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Dysregulation of communication between cells mediates complex diseases
such as cancer and diabetes; however, detecting cell-cell communication

atscale remains one of the greatest challenges in transcriptomics.
Most current single-cell RNA sequencing and spatial transcriptomics

computational approaches exhibit high false-positive rates, do not detect
signals between individual cells and only identify single ligand-receptor
communication. To overcome these challenges, we developed Cell Neural
Networks on Spatial Transcriptomics (CelINEST) to decipher patterns

of communication. Our model introduces a new type of relay-network
communication detection that identifies putative ligand-receptor-
ligand-receptor communication. CelINEST detects T cell homing signals
inhuman lymph nodes, identifies aggressive cancer communicationin
lung adenocarcinoma and colorectal cancer, and predicts new patterns of
communication that may act as relay networks in pancreatic cancer. Along

with CelINEST, we provide a web-based, interactive visualization method to
explore in situ communication. CelINEST is available at https://github.com/
schwartzlab-methods/CelINEST.

Cell-cell communication (CCC) enables the complex coordination
of cells, forming tissues and organs in multicellular organisms and
accomplishing critical biological functions; however, aberrant commu-
nication among cells or atypical decoding of molecular messages can
lead to and promote diseases such as cancer. CCCisinvolved inseveral
hallmarks of cancer, such as tumor-promoting inflammation, inducing
oraccessing vasculature and activating invasion and metastasis'*. It is
crucial to pinpoint communication responsible for normal and aberrant
cellandtissue function to inform the next generation of therapeutics.

CCCis mediated by ligand-receptor pairs, where a ‘sender’ cell
produces ligand proteins that bind to matching receptor molecules on
a‘receiver’ cell>. Common techniques to identify CCC use single-cell
RNA sequencing (scRNA-seq) databy matching highly expressed ligand

genes from a sender cell type with highly expressed receptor genes
fromareceiver cell type, prioritizing ligand-receptor pairs with high
‘ligand-receptor coexpression scores’. These scores represent the
overall expression of the ligand-receptor pair. Afteridentifying ligand-
receptor pairs, these methods diverge by determining confidence in
each pair using statistical tests®™, substituting receptor genes with
pathways® or using graph-based approaches’. Others, like CellChat®,
use network analysis and pattern recognition approaches. NicheNet’
uses signaling pathway networks and the PageRank algorithm. Despite
advances proposed by these methods, detecting CCC remains a major
challenge. One major limitation of existing approaches derives from
thelimited scope of the CCC definition. Rather thanbeinglimited toa
single ligand-receptor pair,communication may act as arelay network
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mediated by multiple pairs of cells. A relay network is formed when a
ligand from one cell binds to a cognate receptor on another cell and
inducesthe secretion of another ligand that binds to a third cell’s recep-
tor. This signal passing can extend across multiple cells. The frequency
of these patterns may indicate higher confidence in CCC detection’™.

Evenwith single ligand-receptor pair CCC detection, past efforts
demonstrated high false-positive and negative rates’, which is in part
due to using a single data modality (the transcriptome) from cells.
Only 6% of genes exhibit significant expression changes in response to
ligands, which may contribute to low accuracy without additional con-
textsuch as neighboring cells. This spatial context is lost in sSCRNA-seq
asthe methodrequirestissue dissociation. As CCCis spatially depend-
ent, with juxtacrine and paracrine requiring cellsto bein close proxim-
ity, scRNA-seqintroduces challenges for true single-cell CCC detection
instead of cell-type communication®,

Recently, methods such as Scriabin' and GraphComm" have been
introduced to detect CCC from scRNA-seq data alone and map final
results to spatial regions within tissue using corresponding spatial
transcriptomic data; however, these approaches incorporate spatial
position not to detect CCC, but to validate CCC that has already been
identified from dissociated samples. These methods also do notreport
distant ligand-receptor interactions such as paracrine interactions,
which constitute the majority of most ligand-receptor databases. To
overcome these limitations, new CCC models that directly integrate
the spatial context of gene expression are necessary.

Spatial transcriptomic technologies, such as Visium'® and multi-
plexed error-robust fluorescence in situ hybridization (MERFISH)",
measure the physical location of cells paired with their transcripts,
providing new opportunities to detect CCC. Visium measures tran-
scriptomes of barcoded spots, each 55 pmindiameter and containing
approximately 1-10 cells, while the recent launch of Visium HD (high
definition) achieves single-cell spatial resolution at 2 um. Alternatively,
MERFISH achieves single-cell resolution, albeit with a smaller subset of
genes. Critically, although this data modality promises to betterinform
CCCdetection, thereis anurgent need for new analytical approaches
beyond single ligand-receptor pair inference.

