest connections. 
Lower-scoring edges are removed (dashed lines), resulting in subgraphs of 
communicating vertices. h, Example output showing the flow of communication 
between tumor-annotated spots (filled squares) with stroma spots (open circles), 
colored by connected component. i, An example CellNEST-generated histogram 
showing the frequency of communication through ligand–receptor pairs in the 
top 20% highest-scoring attention edges. Colors in the histogram correspond to 
connected components in h. For instance, the most abundant communication, 
labeled as FN1–RPSA, is found primarily in the blue region. Altogether, CellNEST 
offers a high-resolution approach for detecting the strength and location of cell–
cell communication in tissues.
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Fig. 2 | CellNEST identifies T cell homing signals in human lymph node T cell 
zones. a, Human lymph node tissue assayed with Visium and annotated with 
cell2location34 (n = 4,035 spots). b, Histogram of ligand–receptor pairs (x axis) 
with the top 20% highest attention scores in T cell zones assigned by CellNEST in 
descending order of abundance (y axis). CCL19–CCR7 (red text with triangle) is 
a canonical T cell homing signal. c, Density plot of CCL19–CCR7 attention scores 
(red) compared to all other ligand–receptor pairs (gray) in T cell zones. d, Density 
plot of CCL19–CCR7 ligand–receptor coexpression scores (red) compared to all 
other ligand–receptor pairs (gray) in T cell zones. e, Selection of the top 5,000, 
2,500 and 500 CCL19–CCR7 edges with the strongest attention scores (left to 
right) across the entire tissue. Stronger CCL19–CCR7 communication is found in T 
cell zones. f, Mean expression of the top 20% expressed genes encoding proteins 

downstream of CCR7 signaling mapped onto the human lymph node, which 
aligns with CellNEST-detected regions in T cell zones in e. g, Box and whisker 
plots comparing mean gene expression from f within (n = 417 spots) or outside 
(n = 3,618 spots) of T cell zones. Center line, median; box, interquartile range; 
whiskers, 1.5 × interquartile range; points, outliers. There is elevated expression 
of CCR7 downstream signaling genes in T cell zones (two-sided Mann–Whitney 
U-test, P = 6.42 × 10−164). h, Application of COMMOT to the human lymph node, 
with red arrows indicating CCL19–CCR7 strength. Regions do not align well with T 
cell zones. i, Application of NICHES to the human lymph node. Using a cluster-
based analysis (left), NICHES identified three signals but missed the CCL19–CCR7 
signal (right).
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pattern, for simplicity, we quantified the frequency of two-hop CCC 
between cells. Two-hop CCC involves a ligand–receptor pair s from an 
i sender to a j receiver and a ligand–receptor pair t from a j sender to a 
k receiver (Fig. 3a). Extending outward from the single ligand–recep-
tor pair containing CCL19 identified earlier, we sought to determine 
potential relay networks associated with this homing signal. CellNEST 
reported a high abundance of CCL19–CCR7 to CCL21–CXCR4 in the 
T cell zones (Fig. 3b,c). CCL19–CCR7 and CCL21–CXCR4 are regulated 
together in various T cell induced activities44, which is concordant with 
CellNEST finding mostly T cells participating in this predicted relay 
network and in other top-ranked networks (Fig. 3b,d, Supplementary 
Fig. 3a and Supplementary Note 6). To further validate the occurrence 
of these relay networks, we equipped CellNEST with the capability to 
report confidence scores using experimentally validated protein–
protein and transcription factor–target gene interactions from 
independent databases (Fig. 3e and Supplementary Notes 7 and 8).  
CellNEST identified these potential relay networks with confidence 
scores significantly higher than random, suggesting the effectiveness 
of CellNEST in detecting such patterns (Dunn’s test with Benjamini–
Hochberg correction, P = 4.5 × 10−02; Supplementary Fig. 3b).

To further evaluate CellNEST’s detection capabilities on data with 
an established ground truth, we conducted extensive benchmarking 
across 21 synthetic data setups, which represent different spatial tran-
scriptomic technologies and cell distributions (Fig. 3f–j and Supple-
mentary Fig. 3c,d). CellNEST outperformed all methods across spatial 
distributions, levels of injected noise, as well as in both nonrelay- and 
relay-based benchmarks (Supplementary Note 9). Based on this com-
parative analysis, CellNEST is uniquely equipped to more accurately 
localize CCC to tissue regions and may complement existing methods 
for communication detection.

CellNEST maps single-cell communication in the mouse brain
Our synthetic benchmarks suggest CellNEST is uniquely capable of 
detecting CCC in various spatial transcriptomic technologies. To 
evaluate CellNEST’s performance on single-cell resolution spatial 
transcriptomic technologies, we applied CellNEST to MERFISH slides 
from the hypothalamus preoptic region of female parent and female 
virgin mice36 (Fig. 4a–d). CellNEST revealed that female parent and 
virgin tissues varied in spatial distributions of strong communication 
(Fig. 4a,c). CellNEST identified galanin receptor-associated communi-
cation involving Galr1 and Galr2 in parent and virgin mice (Fig. 4b,d), 
which is consistent with previous studies noting galanin’s associa-
tion with behavior in the preoptic region36. As well, in both parent and 
virgin mice, CellNEST identified brain-derived neurotrophic factor 
(Bdnf)-associated communication (Fig. 4b,d), whose gene expression 
is linked with temperature sensitivity45. Moreover, CellNEST identified 
signals unique to the female parent mouse, including signals mediated 
by oxytocin (Oxt) and its receptor (Oxtr), which form core parenting 
signals46 (Fig. 4b and Supplementary Fig. 4a–e).

Of note, we found that CellNEST could detect communication 
between two individual cells: a neuron and a microglial cell (Fig. 4e,f). 
Using the single-cell MERFISH female parent mouse sample with previ-
ously annotated cell types, we filtered ligand–receptor pairs identified 
by CellNEST such that the sender and receiver cells were classified as 
neurons or microglia only. Upon inspection, we observed a notably 
high-resolution image with a predicted Oxt–Oxtr interaction between 
an excitatory neuron and a receiving microglia (Fig. 4e). This ligand–
receptor pair establishes communication that contributes to emotional 
bonding within the female parent mouse47. This communication was 
well represented across all neuron-microglia communication (Fig. 4f). 
Together, this analysis suggests that CellNEST can detect precise cell 
signaling at single-cell resolution rather than solely between pseu-
dobulk cell types.

CellNEST identified potential relay networks that were dominated 
by prepronociceptin (Pnoc) and delta-type opioid receptor (Oprd1) 

signals, including Pnoc–Oprd1 to Pnoc–Lpar1 and Pnoc–Oprd1 to Bdnf–
Esr1 (Fig. 4g). Of note, CellNEST detected these relay signals in different 
locations on the tissue than previously detected CCC (Fig. 4h). Pnoc, 
Oprd1 and Bdnf are linked to behavioral disorders as well as a number 
of psychiatric affective disorders, such as anxiety, seizure and schizo-
phrenia, so we expect joint activation of these signals48.