Although methods have been developed to detect CCC directly
from spatial transcriptomic data, most existing methods are unable to
detect CCC relay networks at single-cell resolution in situ (Extended
Data Table 1). NICHES'™ uses k-nearest neighbors to identify proximal
cellsand calculates their ligand-receptor coexpression scores. NICHES
then collapses cells to neighborhoods using principal component
analysis to discover niches of communication. COMMOT" screens CCC
in spatial transcriptomics via collective optimal transport. However,
COMMOT requires a network pathway list as additional input, which
increasesitsreliance ona prioriinformation. Most of these methods use
differentially expressed and variable ligand and receptor genes, only
incorporating spatial information to limit potential communication to
aneighborhood of cells. Recent methods, including NicheCompass?,
Clarify? and TENET*, model binary CCC between cells or spotsand do
not differentiate between types of ligand-receptor pairs. Therefore,
these methods are unable to identify specific CCC signals and their
associated strength across spatial regions of the tissue. HoloNet*
represents a separate class of methods that are constrained foragiven
targetgene and unable to generate an unbiased, global list of active CCC
foragiven tissue sample. CytoSignal** multiplies ligand and receptor
concentration between pairs of cells to calculate communication
scores and uses a permutation test with cell rearrangements; however,
CytoSignal combines all ligand-receptor pairs between a pair of cells
intoasingle score, which preventsthe method from ranking different
ligand-receptor pairs according to their occurrence probabilities.
SpaCCC%, Giotto*, TWCOM?¥ and CellChat’s spatial method* focus on
CCCatthelevel of cell types or clustersinstead of single cells or spots,
missing complex communication network components. Moreover,
none of these existing methods attempt to identify CCC relay networks,

which limits the discovery of large patterns of communication. To
address the need for an accurate, high-resolution method capable of
predicting complex CCC relay networks, we require a sophisticated
pattern-finding algorithm bolstered by deep learning.

Tofacilitate CCCdetection, we canrepresent communication from
spatial transcriptomic data as aknowledge graph, where cells or spots
arevertices and edges represent different types of neighborhood rela-
tions. As our goalis to predict whichrelations are probable communica-
tion, adeep-learning option to unravel the communication network is
agraphneural network (GNN)?. AGNN serves as an effective model for
encoding topological structuresin graph representations by generat-
ing a graph embedding. Variants of GNNs are already being applied
to transcriptomic data, including a graph convolutional network for
clustering® and a GNN-based encoder for deconvolutionand integra-
tion®. Anewer addition to the transformer* family is the graph atten-
tion network (GAT), a powerful tool that has already revolutionized
other knowledge-graph-based problems, including social networks
and molecular structures. As this model requires ground-truth data
for supervised model training, we propose using a contrastive learning
approach, Deep Graph Infomax (DGI)**, which excels in unsupervised
learning problems.

Built with these state-of-the-art advances in artificial intelligence,
we present CelINEST, amethod that measures cell-cell communication
and patterns between individual cells or spots by leveraging a GAT
encoder model with DGI contrastive learning. We applied our model
to five biological contexts across multiple tissues, species and tech-
nologies to map spatially resolved CCC**7°, Using new benchmarks
for single-cell ligand-receptor pair detectionand CCCrelay networks,
we found that CelINEST outperforms existing methods on both bio-
logical samples and synthetic data. We show that CelINEST can not
onlyaccurately reconstruct traditional single ligand-receptor signals
between cells using both MERFISH and new Visium HD technologies,
but also reports potential relay networks of communication based
on repeated patterns observed throughout both two-dimensional
(2D) and three-dimensional (3D) spatial transcriptomic samples. Of
note, applying CelINEST to our cohort of patients with pancreatic
ductaladenocarcinoma (PDAC) revealed critical CCC associated with
PDAC progression and spatially associated with known PDAC subtypes
linked with treatment response and overall survival. Asdemonstrated,
CelINEST is not limited to a single technology or species. Rather, it is
atransferable model applicable to data across domains. We believe
that CelINEST is a major step forward in accelerating the applica-
tion of deep learning to spatial transcriptomics and other related
knowledge-graph-based contexts. CelINEST is open source and publicly
availableat https://github.com/schwartzlab-methods/CelINEST witha
Singularity image at https://cloud.sylabs.io/library/fatema/collection/
cellnest_image.sif.

Results

CelINEST infers communication in spatial transcriptomic data
Ligand-receptor pair-based communication depends on spatial dis-
tance; however, the majority of existing tools do not leverage positional
information to detect CCC and collapse communicating units to cell
typesand clusters rather than spots and cells. To overcome these limi-
tations, we developed CelINEST for high-resolution, spatially resolved
CCC detection (Fig.1a).

Given a 2D or 3D spatial transcriptomic dataset at either spot
or single-cell resolution and an existing ligand-receptor database,
CelINEST scores each intercellular signal based on the coexpression
of highly expressed ligand and cognate receptor genes (Fig. 1b—d).
CelINEST may optionally incorporate signaling pathways downstream
of the receiver’s receptor with ligand-receptor coexpression. To
achieve single-cell- and single-spot-level communication identifica-
tion, CelINEST relieson a GNN, a class of deep-learning-based models,
to identify which ligand-receptor pairs are highly probable to exist
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based onreoccurring patterns of communicationina particular tissue
region. For example, transforming growth factor (TGF)B1signaling is
upregulated in tumor cells across various cancers®. This signal occurs
multiple timesin cancer tissue along the boundary of tumor and non-
tumor cells, forming a distinct pattern that is not observed in other
regions of the same tissue. Deep-learning models excel in detecting
such hidden patterns; CelINEST leverages this strength by using a
GAT?, an encoder model that records such patterns in the form of a
vertex embedding. While some communication may involve a single
ligand-receptor pair, more intricate patterns can exist, where CCC
actsasarelay network with multiple ‘hops’ between cells’ ™. CelINEST
extends its pattern-finding capabilities to predict frequent arrange-
ments of coexpressed signaling, which may represent relay networks,
and supports these predictions with evidence from protein-protein
and transcription factor-target gene interactions®*°,

After data preprocessing, CelINEST converts spatial transcrip-
tomic data into a graph G = (V, E) with V cells or spots as vertices and
E edges as some neighborhood relation between the pair of vertices
(Fig.1e). CelINEST inserts edges between a pair of cells or spots (herein
referredtoas vertices) i andjif they are proximal neighbors (by default
within four spotsinspot-based and 300 pumin cell-based experiments),
with elevated ligand gene expression in i and elevated receptor gene
expressioninj (Supplementary Note 1).

G canbe massive, containing thousands of vertices with millions of
edges based onthe number of expressed genes. Notably, E represents
neighborhood relations and not CCC, as proximal cells do not always
establish communication. Tissue context'?, epigenetic factors* and
other signaling pathways’ may influence high ligand-receptor coex-
pression. CelINEST sifts through these putative relations to predict
which edges are more likely to represent communication. For this
purpose, we pass Gto the core deep-learning module in CelINEST, the
‘communication prediction step’, where a GAT model generates the
vertex embedding (Fig. 1f).

The traditional GAT model requires ground-truth datafor training
an encoder, but this information is unknown from spatial transcrip-
tomic data. We instead chose to implement unsupervised training
through DGI*?, a contrastive learning approach (Fig. 1f). DGl compares
encoder weights derived from the observed network with encoder
weights froma‘corrupted’ network of randomly shuffled and permuted
vertices and edges. DGl maximizes weights from the observed network
while penalizing weights from the corrupted network. As the model
converges, CelINEST assigns higher attention scores to stronger neigh-
borhood relations (Fig.1g). We use these attention scores to represent
communication strength. To retain the most probable intercellular
signals, wefilter edges, retaining the top 20% of highest-scoring atten-
tion edges by default (Supplementary Note 2).

After predicting high-resolution CCC, CelINEST identifies highly
communicating regions of tissue in the ‘output graph step’ by deter-
mining connected components (Fig. 1g,h). As CelINEST identifies CCC
between each vertex along with associated signal strength, we provide

aunique visualization that displays vertices colored by densely com-
municating regions of tissue, along with ligand-receptor pairs as an
arrows whose thicknesses are determined by their attention scores
(Fig.1h). Tocomplement the tissue visualization, CelINEST also gener-
ates histograms that display the counts of all ligand-receptor pairsin
the top edges ranked by attention score and colored by the community
they arefound in within the tissue (Fig. 1i). With this extensive tool set,
CelINEST is fully equipped as an end-to-end framework for spatially
resolved CCC detection.

CellNEST pinpoints T cell homing signals in the lymph node. To
determine the accuracy of our algorithm, we applied CelINEST to
Visium datafrom a humanlymphnode* (Fig. 2a-e). We hypothesized
that CelINEST would identify the T cell homing signal of chemokine
(C-Cmotif) ligand 19 with cognate CC-chemokine receptor 7 (CCL19-
CCR?) and place this CCC within the T cell zone*. The T cell zone was
previously annotated using cell2location®* (Fig. 2a). We applied Cell-
NEST to the entire tissue and ranked all CCC based on their attention
scores, keeping the ligand-receptor pairs with the top 20% highest
attention scores and located within the T cell zone (Fig. 2b). Among
the 12,605 possible ligand-receptor pairs in the database (Supple-
mentary Note 3), CelINEST identified CCL19-CCR7 as the second most
abundant pairinthe T cell zone, with strict thresholds above 20%. The
topmost detected pair was CCL21-CXCR4, another T cell migratory
signal® (Fig. 2b). Of note, while CelINEST found CCL19-CCR7 as a top
signalin the T cell zone based on attention score (Fisher’s exact test,
P=9.16 x107**), this pair’s coexpression score was not among the
highest (Fig. 2c,d and Supplementary Table 1). Increasing attention
score thresholds further confirmed T cell zones as the primary location
for CCL19-CCRY7 (Fig. 2e). Notably, these T cell zones were enriched
withtop genes encoding proteins downstream of CCR7 signaling, and
incorporation of these genesinto the model recapitulated these CCCs,
further suggesting activation by CCR7 identified by CelINEST (Mann-
Whitney U-test, P= 6.42 x 10**; Fig. 2f,g and Supplementary Fig.1). This
prioritization and localization suggest that CelINEST does not score
edges based solely on input ligand and receptor expression. Instead,
CelINEST focuses on hidden communication patterns to predict which
edges are essential to represent the context of the tissue sample.

To compare the performance of CelINEST against other emerging
methods for CCC detection, we applied NICHES, COMMOT, NicheCom-
pass, CytoSignal, CellChat, Giotto and TWCOM to identify CCL19-CCR7
within the T cell zone (Fig. 2h,i, Supplementary Fig. 2a-i and Supple-
mentary Note 4). CelINEST outperformed all methods in localizing
CCLI19-CCR7to the T cell zone. In addition to demonstrating robust
performance on biological data, CelINEST also shows comparable
computational efficiency to existing methods (Supplementary Fig. 2j,k
and Supplementary Note 5).

CelINEST’s unique capability extends single ligand-receptor pairs
to patterns of communication, which may indicate a relay network
or other complex patterns. Although CelINEST detects any type of

Fig.1| Overview of detecting cell-cell communication with CelINEST.

a, A high-level flowchart of the main steps of the CelINEST method. b, Input
tissue sample at either spot (for example, Visium; top) or cell resolution (for
example, MERFISH, Visium HD; bottom). UMI, unique molecular identifier.