Spatial transcriptomic technologies such as MERFISH also may 
take consecutive slices to infer 3D cell organization (Fig. 4i). We sought 
to extend our model to 3D data points by combining cells across six 
such consecutive slides along the bregma axis. As CellNEST uses a graph 
structure that is not limited to 2D, we extended our edges to incor-
porate 3D input where the physical distance matrix records pairwise 
distances of 3D coordinates. When applying CellNEST to a 3D female 
naive mouse sample, CellNEST detected general communication in 
the mouse brain with fewer parental signals, likely because this mouse 
was not exposed to pups36 (Fig. 4i,j). A comparative analysis between 
2D (within sections) and 3D (across sections) revealed mostly overlap-
ping CCC, but there did exist between-section CCC interactions which 
were undetectable in 2D analysis alone, such as Adcyap1–Mc4r, whose 
proteins are associated with energy homeostasis and anxiety, as well as 
Oxt–Avpr1a, whose gene expressions have been linked to sex-specific 
social and emotional behaviors45,49 (Supplementary Fig. 4f,g). Cell-
NEST’s identification of CCC unique to 2D and 3D MERFISH samples 
revealed the method’s flexibility across dimensions as well as spot- and 
single-cell-resolution technologies.

CellNEST detects aggressive CCC in lung adenocarcinoma
The tumor microenvironment is a complex and heterogeneous col-
lection of different cell types and signals, where CCC contributes to 
disease progression. To identify specific regions of tumor tissue asso-
ciated with cancer-promoting communication, we applied CellNEST 
to a Visium sample of lung adenocarcinoma (LUAD)35 (Extended Data 
Fig. 1a). Within the most probable ligand–receptor pairs, CellNEST 
detected transforming growth factor β-associated communication 
involving TGFB1 and TGFB2, important in metastasis50, as concentrated 
near the top out of over 12,605 pairs in the database based on atten-
tion scores (Extended Data Fig. 1b); however, CellNEST found apoli-
poprotein E (APOE)-based communication including APOE–SDC1 as 
the most strongly occurring CCC. APOE promotes LUAD proliferation 
and migration and is associated with poor prognosis in patients with 
lung cancer51. To support the presence of APOE–SDC1 within the tumor 
region, we observed alignment between the expression of each gene 
on the tissue with the location of the CCC (Extended Data Fig. 1c–e). 
Overall, CellNEST observed enriched LUAD-related pathways in the 
tumor component, including E2F transcription factor upregulation 
(normalized enrichment score (NES) of 5.73) and G2M checkpoint acti-
vation (NES of 5.98)52 (two-sided permutation test, all q < 2.20 × 10−16; 
Supplementary Fig. 5a–c).

In addition to tumor-localized APOE–SDC1, CellNEST identified 
other strong communication in different locations of the tissue. Spe-
cifically, CellNEST identified enrichment within the lymph node region 
for gene programs linked to lymph node metastasis, such as T cell 
modulation (NES of 6.00) and interleukin-10 signaling (NES of 5.93)53, 
and specifically assigned FN1–RPSA to this region (two-sided permuta-
tion test: all q < 2.20 × 10−16; Supplementary Fig. 5d–i). As FN1 and APOE 
are associated with lymph node metastasis in patients with LUAD, Cell-
NEST may have identified potential disease progression54,55. Separate 
from the lymph node region, CellNEST identified TGFβ signaling and 
pathways associated with LUAD stromal regions within the surround-
ing tumor microenvironment, including epithelial-to-mesenchymal 
transition (NES of 5.29) and chaperone-mediated autophagy56 (NES 
of 4.71) (two-sided permutation test: all q < 2.20 × 10−16; Supplemen-
tary Figs. 5j–l and 6). Based on these observations, CellNEST is able to 
deconvolve complex tumor microenvironments, providing insights 
into how signals may be organized in tissue regions.
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Fig. 4 | CellNEST identifies communication involved in mouse parental 
behavior in the hypothalamus preoptic region assayed with MERFISH. 
a,b, CellNEST-detected communication (green) in tissue from the female 
parent mouse (n = 5,533 cells; a) with a corresponding histogram of the top 
20% strongest ligand–receptor pairs (b). c,d, As in a and b for female virgin 
mouse tissue (n = 5,606 cells). CellNEST identified signals involving galanin 
receptor (Galr1 and Galr2) and brain-derived neurotrophic factor (Bdnf) in both 
parent and virgin mice (black triangle, bold). In contrast, the parenting signal 
Oxt–Oxtr is exclusively found in the female parent mouse (red triangle in b). 

e, Cell-type-specific communication zoomed in from the red rectangle in a. f, The 
corresponding CellNEST-generated histograms from e showing CCC between 
microglia and excitatory neurons. As in b, Oxt–Oxtr is detected (black triangle, 
bold) as one of the strongest communications. g,h, One of the most frequent 
relay-network patterns, Pnoc–Oprd1 to Pnoc–Lpar1 (red triangle), compared to 
the abundance of other top patterns in a histogram (g) and overlaid on the tissue 
(red; h). i, 3D MERFISH sample from a female naive mouse (n = 38,372 cells) with 
CellNEST-detected communication (top), with a zoom-in of two layers for clearer 
visualization (bottom). j, Histogram of top communication found in i.
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Beyond single ligand–receptor interactions, CellNEST predicted 
PSAP–LRP1 to APOE–LRP1 (Extended Data Fig. 1f,g) along with addi-
tional previously unobserved patterns. The tumor-secreted protein 
prosaposin (PSAP) and APOE signaling pathways share patterns57 and 
exhibit high gene coexpression in inflammation58, suggesting reliable 
relay-network detection. Of note, although PSAP is a marker of many 
cancer types including pancreatic cancer, prostate cancer and lymph 
node metastasis59,60, the link between LUAD and PSAP is not yet suffi-
ciently explored. As such, CellNEST’s predicted relay networks enable 
new approaches to reveal complex CCC patterns.

CellNEST recovers signals in invasive colorectal cancer
Emerging spatial transcriptomic assays, such as Visium HD, enable 
whole-transcriptome sequencing at subcellular resolution. To demon-
strate the flexibility and capability of CellNEST on these technologies, 
we applied CellNEST to a human colorectal cancer sample at 2 μm bin 
size (Extended Data Fig. 2a,b and Supplementary Note 10). Focusing 
on a region of interest containing a mixture of invasive cancer and 
surrounding noncancer cells, we applied CellNEST to an input graph 
of 6,857,387 ligand–receptor-pair connections.

CellNEST clearly identified the invasive cancer region as a separate 
network of localized signals (Extended Data Fig. 2b). The topmost 
abundant ligand–receptor pairs included amyloid precursor protein 
as a ligand, which promotes growth and proliferation of colon cancer 
both in vitro and in vivo61 (Extended Data Fig. 2c). The corresponding 
receptor integrin α6 gene (ITGA6) expression is a useful biomarker for 
colorectal cancer early detection, and transforming growth factor β 
receptor type II gene (TGFBR2) alterations promote the formation of 
colon cancer62,63. Although CellNEST detected these signals at adenoma 
locations bordering the tissue, there was increased abundance in the 
invasive cancer region (chi-squared test of dependency, P < 2.2 × 10−16, 
hypergeometric test of over-representation, P = 1.08 × 10−53; Extended 
Data Fig. 2b,c and Supplementary Note 11).

CellNEST also predicted several two-hop relay networks of CCC 
on the tissue surface (Extended Data Fig. 2d,e). In addition to signals 
between cancer cells, we observed relay networks specific to the tumor 
microenvironment that promote cancer progression, such as C3–CXCR4 
to C3–LRP1 (Extended Data Fig. 2d). CellNEST pinpointed this CCC pat-
tern specifically in the stromal region surrounding the invasive tumor, 
in contrast to nonrelay CCC, which appeared throughout the tissue 
(Extended Data Fig. 2e). Complement C3 gene (C3) expression is associ-
ated with the colorectal adenocarcinoma microenvironment and prog-
nosis64. CXCR4 binds with stromal cell-derived ligands, and high CXCR4 
expression is associated with an increased risk of death and progression 
in colorectal cancer65. LRP1 encodes a signature protein of radio-resistant 
colorectal cancer66. Together, our results suggest that CellNEST is a 
robust method that is applicable to the latest spatial transcriptomic 
technologies without any modification to the model architecture.