¢, Input ligand-receptor database containing known ligand and cognate receptor
pairings. d, Preprocessing step, where genes with expression above a threshold
percentile are considered active (left). Pairwise Euclidean distances between
vertices are stored in a physical distance matrix (right). e, Input graph G = (V, )
generation step with Vspots or cells as vertices and £ edges as neighborhood
relations, some of which represent communication (bottom). Aninput threshold
distance is used for the neighborhood formation (blue arrow). From the graph,
vertex features are represented as a one-hot vector matrix (top left). The edge
feature matrix holds edge feature vectors containing three attributes: pairwise
distance, ligand-receptor coexpression score and the ligand-receptor pair

identity from the database in c.f, Communication prediction step using a GAT
encoder through unsupervised contrastive learning with DGI. g, Output graph
step visualizing edges with the highest attention scores. Attention scores

range from O (white) to 1 (black), where 1 represents the strongest connections.
Lower-scoring edges are removed (dashed lines), resulting in subgraphs of
communicating vertices. h, Example output showing the flow of communication
between tumor-annotated spots (filled squares) with stroma spots (open circles),
colored by connected component. i, An example CelINEST-generated histogram
showing the frequency of communication through ligand-receptor pairsin the
top 20% highest-scoring attention edges. Colors in the histogram correspond to
connected componentsin h. For instance, the most abundant communication,
labeled as FNI-RPSA, is found primarily in the blue region. Altogether, CelINEST
offers a high-resolution approach for detecting the strength and location of cell-
cell communication in tissues.
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Fig.2| CelINEST identifies T cell homing signals in human lymph node T cell
zones. a, Human lymph node tissue assayed with Visium and annotated with
cell2location® (n =4,035 spots). b, Histogram of ligand-receptor pairs (xaxis)
with the top 20% highest attention scores in T cell zones assigned by CelINEST in
descending order of abundance (y axis). CCL19-CCR7 (red text with triangle) is
acanonical T cell homing signal. ¢, Density plot of CCLI9-CCR7 attention scores
(red) compared to all other ligand-receptor pairs (gray) in T cell zones. d, Density
plot of CCL19-CCR7 ligand-receptor coexpression scores (red) compared to all
other ligand-receptor pairs (gray) in T cell zones. e, Selection of the top 5,000,
2,500 and 500 CCLI19-CCR7 edges with the strongest attention scores (left to
right) across the entire tissue. Stronger CCL19-CCR7 communicationis foundin T
cell zones. f, Mean expression of the top 20% expressed genes encoding proteins

downstream of CCR7 signaling mapped onto the human lymph node, which
aligns with CelINEST-detected regions in T cell zones in e. g, Box and whisker
plots comparing mean gene expression from fwithin (n =417 spots) or outside
(n=3,618 spots) of T cell zones. Center line, median; box, interquartile range;
whiskers, 1.5 x interquartile range; points, outliers. There is elevated expression
of CCR7 downstream signaling genes in T cell zones (two-sided Mann-Whitney
U-test, P=6.42 x107'%*). h, Application of COMMOT to the human lymph node,
withred arrows indicating CCL19-CCR7 strength. Regions do not align well with T
cellzones. i, Application of NICHES to the human lymph node. Using a cluster-
based analysis (left), NICHES identified three signals but missed the CCL19-CCR7
signal (right).
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identified by CelINEST, including CCLI19-CCR7 (red triangle). ¢, CCL1I9-CCR7
to CCL21-CXCR4 within T cell zones in Fig. 2a (red). d, Pie charts showing the
proportion of each cell type involved in the CCLI9-CCR7 to CCL21-CXCR4
relay network in the T cell zone, from sender (left) to receiver and sender
(middle) to second receiver (right). DC, dendritic cell; Endo, endothelial; FDC,
follicular dendritic cell; ILC, innate lymphoid cell; NK, natural killer; NKT,

natural killer T; TIM3, T-cell immunoglobulin and mucin domain-containing
protein 3; TfR, T follicular regulatory; T, regulatory T; VSMC, vascular
smooth muscle cell. e, Diagram showing relay network confidence scoring
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distributed cells. i,j, Heat maps displaying balanced accuracy of CCC methods
on synthetic (i) and diffusion-based models (j) measured at single-cell
resolution.
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pattern, for simplicity, we quantified the frequency of two-hop CCC
between cells. Two-hop CCCinvolves aligand-receptor pair sfroman
isendertoajreceiverand aligand-receptor pair tfromajsendertoa
kreceiver (Fig. 3a). Extending outward from the single ligand-recep-
tor pair containing CCLI9 identified earlier, we sought to determine
potential relay networks associated with this homing signal. CelINEST
reported a high abundance of CCL19-CCR7 to CCL21-CXCR4 in the
T cell zones (Fig.3b,c). CCL19-CCR7 and CCL21-CXCR4 areregulated
togetherinvarious T cellinduced activities**, whichis concordant with
CelINEST finding mostly T cells participating in this predicted relay
network and in other top-ranked networks (Fig. 3b,d, Supplementary
Fig.3aand Supplementary Note 6). To further validate the occurrence
of these relay networks, we equipped CelINEST with the capability to
report confidence scores using experimentally validated protein-
protein and transcription factor-target gene interactions from
independent databases (Fig. 3e and Supplementary Notes 7 and 8).
CelINEST identified these potential relay networks with confidence
scores significantly higher thanrandom, suggesting the effectiveness
of CelINEST in detecting such patterns (Dunn’s test with Benjamini-
Hochberg correction, P=4.5x107°; Supplementary Fig. 3b).