CellNEST finds consistent communication across patients  
with pancreatic cancer
To evaluate CellNEST’s ability to generalize to other cancer types with 
heterogeneous regions, we applied CellNEST to pancreatic ductal ade-
nocarcinoma (PDAC) tissues. PDAC is widely recognized as a highly 
aggressive disease, yet treatment responses can vary widely among 
patients. There is immense transcriptional diversity defining classical 
and basal-like subtypes of PDAC that is crucial in explaining treatment 
heterogeneity. Basal-like tumors exhibit characteristics reminiscent 
of basal or squamous epithelium, leading to heightened chemore-
sistance and poorer patient prognosis. Conversely, classical tumors 
demonstrate transcription factor expression associated with pancreas 
development, rendering them more responsive to chemotherapy and 
yielding improved clinical outcomes36.

The PDAC tumor microenvironment is a heterogeneous and dense 
collection of tumor, stromal and immune cells. Stromal areas with high 

(activated) or low (deserted) immune activity contribute to diver-
gent regions within tumor tissue. To date, the relationship between 
divergent regions, transcriptomic subtypes and cell states of PDAC 
is unclear. To resolve specific cell–cell interactions in this complex 
disease, we applied CellNEST, which considers tumor and stromal prox-
imity at a high resolution and does not rely solely on highly expressed 
genes. We evaluated whether CellNEST could detect CCC associated 
with spatially distinct PDAC transcriptomic subtypes.

We applied CellNEST to Visium data collected from two cases that 
showed morphological heterogeneity across tissue regions (Fig. 5). 
Transcriptomic subtypes are known to correlate with tumor morphol-
ogy. Classical tumors are well differentiated and have a gland-forming 
morphology, whereas basal-like tumors are moderately to poorly 
differentiated with non-gland-forming morphology67. Both cases 
were resectable, stage IIb PDAC tumor samples (PDAC_64630 and 
PDAC_140694). Sample PDAC_64630 presented several regions of mor-
phologically and transcriptionally distinct tumor subtypes separated 
by stroma67 (Fig. 5a,b).

We first assessed whether CellNEST could identify PDAC-relevant 
ligand–receptor pairs across the whole tissue. CellNEST reported 411 
ligand–receptor pairs out of 12,605 total pairs in the top 20% strong-
est signals, with the predicted interaction between fibronectin and 
ribosomal protein SA (FN1–RPSA) as the most abundant with an occur-
rence of 239 instances. FN1–RPSA was mainly found in the stromal 
region (Fig. 5c–e and Supplementary Fig. 7a,b). Fibronectin is consid-
ered one of the main extracellular matrix constituents of pancreatic 
tumor stroma, and its high expression associates with more aggres-
sive tumors in patients with resected PDAC68. Ribosomal protein SA 
is a ribosomal subunit but can also act as a cell surface receptor that 
regulates pancreatic cancer cell migration69. We observed additional 
canonical signals, such as TGFβ signaling, which promotes fibrosis 
and immune evasion in PDAC70, and protein tyrosine phosphatase 
receptor type F (PTPRF)-associated signaling, whose expression has 
been implicated in multiple cancers71. We also identified significant 
enrichment of GAS6–AXL specifically within tumor regions, whose 
signaling pathway is associated with PDAC tumorigenesis72 (Fisher’s 
exact test, P = 1.307 × 10−2; Supplementary Table 2).

To determine whether CellNEST could identify consistent 
tumor-associated CCC across multiple tissues, we applied our model 
to PDAC_140694 derived from a different patient with similar PDAC sub-
types to PDAC_64630 (Fig. 5f–i). PDAC_140694 contained mostly tumor 
cells with fewer stroma than PDAC_64630. To directly compare commu-
nication occurring within each sample, we filtered CellNEST-identified 
signals in PDAC_64630 to those between tumor spots only or tumor 
and stromal spots (Fig. 5e,h,i). We found overlapping PDAC-associated 
CCC between both patients in the top 20 strongest signals along with 
their downstream signaling genes, including LGALS3–ITGB4, PLXNB2–
MET/MST1R, PTPRF–RACK1, TGFB1–ITGB5 and TIMP1–LRP1 (ref. 73) 
(Fig. 5e,i–m). The high concordance of top signals suggests CellNEST 
can detect similar communication in similar contexts.

CellNEST reveals subtype-region-specific communication in 
PDAC
After identifying tumor-wide CCC associated with PDAC, we evaluated 
whether CellNEST could resolve CCC within specific tissue regions. We 
annotated tumor regions according to classical and basal-like transcrip-
tomic PDAC subtypes74. Using CellNEST, we detected region-specific 
communication involving PLXNB2–MET/MST1R primarily in classical 
regions (Fisher’s exact test, P = 4.02 × 10−25; Fig. 5d,e,i–k, Supplementary 
Fig. 7c–h and Supplementary Table 3) and ANXA1–EGFR in basal-like 
regions (Fisher’s exact test, P = 1.79 × 10−3; Supplementary Table 4) 
across both samples (Supplementary Note 12). PLXNB2 codes for a 
plexin protein, a member of a family of transmembrane receptors ini-
tially recognized for their role in axon guidance. Plexins are known for 
their key role in tumor CCC, tumor growth, migration and metastasis. 
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Fig. 5 | CellNEST reveals subtype-specific patterns of communication 
in pancreatic ductal adenocarcinoma tissue. a,b, Tissue from patient 
PDAC_64630 assayed with Visium (n = 1,406 spots) with a hematoxylin and eosin 
(H&E) stain (a) or colored by PDAC subtype determined with gene signatures (b). 
c, CellNEST-detected communicating regions from a. CellNEST output graphs 
show tumor (filled square) and stroma (open circle) regions. Colors correspond 
to different connected components. d,e, Histogram of the strongest CCC 
counts (y axis) determined by CellNEST across the whole tissue (d) or tumor-
communicating regions (e). Colors correspond to each connected component 
in c. f,g, Tissue from patient PDAC_140694 assayed with Visium (n = 2,298 spots) 
with H&E (f) or colored by PDAC subtype determined with gene signatures 

(g). h,i, CellNEST-detected strongly communicating regions from f (h) with 
the corresponding histogram of CCC counts (i) colored by each connected 
component in h. Ligand–receptor pairs highlighted with bold text in d and i 
represent communications detected by CellNEST in both samples. PLXNB2–MET/
MST1R highlighted with red text in e and i represents a communication that is 
associated with the classical subtype in both samples by CellNEST. j–m, Mean of 
top 20% downstream signaling gene expression of MET (PLXNB2–MET; j,k) and 
ITGB4 (LGALS3–ITGB4; l,m) on PDAC_64630 (j,l) and PDAC_140694 (k,m). Gene 
expression is high in regions where the corresponding CCCs are detected by 
CellNEST (black boxes).

http://www.nature.com/naturemethods


Nature Methods | Volume 22 | July 2025 | 1505–1519 1515

Article https://doi.org/10.1038/s41592-025-02721-3

M
ET

TF
F1

TF
F2

TF
F3

C
EA

C
AM

6
LG

AL
S4

ST
6G

AL
N

AC
1

PL
A2

G
10

TS
PA

N
8

LY
Z

M
YO

1A
VS

IG
2

C
LR

N
3

C
D

H
17

AG
R3

AG
R2

BT
N

L8
AN

XA
10

FA
M

3D
C

TS
E

RE
G

4
SP

RR
3

SE
RP

IN
B3

SE
RP

IN
B4

VG
LL

1
D

H
RS

9
SP

RR
1B

KR
T1

7
KR

T1
5

TN
S4

SC
EL

KR
T6

A
KR

T7
C

ST
6

LY
6D

FA
M

83
A

AR
EG

FG
FB

P1
G

PR
87

LE
M

D
1

S1
00

A2
SL

C
2A

1

91,416

97,768

97,484

101,053

106,651

102,454

101,781

107,872

104,760

100,809

Basal-like

SubtypeD
ES

eq
2-

no
rm

al
iz

ed
,

lo
g 2-

tr
an

sf
or

m
ed

 a
nd

z-
sc

or
ed

 g
en

e 
ex

pr
es

si
on

Basal-like
Classical

Classical−2

0

2

a

d

b

c

e

f

Bas
al-

lik
e

Clas
sic

al

Bas
al-

lik
e

Clas
sic

al

0

200

400

600

800

M
ET

ex
pr

es
si

on

0

500

1,000

1,500

2,000

LG
AL

S3
ex

pr
es

si
on

FN
1–R

PSA to
 FN

1–R
PSA

COL1A
1–S

DC1 t
o FN

1–R
PSA

FN
1–S

DC1 t
o FN

1–R
PSA

TG
FB

1–I
TG

B5 to
 FN

1–R
PSA

FN
1–R

PSA to
 RPS19

–R
PSA

FN
1–R

PSA to
 C

OL1A
1–S

DC1

RPS19
–R

PSA to
 FN

1–R
PSA

FN
1–R

PSA to
 TH

BS1–S
DC1

TH
BS1–S

DC1 t
o FN

1–R
PSA

RPS19
–R

PSA to
 RPS19

–R
PSA

FN
1–I

TG
A5 to

 FN
1–R

PSA

PTP
RF–

MET t
o PTP

RF–
ERBB2

PLX
NB2–

MET t
o PTP

RF–
MET

IN
S–H

LA
 to

 C
X3CL1–

ITG
B4

PTP
RF–

MET t
o PTP

RF–
MET

0

50

100

150

Re
la

y 
ne

tw
or

k
ab

un
da

nc
e 

(n
)

Relay pattern

Fig. 6 | Organoid validation of PDAC subtype-specific signals and example 
CellNEST-Interactive visualization. a, Heat map displaying gene expression 
of MET, classical-associated genes and basal-like-associated genes74 in PDAC 
patient-derived organoid models assayed with bulk RNA sequencing (n = 10). 
b,c, Box and whisker plots comparing gene expression in basal-like (n = 5) versus 
classical (n = 5) organoids classified with an established subtyping scheme74. 
Center line, median; box, interquartile range; whiskers, 1.5 × interquartile 
range; points, outliers. b, MET expression is significantly higher in the classical 
organoids (two-sided Fisher–Pitman permutation test: P = 3.18 × 10−02). c, Both 
classical and basal-like organoids express LGALS3 (two-sided Fisher–Pitman 
permutation test: P = 0.175). d,e, Histogram of the most abundant two-hop relay-

network patterns (d) along with the spatial location of FN1–RPSA to FN1–RPSA 
(e) detected by CellNEST on the PDAC_64630 sample (n = 1,406 spots; filled 
square, tumor; open circle, stroma), highlighted in red. f, Overview of CellNEST-
Interactive. The CellNEST-Interactive display shows a fully interactive network 
of vertices (cells or spots) connected by ligand–receptor pairs (left). The display 
features a user interface (right) with options to filter genes and select thresholds 
for attention scores of communication, as well as a histogram of communication 
abundance colored by component. Zoomed insets display a sender stroma 
spot and receiver tumor spot participating in FN1-SDC1 communication in the 
PDAC_64630 sample.
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Semaphorins are the main ligands of plexin receptors; however, some 
plexins can also form complexes with other tyrosine-kinase receptors, 
such as the hepatocyte growth factor receptor encoded by MET75 and 
RON encoded by MST1R76. To further explore differences in the PLXNB2–
MET axis between classical and basal-like tumor cells, we analyzed RNA 
sequencing data from a library of ten PDAC patient-derived organoid 
models (Fig. 6a–c). Organoid gene expression confirmed that classi-
cal tumors exhibit significantly higher MET expression than basal-like 
tumors (two-sided Fisher–Pitman permutation test, P = 3.18 × 10−02; 
Fig. 6a,b and Supplementary Note 13). While the role of plexins is 
described in other solid tumors, including PDAC, previous studies 
explored semaphorins as their predominant ligands77. Of note, both 
NICHES and COMMOT were unable to detect a consistent set of CCC 
specific to classical or basal-like regions (Supplementary Figs. 8 and 
9), underscoring CellNEST’s unique ability to identify subtype-specific 
CCC.

In contrast to subtype-specific CCC, CellNEST detected LGALS3–
ITGB4 in basal-like and classical mixed regions (Fisher’s exact test, 
P = 0.621; Supplementary Table 5). Galectin-3 (LGALS3) mediates 
tumor–stroma interactions by activating pancreatic stellate cells78. 
We observed equally high expression of LGALS3 in both classical and 
basal-like organoids (two-sided Fisher–Pitman permutation test, 
P = 0.175; Fig. 6c). To determine the potential impact of these signals, 
we explored the association between these genes and PDAC using 
The Cancer Genome Atlas79. All CellNEST-identified genes were clas-
sified as ‘unfavorable’ in the context of PDAC, and associated with 
survival (log-rank test, P = 0.0140 for FN1, P = 8.50 × 10−3 for PLXNB2, 
P = 1.21 × 10−7 for MET, P = 6.39 × 10−4 for ITGB4 and P = 1.40 × 10−4 for 
ITGB5). Furthermore, MET, ITGB4 and ITGB5 achieved high antibody 
staining results for PDAC and their gene expression is considered 
prognostic by the Human Pathology Atlas80, which highlights them 
as potential targets for treatment. Of note, CellNEST’s top-identified 
ligand corroborates previous findings that illustrate the critical role 
of FN1 as a signaling gene against pancreatic cancer based on survival 
and gene expression analyses81. Together, these findings suggest that 
different subtypes of PDAC use distinct tumor-promoting CCC, which 
may impact patient outcomes.

We next sought to characterize differences between our previ-
ously identified ligand–receptor pairs with relay networks within 
pancreatic tumor tissue. CellNEST predicted FN1–RPSA to FN1–RPSA, 
COL1A1–SDC1 to FN1–RPSA, and TGFB1–ITGB5 to FN1–RPSA among 
the most frequently occurring pattern of this type (Fig. 6d,e and Sup-
plementary Fig. 10a,b). These signals promote cell adhesion (FN1 and 
TGFB1)73, migration (RPSA)69, metastasis (FN1)81, epithelial–mesenchy-
mal transition (COL1A)82 and inflammation (SDC1)83. CellNEST largely 
localized FN1–RPSA to FN1–RPSA, the most abundant relay network 
in PDAC_64630, to myofibroblast-like cancer-associated fibroblasts, 
which are key drivers of fibrosis in the PDAC tumor microenvironment84 
(Supplementary Fig. 10c). These results suggest that CellNEST uncovers 
cascades of adhesion and inflammatory networks that would remain 
undetected by traditional single ligand–receptor pair analyses.