To further evaluate CelINEST’s detection capabilities on datawith
an established ground truth, we conducted extensive benchmarking
across 21synthetic datasetups, which represent different spatial tran-
scriptomic technologies and cell distributions (Fig. 3f-j and Supple-
mentary Fig.3c,d). CelINEST outperformed all methods across spatial
distributions, levels of injected noise, as well as in both nonrelay- and
relay-based benchmarks (Supplementary Note 9). Based on this com-
parative analysis, CelINEST is uniquely equipped to more accurately
localize CCCtotissue regions and may complement existing methods
for communication detection.

CelINEST maps single-cell communication in the mouse brain
Our synthetic benchmarks suggest CelINEST is uniquely capable of
detecting CCC in various spatial transcriptomic technologies. To
evaluate CelINEST’s performance on single-cell resolution spatial
transcriptomic technologies, we applied CelINEST to MERFISH slides
from the hypothalamus preoptic region of female parent and female
virgin mice® (Fig. 4a—d). CelINEST revealed that female parent and
virgin tissues varied in spatial distributions of strong communication
(Fig.4a,c). CelINEST identified galanin receptor-associated communi-
cationinvolving Galrl and Galr2in parent and virgin mice (Fig. 4b,d),
which is consistent with previous studies noting galanin’s associa-
tionwith behavior in the preoptic region®. Aswell, inboth parentand
virgin mice, CelINEST identified brain-derived neurotrophic factor
(Bdnf)-associated communication (Fig. 4b,d), whose gene expression
is linked with temperature sensitivity*’. Moreover, CelINEST identified
signals unique to the female parent mouse, including signals mediated
by oxytocin (Oxt) and its receptor (Oxtr), which form core parenting
signals*® (Fig. 4b and Supplementary Fig. 4a-e).

Of note, we found that CelINEST could detect communication
betweentwoindividual cells: aneuron and a microglial cell (Fig. 4¢,f).
Using the single-cell MERFISH female parent mouse sample with previ-
ously annotated cell types, we filtered ligand-receptor pairsidentified
by CelINEST such that the sender and receiver cells were classified as
neurons or microglia only. Upon inspection, we observed a notably
high-resolutionimage with a predicted Oxt-Oxtrinteraction between
an excitatory neuron and a receiving microglia (Fig. 4e). This ligand-
receptor pair establishes communication that contributes to emotional
bonding within the female parent mouse*. This communication was
wellrepresented across all neuron-microgliacommunication (Fig. 4f).
Together, this analysis suggests that CelINEST can detect precise cell
signaling at single-cell resolution rather than solely between pseu-
dobulk cell types.

CelINEST identified potential relay networks that were dominated
by prepronociceptin (Pnoc) and delta-type opioid receptor (Oprd1)

signals, including Pnoc-OprdI to Pnoc-Lparl and Pnoc-Oprdl to Bdnf-
Esrl (Fig.4g).Of note, CelINEST detected these relay signals in different
locations on the tissue than previously detected CCC (Fig. 4h). Pnoc,
Oprdl and Bdnf are linked to behavioral disorders as well as anumber
of psychiatric affective disorders, such as anxiety, seizure and schizo-
phrenia, so we expect joint activation of these signals*®.

Spatial transcriptomic technologies such as MERFISH also may
take consecutive slices to infer 3D cell organization (Fig. 4i). We sought
to extend our model to 3D data points by combining cells across six
such consecutive slides along the bregmaaxis. As CelINEST uses agraph
structure that is not limited to 2D, we extended our edges to incor-
porate 3D input where the physical distance matrix records pairwise
distances of 3D coordinates. When applying CelINEST to a 3D female
naive mouse sample, CelINEST detected general communication in
the mouse brain with fewer parental signals, likely because this mouse
was not exposed to pups® (Fig. 4i,j). A comparative analysis between
2D (withinsections) and 3D (across sections) revealed mostly overlap-
ping CCC, but there did exist between-section CCCinteractions which
were undetectablein 2D analysis alone, such as Adcyap1-Mc4r, whose
proteins are associated with energy homeostasis and anxiety, as well as
Oxt-Avprla, whose gene expressions have been linked to sex-specific
social and emotional behaviors**’ (Supplementary Fig. 4f,g). Cell-
NEST’s identification of CCC unique to 2D and 3D MERFISH samples
revealed the method’s flexibility across dimensions as well as spot-and
single-cell-resolution technologies.

CelINEST detects aggressive CCC in lung adenocarcinoma

The tumor microenvironment is a complex and heterogeneous col-
lection of different cell types and signals, where CCC contributes to
disease progression. Toidentify specific regions of tumor tissue asso-
ciated with cancer-promoting communication, we applied CelINEST
toaVisium sample of lung adenocarcinoma (LUAD)* (Extended Data
Fig.1a). Within the most probable ligand-receptor pairs, CelINEST
detected transforming growth factor 3-associated communication
involving TGFBI and TGFB2,important in metastasis®’, as concentrated
near the top out of over 12,605 pairs in the database based on atten-
tion scores (Extended Data Fig. 1b); however, CelINEST found apoli-
poprotein E (APOE)-based communication including APOE-SDCI as
the most strongly occurring CCC. APOE promotes LUAD proliferation
and migration and is associated with poor prognosis in patients with
lung cancer®. To support the presence of APOE-SDCI within the tumor
region, we observed alignment between the expression of each gene
on the tissue with the location of the CCC (Extended Data Fig. 1c-e).
Overall, CelINEST observed enriched LUAD-related pathways in the
tumor component, including E2F transcription factor upregulation
(normalized enrichment score (NES) of 5.73) and G2M checkpoint acti-
vation (NES of 5.98)*? (two-sided permutation test, all g < 2.20 x 107%;
Supplementary Fig. 5a-c).