CellNEST-Interactive is a web-based visualization tool for 
exploring communication
To help visualize cell–cell communication on tissues, we developed 
CellNEST-Interactive as a web-based data visualization tool (Fig. 6f 
and Supplementary Figs. 11 and 12). CellNEST-Interactive features a 
3D responsive graph illustrating cells or spots as vertices and ligand–
receptor pairs as directed edges. The user is able to specify the number 
of strongest ligand–receptor pairs which updates connected com-
ponents and colors on-the-fly. CellNEST-Interactive also displays a 
corresponding histogram listing each unique ligand–receptor pair 
stacked by connected components showing their specific region of 
tissue. The user can visualize a particular gene or ligand–receptor pair 
on both the 3D graph and the histogram using a fuzzy search feature. 

CellNEST-Interactive is designed with responsiveness in mind for both 
mobile and desktop. CellNEST-Interactive is available on GitHub at 
https://github.com/schwartzlab-methods/CellNEST-interactive.

Discussion
Detecting communication through ligand–receptor interactions is nec-
essary to decipher cellular activity in tissue. Existing scRNA-seq-based 
computational methods for identifying CCC in tissue samples often 
produce an extensive number of false positives, as they lack cell–cell 
proximity information. Recent spatial transcriptomics-based tools 
either quantify CCC at cell-population resolution, missing critical rare 
communication events, or do not consider patterns of ligand–receptor 
usage. We overcome these challenges by introducing CellNEST, which 
integrates ligand–receptor information with cell location through a 
graph attention network at single-cell or spot resolution. We quantita-
tively evaluated CellNEST and found our model to have superior perfor-
mance against other available methodologies using new benchmarks 
of 21 different arrangements of synthetic data representing different 
technologies and species. CellNEST consistently captured known CCC 
in both healthy and diseased conditions at various resolutions and 
dimensions. CellNEST predicted subtype-specific CCC across patients 
with pancreatic ductal adenocarcinoma, with associated genes corre-
lating with survival in independent cohorts from The Cancer Genome 
Atlas and the Human Pathology Atlas.

Existing spatial transcriptomic methods for detecting CCC, such as 
COMMOT and NICHES, focus on high coexpression of ligand–receptor 
pairs and do not attempt to recognize patterns of activity. However, 
patterns may correlate with tissue regions even when lowly expressed. 
Using a pattern recognition algorithm may contribute to CellNEST’s 
advantage over other methods when identifying T cell homing signals 
in precise locations of T cell zones in human lymph nodes. Moreover, 
CellNEST uses all genes to identify CCC, orders communication based 
on learned importance, and spatially pinpoints their location. Notably, 
CellNEST does not filter out low-variance ligand–receptor pairs, as this 
would prevent the method from detecting well-characterized genes 
that belong to informative modules but are stable across the tissue. 
CellNEST identified expected signals that were not among the most 
highly expressed, indicating the importance of integrating spatial and 
molecular information. These unique capabilities of CellNEST help 
associate CCC with a target disease and its subtypes.

Recent methods alternatively use scRNA-seq data for CCC detec-
tion before mapping ligand–receptor pairs to spatial data14,15,35; how-
ever, such tools only resolve CCC between adjacent cells or spots and do 
not discriminate between distant ligand–receptor mechanisms, such 
as paracrine communication, which constitutes the majority of ligand–
receptor databases. In contrast, CellNEST is capable of detecting three 
major types of communication: autocrine (self-communication), jux-
tacrine (communication between adjacent cells) and paracrine (com-
munication between nearby, nonadjacent cells). Furthermore, existing 
machine-learning-based tools such as GraphComm15 use supervised 
learning, which is difficult to train due to the unavailability of labeled 
data. To overcome the ground-truth data scarcity problem, CellNEST 
applies contrastive learning, an unsupervised training approach. This 
powerful and generalizable architecture enables CellNEST to accom-
modate data across varying resolutions, two or three dimensions, and 
healthy or diseased conditions.

To enable this flexibility, CellNEST only requires a ligand–recep-
tor database, and optionally, pathway information with experimental 
confidence scores for a priori knowledge. CellNEST reports active 
cell–cell communication and relay networks based on their learned 
importance and frequency of appearance within the tissue; however, as 
spatial transcriptomic data are a snapshot of expression, a limitation of 
CellNEST is that the algorithm cannot determine whether the observed 
ligand expression is truly caused by receptor activation. CellNEST’s pre-
dicted relay-network results are likely events based on learned patterns 
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of frequent coexpressed signals from the data which suggest a strong 
role of specific CCC in the tissue. CellNEST assigns confidence scores to 
the proposed relay networks based on a model of intracellular signals 
downstream of a receptor triggering ligand production. As such, Cell-
NEST generates hypotheses that assist users in identifying candidate 
ligand–receptor pairs for further validation, which may produce some 
false-positive results in noisy conditions that impact CCC in a tissue.

CellNEST’s underlying model is flexible with the expecta-
tion of integrating additional data types. With the advancement of 
spatial-omics technologies, future models may incorporate other data 
modalities to improve CCC detection, such as protein or chromatin 
accessibility from emerging assays. In addition, an extension of Cell-
NEST may include subcellular information provided by technologies 
like MERFISH and Xenium. We anticipate methods like CellNEST that 
take full advantage of the spatial proximity of cells will provide new 
avenues for determining cellular neighborhoods and their contribu-
tions to health and disease.
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Methods
CellNEST architecture
CellNEST is an end-to-end solution for processing data directly from 
a spatial transcriptomic data structure from programs such as Space 
Ranger, detecting strong signals and patterns of communication within 
specific regions of tissue, and displaying CCC through an accessible 
visualization. There are four main steps in the CellNEST workflow: a 
data preprocessing step, input graph generation step, communication 
prediction step and output graph generation step (Fig. 1).

Data preprocessing step. CellNEST takes four inputs: a spatial tran-
scriptomic dataset, a ligand–receptor database, a threshold percentile 
--threshold_gene_exp (for example, 80th or 98th percentile) to 
select highly expressed genes, and a threshold distance -- 
neighborhood_threshold as a neighborhood cutoff distance 
(Fig. 1a–c). The default database provided by our model is a combina-
tion of the CellChat and NicheNet databases, totaling 12,605 ligand–
receptor pairs. For N spots or cells (here called vertices) and M genes 
in a spatial transcriptomic dataset, CellNEST generates a gene expres-
sion matrix A ∈ ℝN×M . CellNEST calculates the Euclidean distance 
between each pair of vertices to generate a physical distance matrix of 
dimension D ∈ ℝN×N. CellNEST uses quantile normalization85,86 on the 
gene expression matrix to standardize gene distributions across ver-
tices to enable direct comparisons. For each vertex in the gene expres-
sion matrix, CellNEST considers genes having expression over 
--threshold_gene_exp percentile (default 98) as active.

Input graph generation step. After preprocessing, CellNEST gener-
ates an input graph G = (V, E), where V (∣V∣ = N) represents the set of 
vertices and E (where ∣E∣ is typically over 1 × 106) represents the set of 
neighborhood relations among the vertices in G (Fig. 1d). We add a 
neighborhood relation between a vertex i and j if the distance between 
i and j is less than or equal to --neighborhood_threshold. For each 
ligand l and paired receptor r from the ligand–receptor database, if Ai,l 
and Aj,r are active, CellNEST will insert a directed edge from i to j. Cell-
NEST allows for multiple edges to represent multiple ligand–receptor 
pairs between two vertices. Of note, an edge between a pair of vertices 
does not necessarily mean that a communication is happening along 
that edge, because CCC is highly context-dependent12 and affected 
by various epigenetic factors41. An edge is a neighborhood relation 
representation between a pair of vertices, which CellNEST evaluates 
as a probable CCC or random coincidence.