In addition to tumor-localized APOE-SDC1, CelINEST identified
other strong communication in different locations of the tissue. Spe-
cifically, CelINEST identified enrichment within the lymph node region
for gene programs linked to lymph node metastasis, such as T cell
modulation (NES of 6.00) and interleukin-10 signaling (NES 0f 5.93)>*,
and specifically assigned FNI-RPSA to this region (two-sided permuta-
tiontest:allg < 2.20 x 107'%; Supplementary Fig. 5d-i). As FN1and APOE
are associated with lymph node metastasis in patients with LUAD, Cell-
NEST may have identified potential disease progression®**, Separate
from the lymph node region, CelINEST identified TGFf3 signaling and
pathways associated with LUAD stromal regions within the surround-
ing tumor microenvironment, including epithelial-to-mesenchymal
transition (NES of 5.29) and chaperone-mediated autophagy>® (NES
of 4.71) (two-sided permutation test: all ¢ <2.20 x 107; Supplemen-
tary Figs. 5j-land 6). Based on these observations, CelINEST is able to
deconvolve complex tumor microenvironments, providing insights
into how signals may be organized in tissue regions.
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Fig. 4| CelINEST identifies communication involved in mouse parental
behavior in the hypothalamus preoptic region assayed with MERFISH.

a,b, CelINEST-detected communication (green) in tissue from the female
parent mouse (n = 5,533 cells; a) with a corresponding histogram of the top

20% strongest ligand-receptor pairs (b). ¢,d, Asinaand b for female virgin
mouse tissue (n = 5,606 cells). CelINEST identified signals involving galanin
receptor (Galrl and Galr2) and brain-derived neurotrophic factor (Bdnf) inboth
parent and virgin mice (black triangle, bold). In contrast, the parenting signal
Oxt-Oxtris exclusively found in the female parent mouse (red triangle in b).

Female parent mouse
(ID: 19)

e, Cell-type-specific communication zoomed in from the red rectangle ina. f, The
corresponding CelINEST-generated histograms from e showing CCC between
microglia and excitatory neurons. Asinb, Oxt-Oxtris detected (black triangle,
bold) as one of the strongest communications. g,h, One of the most frequent
relay-network patterns, Pnoc-Oprd]I to Pnoc-Lparl (red triangle), compared to
the abundance of other top patterns in a histogram (g) and overlaid on the tissue
(red; h).i,3D MERFISH sample from a female naive mouse (n = 38,372 cells) with
CelINEST-detected communication (top), withazoom-in of two layers for clearer
visualization (bottom). j, Histogram of top communication found ini.
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Beyond single ligand-receptor interactions, CelINEST predicted
PSAP-LRPI to APOE-LRPI (Extended Data Fig. 1f,g) along with addi-
tional previously unobserved patterns. The tumor-secreted protein
prosaposin (PSAP) and APOE signaling pathways share patterns® and
exhibit high gene coexpressionininflammation®®, suggesting reliable
relay-network detection. Of note, although PSAP is a marker of many
cancer typesincluding pancreatic cancer, prostate cancer and lymph
node metastasis®**°, the link between LUAD and PSAP is not yet suffi-
ciently explored. As such, CelINEST’s predicted relay networks enable
new approaches to reveal complex CCC patterns.

CelINEST recovers signals in invasive colorectal cancer
Emerging spatial transcriptomic assays, such as Visium HD, enable
whole-transcriptome sequencing at subcellular resolution. Todemon-
strate the flexibility and capability of CelINEST on these technologies,
we applied CelINEST to a human colorectal cancer sample at 2 um bin
size (Extended Data Fig. 2a,b and Supplementary Note 10). Focusing
on aregion of interest containing a mixture of invasive cancer and
surrounding noncancer cells, we applied CelINEST to an input graph
of 6,857,387 ligand-receptor-pair connections.

CelINEST clearly identified the invasive cancer region as a separate
network of localized signals (Extended Data Fig. 2b). The topmost
abundant ligand-receptor pairs included amyloid precursor protein
asaligand, which promotes growth and proliferation of colon cancer
bothin vitro and in vivo® (Extended Data Fig. 2c). The corresponding
receptor integrin a6 gene (/TGA6) expression is a useful biomarker for
colorectal cancer early detection, and transforming growth factor 3
receptor type Il gene (TGFBR2) alterations promote the formation of
colon cancer®®®*, Although CelINEST detected these signals atadenoma
locations bordering the tissue, there was increased abundance in the
invasive cancer region (chi-squared test of dependency, P< 2.2 x 107,
hypergeometric test of over-representation, P=1.08 x 10"%; Extended
DataFig.2b,c and Supplementary Note 11).

CelINEST also predicted several two-hop relay networks of CCC
on the tissue surface (Extended Data Fig. 2d,e). In addition to signals
between cancer cells, we observed relay networks specific to the tumor
microenvironment that promote cancer progression, such as C3-CXCR4
to C3-LRPI (Extended Data Fig. 2d). CelINEST pinpointed this CCC pat-
tern specifically in the stromal region surrounding the invasive tumor,
in contrast to nonrelay CCC, which appeared throughout the tissue
(Extended Data Fig. 2e). Complement C3 gene (C3) expressionis associ-
ated with the colorectal adenocarcinomamicroenvironment and prog-
nosis®*. CXCR4 binds with stromal cell-derived ligands, and high CXCR4
expressionis associated withanincreased risk of death and progression
incolorectal cancer®. LRP1 encodes asignature protein of radio-resistant
colorectal cancer®. Together, our results suggest that CelINEST is a
robust method that is applicable to the latest spatial transcriptomic
technologies without any modification to the model architecture.