We next pass G to the deep-learning module ‘communication 
prediction step’ through two input feature matrices: a vertex feature 
matrix Hv ∈ ℝFv×|V| and an edge feature matrix He ∈ ℝFe×|E|. Each column 
in Hv is a vertex input feature vector (for example, h⃗ i  for vertex i), which 
represents each cell or spot in the dataset. CellNEST uses a one-hot 
vector to present each vertex uniquely, so Fv = ∣V∣ (Fig. 1d). Similarly, 
each column in the edge feature matrix, He, is an edge feature vector 
representing an edge (neighborhood relation) in G. The edge feature 
vector has dimension Fe = 3, as it has three attributes (Fig. 1d): physical 
distance between vertices (for example, di,j from the physical distance 
matrix D ∈ ℝN×N), ligand–receptor coexpression score for the corre-
sponding edge (for example, Le × Re from Fig. 1c), and the identifier of 
that ligand–receptor pair from the input database (Fig. 1b). We pass 
these two input feature matrices to the next step, the ‘communication 
prediction step’.

Communication prediction step: overview. The CellNEST archi-
tecture builds on two main deep-learning concepts: graph attention 
networks37 (GAT) as encoders and deep graph infomax33 (DGI) to train 
encoders through contrastive learning (Fig. 1e and Supplementary 
Fig. 13a). Although GAT-based models are traditionally used with a 
training set, there is no ground truth for CCC detection, so CellNEST 
instead uses DGI for training. We provide implementation functions for 

integrating GAT into the DGI model in our GitHub repository located 
at https://github.com/schwartzlab-methods/CellNEST/blob/main/
CCC_gat.py.

Communication prediction step: graph attention network. The GAT 
generates a vertex embedding that encodes information about a vertex 
i in G along with its neighborhood information, here meaning which 
vertices can i communicate with and through which ligand–receptor 
pairs. The attention module in the GAT assigns ‘attention scores’ to 
each edge based on how necessary and sufficient those edges are to 
capture hidden patterns that together reconstruct the input sample.

Let input vertex feature vectors for vertices i and j be h⃗ i,h⃗ j ∈ ℝFv, 
input edge feature vectors from j to i be e⃗ i,j ∈ ℝFe, and the dimensions 
of vertex and edge embeddings be F′. The learnable weight matrix for 
the linear transformation of vertex features is Wv ∈ ℝFv×F′, while the 
equivalent matrix for edge features is We ∈ ℝFe×F′. Then, the attention 
score for the edge from j to i is

αi, j = Tanh( ⃗a
T
[Wv h⃗ i +Wv h⃗ j +We e⃗ i, j]) (1)

This score indicates the importance of vertex j′s features to vertex 
i. Here, the attention ⃗a  is a learnable parameter, where ⃗a ∈ ℝF ′. Here we 
use tanh, as we found increased performance using tanh nonlinearity 
instead of the parametric rectified linear unit and rectified linear unit 
activation functions, the latter of which was too unstable (Supplemen-
tary Fig. 13b,c). After learning the attention scores, we apply a Softmax 
normalization over all incoming edges to vertex i from its neighbors 
Ni using

α′i, j = Softmax j∈Ni (αi, j) (2)

α′i, j ranges from 0 to 1 in an effort to scale attention scores. We use 
Softmax normalization for the message propagating principle. Using 
the normalized attention scores, we obtain a vertex embedding for i 
with

h⃗ ′
i = σ( ∑

j∈Ni
α′i, jWv h⃗ j) (3)

Here, the GAT generates a vertex embedding matrix H′
v ∈ ℝ|V|×F′; 

however, for communication prediction, we use the attention scores 
rather than the vertex embedding to prioritize edges in set E based on 
global context. To detect which regions are more active than others in 
the input sample, we use unnormalized attention scores from equation 
(1), as these scores are globally comparable across the tissue (Supple-
mentary Fig. 14a). As such, we use the scores obtained by equation (1) 
directly to represent CCC probability. We can scale these scores 
between 0 to 1 over all the edges in E such that scores closer to 1 present 
a higher probability of communication.

CellNEST generally assigns higher attention scores to input 
edges with high ligand–receptor coexpression scores (Supplemen-
tary Fig. 14b–m). Of note, the conventional way of using normalized 
attention scores cannot achieve this goal (Supplementary Fig. 14a), so 
CellNEST uses the unnormalized attention scores assigned by the GAT.

Communication prediction step: DGI for encoder training. We apply 
the contrastive learning model DGI33 to train the GAT in an unsupervised 
approach. DGI takes the input graph G = (V, E) and applies random 
permutation, shuffling edges to form a corrupted graph GC = (V, E′), 
where E′ is the set of corrupted edges (Supplementary Fig. 13a). We 
store the original input graph as GT. This contrastive learning approach 
has two branches to handle each version of the input graph: the cor-
rupted branch and the original branch.

Both branches use the same GAT encoder with shared learnable 
parameters or weight matrices to generate a vertex embedding matrix 
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H′
v ∈ ℝ|V|×F′ . The vertex embedding generated from GT through the 

original branch is summed to obtain the ‘summary vector’ ⃗s . This 
summary vector captures global information content of the entire 
graph. We use a discriminator function to measure the distance 
between ⃗s  from the corrupted graph embedding (negative sample) 
and the true graph embedding (positive sample). CellNEST maximizes 
the mutual information between the summary vector and vertex 
embedding from the true graph by optimizing the Jensen–Shannon 
divergence between the negative and positive graphs. This divergence 
distance is related to the generative adversarial network distance33. 
Through many iterations (approximately 60,000 in our testing), 
CellNEST eventually converges to a minimal loss, and we save that 
model state.

Output graph generation step: overview. CellNEST uses the sto-
chastic optimization algorithm Adam87, which may introduce small 
variations in the output of multiple runs. As an optional step to increase 
the accuracy and stability of communication detection, we run each 
experiment multiple times (default of five) with different seeds and 
combine the results from each run. Then, we apply postprocessing on 
the aggregated result to obtain the final output graph (Fig. 1f).

Output graph generation step: ensemble of multiple runs. We 
obtain the ranks of edges based on the attention scores assigned by 
each encoder layer for each run. Using the rank product88, we sort by 
the aggregated rank for each layer. We then merge the results for both 
attention layers, as existing metapath work on GNNs suggests impor-
tant characteristics are present in each layer89. This step also accepts a 
top percentage of communications, --top_percent, as input from the 
user. By default, we select the top --top_percent = 20% as the most 
reliable signals for the analyses presented here, as most of the positive 
CCCs are detected within the top 20% based on synthetic benchmark-
ing (Supplementary Fig. 15). We select this threshold on both layers 
independently. We must select a cutoff point, as the GAT architecture 
does not discard any edge by default, only assigning attention scores 
where a higher score correlates with importance. Optionally, Cell-
NEST provides a cutoff based on median absolute deviations from the 
median attention (--cutoff_MAD) and skewness of the distribution 
(--cutoff_z_score) to provide alternative statistical approaches. In 
addition to filtering the CCC based on cutoff criteria, CellNEST option-
ally provides confidence intervals using a bootstrapping technique 
invoked with the confidence_interval command, as well as p values 
(Supplementary Notes 14 and 15).