CelINEST finds consistent communication across patients
with pancreatic cancer
To evaluate CelINEST’s ability to generalize to other cancer types with
heterogeneousregions, we applied CelINEST to pancreatic ductal ade-
nocarcinoma (PDAC) tissues. PDAC is widely recognized as a highly
aggressive disease, yet treatment responses can vary widely among
patients. Thereisimmense transcriptional diversity defining classical
and basal-like subtypes of PDAC that is crucial in explaining treatment
heterogeneity. Basal-like tumors exhibit characteristics reminiscent
of basal or squamous epithelium, leading to heightened chemore-
sistance and poorer patient prognosis. Conversely, classical tumors
demonstrate transcription factor expression associated with pancreas
development, rendering them more responsive to chemotherapy and
yielding improved clinical outcomes®®.

The PDAC tumor microenvironment is a heterogeneous and dense
collection of tumor, stromaland immune cells. Stromal areas with high

(activated) or low (deserted) immune activity contribute to diver-
gent regions within tumor tissue. To date, the relationship between
divergent regions, transcriptomic subtypes and cell states of PDAC
is unclear. To resolve specific cell-cell interactions in this complex
disease, we applied CelINEST, which considers tumor and stromal prox-
imity ata high resolution and does not rely solely on highly expressed
genes. We evaluated whether CelINEST could detect CCC associated
with spatially distinct PDAC transcriptomic subtypes.

We applied CelINEST to Visium data collected from two cases that
showed morphological heterogeneity across tissue regions (Fig. 5).
Transcriptomic subtypes are known to correlate with tumor morphol-
ogy. Classical tumors are well differentiated and have agland-forming
morphology, whereas basal-like tumors are moderately to poorly
differentiated with non-gland-forming morphology®. Both cases
were resectable, stage I1lb PDAC tumor samples (PDAC_64630 and
PDAC_140694). Sample PDAC_64630 presented several regions of mor-
phologically and transcriptionally distinct tumor subtypes separated
by stroma®’ (Fig. 5a,b).

Wefirst assessed whether CelINEST could identify PDAC-relevant
ligand-receptor pairs across the whole tissue. CelINEST reported 411
ligand-receptor pairs out of 12,605 total pairs in the top 20% strong-
est signals, with the predicted interaction between fibronectin and
ribosomal protein SA (FNI-RPSA) as the most abundant withan occur-
rence of 239 instances. FNI-RPSA was mainly found in the stromal
region (Fig. 5c-e and Supplementary Fig. 7a,b). Fibronectinis consid-
ered one of the main extracellular matrix constituents of pancreatic
tumor stroma, and its high expression associates with more aggres-
sive tumors in patients with resected PDAC®®. Ribosomal protein SA
is a ribosomal subunit but can also act as a cell surface receptor that
regulates pancreatic cancer cell migration®’. We observed additional
canonical signals, such as TGFf signaling, which promotes fibrosis
and immune evasion in PDAC’®, and protein tyrosine phosphatase
receptor type F (PTPRF)-associated signaling, whose expression has
been implicated in multiple cancers”. We also identified significant
enrichment of GAS6-AXL specifically within tumor regions, whose
signaling pathway is associated with PDAC tumorigenesis’ (Fisher’s
exact test, P=1.307 x 10%; Supplementary Table 2).

To determine whether CelINEST could identify consistent
tumor-associated CCC across multiple tissues, we applied our model
to PDAC_140694 derived from a different patient with similar PDAC sub-
typestoPDAC_64630 (Fig. 5f-i). PDAC_140694 contained mostly tumor
cells with fewer stromathan PDAC_64630. To directly compare commu-
nication occurring within each sample, we filtered CelINEST-identified
signals in PDAC_64630 to those between tumor spots only or tumor
andstromal spots (Fig. 5e,h,i). We found overlapping PDAC-associated
CCCbetween both patients in the top 20 strongest signals along with
their downstreamsignaling genes, including LGALS3-ITGB4, PLXNB2-
MET/MSTIR, PTPRF-RACK1, TGFBI-ITGBS5 and TIMP1-LRPI (ref. 73)
(Fig. 5e,i-m). The high concordance of top signals suggests CelINEST
candetect similar communication in similar contexts.

CelINEST reveals subtype-region-specific communication in
PDAC

Afteridentifying tumor-wide CCC associated with PDAC, we evaluated
whether CelINEST could resolve CCC within specific tissue regions. We
annotated tumor regions according to classical and basal-like transcrip-
tomic PDAC subtypes’™. Using CelINEST, we detected region-specific
communication involving PLXNB2-MET/MSTIR primarily in classical
regions (Fisher’sexact test, P=4.02 x 10"%; Fig. 5d,e,i-k, Supplementary
Fig. 7c-h and Supplementary Table 3) and ANXAI-EGFR in basal-like
regions (Fisher’s exact test, P=1.79 x 107%; Supplementary Table 4)
across both samples (Supplementary Note 12). PLXNB2 codes for a
plexin protein, amember of a family of transmembrane receptorsini-
tially recognized for their role in axon guidance. Plexins are known for
theirkeyroleintumor CCC, tumor growth, migration and metastasis.
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Fig. 6 | Organoid validation of PDAC subtype-specific signals and example
CelINEST-Interactive visualization. a, Heat map displaying gene expression