Output graph generation step: postprocessing. This step 
postprocesses the list of strong CCC for better visualization and 
downstream analysis. We apply a connected component finding 
algorithm90 on the strongly communicating --top_edge_count 
(user chosen) edges to generate subgraph components. In this way, 
we observe subgraphs where all vertices are strongly communicating 
with at least one other vertex in the community, suggesting a set of 
vertices localized to specific regions. We provide several visualiza-
tion outputs to best quantify CellNEST’s predictions using graph, 
list and tabular formats (Fig. 1g,h). Although we count the number 
of detected CCCs and sort the ligand–receptor pairs by abundance 
for histogram generation, we also provide the option (--sort_
by_attentionScore) to sort by total attention score, which here 
resulted in similar rankings (Supplementary Fig. 16). When analyzing 
relay networks with commands relay_extract, relay_cell-
type, and relay_confidence, CellNEST outputs relay-network 
abundance, spatial location, cell-type proportions and confidence 
scores associated with relay networks using graph, table, pie and bar 
charts. A detailed list of generated outputs is available on GitHub at 
https://github.com/schwartzlab-methods/CellNEST/blob/main/
vignette/user_guide.md.

Synthetic data preparation for benchmarks
To represent different distributions of cells and spots, we compared 
methods across three types of benchmarks: equidistant data points 
(n = 3,000; for example, Visium data), uniformly distributed data 
points (n = 5,000; for example, MERFISH data) and data points with a 
mixture of uniform and Gaussian distributions (n = 5,000) representing 
other complex data types (Fig. 3f–h). To generate the gene expression 
of each data point, we randomly sampled from Gaussian distributions 
with varying levels of noise and separate distributions for active and 
inactive ligand and receptor genes.

We generated 3,000 equidistant data points representing Visium 
spots, each having 10,000 genes. We assigned 10% of genes as ligand 
or receptor genes and formed synthetic ligand–receptor pairs with 
these genes. The synthetic ligand–receptor database generated in this 
way has ∼1,400 pairs. In this same way, we sampled 5,000 data points 
from a uniform distribution representing MERFISH cells, each having 
350 genes. The synthetic ligand–receptor database generated this 
way has 100 pairs with 12% of genes acting as ligand or receptor genes 
to approximate observed proportions17. Last, we sampled 5,000 data 
points from a mixture of uniform and Gaussian distribution represent-
ing single-cell data types, each having 350 genes, with 12% of genes 
forming ligand–receptor pairs. The synthetic ligand–receptor database 
generated this way has 100 pairs.

In the mechanistic model, we changed the criteria of neighbor 
selection. For adding ground-truth connections, we considered a 
Gaussian distribution around each sender cell such that closer neigh-
bors would have a higher probability of acting as a receiver cell. In this 
way, we drew ligand–receptor pairs with decreasing probability as a 
function of distance from a sender cell and set a maximum limit on the 
number of ligands a receptor can accept.

Notably, while we sought to evaluate standard CCC of a single 
ligand–receptor pair between spots or cells, we also introduced new 
benchmarks to test the model’s ability to recognize relay networks 
by incorporating such patterns in the synthetic data. The relay-based 
benchmark models a sender cell i sending a type s signal to a receiver 
cell j, after which j sends a type t signal to a receiver cell k.

Relay-network generation
CellNEST applies contrastive learning for the representation learning 
of input data. During this process, CellNEST assigns higher atten-
tion scores to the CCCs that form repeated relay-network patterns. 
We record these highly scored CCC through depth-first search. The 
relay-network assignment algorithm starts at an arbitrary vertex in 
the CellNEST-derived graph and follows the direction of outgoing 
edges (CCC) recursively until there are no more outgoing edges or 
a predefined number of hops is reached. Unless otherwise stated,  
we here specified two-hop relay networks. CellNEST users may extend 
the default to n-hops. The flexibility of the relay-network recovery 
step allows us to apply this process to other method outputs as  
well, for example, on COMMOT and NICHES (Supplementary 
Fig. 17a–d).

Intracellular signaling pathway generation
CellNEST builds directed knowledge graphs of signaling pathways 
from a receptor node down to transcription factors in a manner con-
ceptually similar to SpaTalk91 and FlowSig92. CellNEST searches up to 
a user-defined maximum hops (default --num_hops = 10 hops for 
memory considerations). Using breadth-first search from the recep-
tor node, we identify the path to all downstream transcription factor 
nodes as in SPAGI93, aggregating their gene expression. We provide 
options to either include the gene expression of the downstream 
transcription factor only or both the genes encoding proteins in the 
signaling pathway and the transcription factor genes, weighted or 
unweighted by the previously calculated positive experimental score 
values between nodes.
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Relay-network confidence scoring
CellNEST assigns a confidence score to each relay network by construct-
ing a putative intracellular network between the receptor and subse-
quent ligand of the second vertex. CellNEST creates this network using 
breadth-first search to identify paths that link the receptor protein 
to a transcriptional activator of the ligand using the aforementioned 
interaction databases. Due to memory considerations, we prune the 
protein–protein interaction database by minimum confidence scores 
at five thresholds from 0.1 to 0.5. CellNEST then computes the first path 
found from the source to target node for each minimum edge weight. 
CellNEST nominates the path with the highest cumulative confidence 
score, which is calculated as the product of the experimental confi-
dence scores reported by the interaction databases along the path.

Spatial transcriptomics of human patients with pancreatic 
cancer
Two solid tumor biospecimens were collected from the pancreas of 
two patients with stage IIB PDAC (PDAC_64630, 76-year-old male; 
PDAC_140694, 83-year-old female). Both biospecimens were col-
lected from the University Health Network Biospecimens Program 
(Toronto, Canada). Ethical approval was obtained through the Uni-
versity Health Network Research Ethics Board (13-6377). Tumors 
were collected at the time of resection. Samples were stabilized for 
approximately 3 h at 4 °C until long-term preservation (embedded 
in optimal-cutting-temperature compound). Samples were stored 
at −80 °C until used. The cases were selected according to have 
>30% tumor cellularity. The regions of interest for capture areas 
(6.5 × 6.5 mm) were selected, targeting tumor areas with representa-
tive subtype morphologies67. The 10-μM cuts were placed into 10x 
Genomics Visium FFPE spatial gene expression slides from selected 
trimmed tissue areas. Spatial transcriptomics using the Visium plat-
form was carried out according to manufacturer’s instructions (10x 
Genomics, part no. 1000200, protocol CG000160 RevB, CG000239 
RevD). Sequencing was performed on the Illumina NovaSeq 6000 
platform with paired-end reads according to 10x Genomics specifica-
tions. Data was processed using Space Ranger (v.2.0.0) and mapped to 
the GRCH38 v.93 genome assembly.

Annotation of pancreatic cancer samples
Histology categories of tumor and stroma were assigned based on 
the following features. Tumor: malignant cells arranged in any archi-
tecture of glands, cords, strands, solid sheets and single cells67; and 
stroma: nontumor tissue surrounding tumor cells, composed mainly 
of fibroblasts, myofibroblasts and collagen fibers94. Transcriptomic 
subtype annotations were assigned using Loupe Browser v.6.4.1 (10x 
Genomics) according to the log2 Feature Sum filter using a previously 
determined subtype gene list74.

Preparation of PDAC patient-derived organoid library
An organoid library with matching whole-transcriptome sequencing 
from laser microcapture-enriched tumors was established from 44 
cases with resectable (stage I/II) and advanced (stage III/IV) PDAC. 
Tumor transcriptomic subtype classifications were obtained from pub-
lished data95. Advanced organoids were generated by University Health 
Network Living Biobank as part of a clinical trial (NCT02750657) and 
resectable organoids were generated at the Notta Laboratory (CAPCR 
13-6377, 21-5648) following established methods96. In brief, organoids 
were cultured in DMEM/F-12 medium (Fisher, 12634-010) supple-
mented with B-27 supplement 1× (Life Technologies, 17504-044), Glu-
taMAX (2 mM; Life Technologies, 35050-061), HEPES (10 mM; Fisher, 
15630080), nicotinamide (10 mM; Sigma, N0636-100G), N-acetyl-l 
cysteine (1.25 mM; Sigma, A9165-5G), gastrin I (10 nM; sigma, G9020-
250UG), Noggin (100 ng ml−1; Peprotech, 120-10C-500UG), FGF-10 
(100 ng ml−1; Biotechne, NBP2-34927-5UG), A83-01(0.5 μM ml−1; TOC-
RIS, 2939), Y-27632 (10 μM; Selleckchem, S1049-50MG), EGF (50 ng ml−1; 

Peprotech, AF-100-15-500UG), CHIR (2.5 μM; Tocris, 4423), Wnt-3a 
(20% v/v, condition medium by the University Health Network (UHN) 
Living Biobank), R-spondin1 (30% v/v, condition media by UHN living 
biobank) and antibiotics, with medium replacement twice a week. 
Organoids were passaging using TrypLE express enzyme (Thermo 
Fisher 12605028) at 37 °C until dissociation. After passage 6, RNA 
was extracted from dissociated organoids. Sequencing libraries were 
prepared using the Smart-3SEQ protocol97 from 10 ng of RNA. Pools 
of 20 libraries were sequenced on the Illumina NextSeq 500 using 150 
cycles kit v.2 for Single Read 150 on a Mid-Output flow cell.

Development of CellNEST-Interactive
CellNEST-Interactive uses vanilla Javascript and HTML on the front 
end with Tailwind CSS for styling. We used D3.js for the histogram and 
Vasco Asturiano’s 3D-force-graph library (which extends off of D3.js 
and Three.js) for the responsive graph. To obtain the data for display, 
CellNEST-Interactive uses jQuery to send AJAX requests to the back-end 
server as well as to deep-copy current graph data. The back end uses 
the Django framework. After receiving a request from the front end 
with edge count as a parameter, a Python script reads all CSV records 
stored locally and returns graphable nodes and edges in JSON format. 
Necessary files to be read include complete records for cell (or spot), 
cell coordinates, cell annotations (if available) and the list of top 20% 
CCC detected by CellNEST. CellNEST-Interactive further processes 
these data by separating vertices into connected components and 
assigning colors using NumPy, Pandas, SciPy and Matplotlib libraries. 
CellNEST-Interactive is available on GitHub at https://github.com/
schwartzlab-methods/CellNEST-interactive.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
PDAC spatial transcriptomic data for PDAC_64630 and PDAC_140694 
are available on the Gene Expression Omnibus under accession 
no. GSE262245. The spot annotations for both samples are avail-
able on GitHub at https://github.com/schwartzlab-methods/Cell-
NEST_paper_figures/blob/main/NEST_figures_input_PDAC.7z. We 
obtained spatial transcriptomic data of human lymph nodes from 
https://www.10xgenomics.com/datasets/human-lymph-node
-1-standard-1-0-0, mouse hypothalamic preoptic region from https://
doi.org/10.5061/dryad.8t8s248, LUAD from the Gene Expression 
Omnibus under accession no. GSE189487 and human colorectal 
cancer (Visium HD) from https://www.10xgenomics.com/datasets/
visium-hd-cytassist-gene-expression-libraries-of-human-crc. Pro-
cessed ligand–receptor and signaling pathway databases are available 
on GitHub at https://github.com/schwartzlab-methods/CellNEST/
tree/main/database.

Code availability
CellNEST is available at GitHub at https://github.com/schwartzlab- 
methods/CellNEST, on Zenodo at https://doi.org /10.5281/
zenodo.15459529 (ref. 98) or as a Singularity image at https://
cloud.sylabs.io/library/fatema/collection/nest_image.sif with a 
tutorial on GitHub at https://github.com/schwartzlab-methods/
CellNEST#vignette. CellNEST-Interactive is available at https://github.
com/schwartzlab-methods/CellNEST-interactive and on Zenodo at 
https://doi.org/10.5281/zenodo.15459868 (ref. 99). Scripts for generat-
ing the figures and plots of the manuscript can be found on GitHub at 
https://github.com/schwartzlab-methods/CellNEST_paper_figures.
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Extended Data Fig. 1 | CellNEST detects localized signaling in tumor and 
stromal environments in lung adenocarcinoma tissue assayed with Visium. 
CellNEST detects localized signaling in tumor and stromal environments in lung 
adenocarcinoma tissue assayed with Visium (n = 4,095 spots)35. a, CellNEST-
generated communication graph showing regions with strong CCC colored 
by component. Gray indicates regions with no or weak CCC. The top right red 
component has thinner arrow widths to accommodate very high communication 
frequency. The boxes outline three regions: cancer (orange), lymph (green), 
and stromal (blue) based on prior histological annotations[35]. b, Histogram 
displaying ligand-pair receptor abundance (y axis) from a, colored by connected 

component. The APOE–SDC1 and FN1–RPSA signals (black triangles, bold) are 
exclusively detected by CellNEST. CellNEST also detects many TGFB signals 
(blue text). c-e, Location of specific tumor and stroma signals found in b. 
c, Communication from a filtered for APOE–SDC1 signals. This is the most 
abundant signal and is mainly found in cancer-annotated regions. d,e, Gene 
expression of APOE (d) and SDC1 (e) on a, found mainly in cancer regions. 
f,g, Distribution of CellNEST-identified relay-network patterns. f, Histogram 
showing the abundance of each two-hop relay-network pattern with PSAP–LRP1 
to APOE–LRP1 communication highlighted in red. g, The spatial location of the 
PSAP–LRP1 to APOE–LRP1 pattern from f on the tissue (red).
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Extended Data Fig. 2 | CellNEST detects localized signaling in tumor and 
stromal environments in colorectal cancer tissue assayed with Visium HD. 
CellNEST detects localized signaling in tumor and stromal environments in 
colorectal cancer tissue assayed with Visium HD (n = 24,068 cells). a, H& E image 
of colorectal cancer tissue with adenoma and invasive cancer regions outlined 
in black. b, CellNEST-detected component graph, where each component is 
shown with a distinct color and represents a disjoint network of CCC. Component 
32 (black boundary) aligns with the invasive cancer region in a. c, Histogram 
showing the abundance of each CellNEST-detected CCC on the colorectal cancer 

tissue from a, where each communication is mapped to a particular component 
in b with a matching color. APP-ITGA6 and APP-TGFBR2 are more frequently found 
in component 32 (black boxes). d,e, Distribution of relay-network patterns along 
with their location detected by CellNEST on the tissue in a. d, The most abundant 
signals detected by CellNEST, with the signal C3-CXCR4 to C3-LRP1 highlighted in 
red. e, C3-CXCR4 to C3-LRP1 signals on the tissue. This relay pattern is commonly 
found in the tumor microenvironment region60–62, recapitulated by CellNEST. 
The invasive cancer region from a is outlined in black.
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Extended Data Table 1 | Comparison of CellNEST with other latest state-of-the-art methods for CCC detection

Comparison of CellNEST with other latest state-of-the-art methods for CCC detection based on: (1) prior requirements beyond a ligand–receptor (LR) database, (2) whether the output 
returns name of the ligand–receptor pairs and (3) at single-cell resolution, (4) an unsupervised training strategy, (5) how far CCC is detected on the tissue, (6) integration of spatial distance, 
(7) relay-network capability, and (8) publication or release year. CellNEST was the only method capable of every listed feature, including CellNEST’s unique ability to identify and reconstruct 
relay networks.
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