of MET, classical-associated genes and basal-like-associated genes™ in PDAC
patient-derived organoid models assayed with bulk RNA sequencing (n = 10).
b,c, Box and whisker plots comparing gene expression in basal-like (n = 5) versus
classical (n =5) organoids classified with an established subtyping scheme’.
Center line, median; box, interquartile range; whiskers, 1.5 x interquartile
range; points, outliers. b, MET expression is significantly higher in the classical
organoids (two-sided Fisher-Pitman permutation test: P=3.18 x 10™). ¢, Both
classical and basal-like organoids express LGALS3 (two-sided Fisher-Pitman

permutation test: P=0.175). d,e, Histogram of the most abundant two-hop relay-

network patterns (d) along with the spatial location of FNI-RPSA to FNI-RPSA
(e) detected by CelINEST on the PDAC_64630 sample (n =1,406 spots; filled
square, tumor; open circle, stroma), highlighted in red. f, Overview of CelINEST-
Interactive. The CelINEST-Interactive display shows a fully interactive network
of vertices (cells or spots) connected by ligand-receptor pairs (left). The display
features a user interface (right) with options to filter genes and select thresholds
for attention scores of communication, as well as a histogram of communication
abundance colored by component. Zoomed insets display a sender stroma

spot and receiver tumor spot participating in FNI-SDCI communication in the
PDAC_64630 sample.
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Semaphorins are the mainligands of plexin receptors; however, some
plexins can also form complexes with other tyrosine-kinase receptors,
such as the hepatocyte growth factor receptor encoded by MET” and
RON encoded by MSTIR™. To further explore differences in the PLXNB2-
MET axis between classical and basal-like tumor cells, we analyzed RNA
sequencing data fromalibrary of ten PDAC patient-derived organoid
models (Fig. 6a-c). Organoid gene expression confirmed that classi-
caltumors exhibit significantly higher MET expression than basal-like
tumors (two-sided Fisher-Pitman permutation test, P=3.18 x 107°%
Fig. 6a,b and Supplementary Note 13). While the role of plexins is
described in other solid tumors, including PDAC, previous studies
explored semaphorins as their predominant ligands”’. Of note, both
NICHES and COMMOT were unable to detect a consistent set of CCC
specific to classical or basal-like regions (Supplementary Figs. 8 and
9), underscoring CelINEST’s unique ability toidentify subtype-specific
CCC.

In contrast to subtype-specific CCC, CelINEST detected LGALS3-
ITGB4 in basal-like and classical mixed regions (Fisher’s exact test,
P=0.621; Supplementary Table 5). Galectin-3 (LGALS3) mediates
tumor-stroma interactions by activating pancreatic stellate cells’.
We observed equally high expression of LGALS3 in both classical and
basal-like organoids (two-sided Fisher-Pitman permutation test,
P=0.175; Fig. 6¢). To determine the potential impact of these signals,
we explored the association between these genes and PDAC using
The Cancer Genome Atlas™. All CelINEST-identified genes were clas-
sified as ‘unfavorable’ in the context of PDAC, and associated with
survival (log-rank test, P=0.0140 for FN1, P=8.50 x 10~ for PLXNB2,
P=1.21x107 for MET, P=6.39 x10™* for ITGB4 and P=1.40 x10™* for
ITGBS). Furthermore, MET, ITGB4 and ITGBS5 achieved high antibody
staining results for PDAC and their gene expression is considered
prognostic by the Human Pathology Atlas®, which highlights them
as potential targets for treatment. Of note, CelINEST’s top-identified
ligand corroborates previous findings that illustrate the critical role
of FNI as a signaling gene against pancreatic cancer based on survival
and gene expression analyses®. Together, these findings suggest that
different subtypes of PDAC use distinct tumor-promoting CCC, which
may impact patient outcomes.

We next sought to characterize differences between our previ-
ously identified ligand-receptor pairs with relay networks within
pancreatic tumor tissue. CelINEST predicted FNI-RPSA to FNI-RPSA,
COL1A1-SDCI to FN1-RPSA, and TGFB1-ITGBS to FNI-RPSA among
the most frequently occurring pattern of this type (Fig. 6d,e and Sup-
plementary Fig.10a,b). These signals promote cell adhesion (FNI and
TGFBI)”, migration (RPSA)®’, metastasis (FN1)®, epithelial-mesenchy-
mal transition (COL1A)* and inflammation (SDC1)®. CelINEST largely
localized FNI-RPSA to FNI-RPSA, the most abundant relay network
in PDAC_64630, to myofibroblast-like cancer-associated fibroblasts,
which arekey drivers of fibrosis in the PDAC tumor microenvironment®*
(Supplementary Fig.10c). These results suggest that CelINEST uncovers
cascades of adhesion and inflammatory networks that would remain
undetected by traditional single ligand-receptor pair analyses.

CelINEST-Interactive is a web-based visualization tool for
exploring communication

To help visualize cell-cell communication on tissues, we developed
CelINEST-Interactive as a web-based data visualization tool (Fig. 6f
and Supplementary Figs. 11 and 12). CelINEST-Interactive features a
3D responsive graphillustrating cells or spots as vertices and ligand-
receptor pairsas directed edges. The user is able to specify the number
of strongest ligand-receptor pairs which updates connected com-
ponents and colors on-the-fly. CelINEST-Interactive also displays a
corresponding histogram listing each unique ligand-receptor pair
stacked by connected components showing their specific region of
tissue. The user canvisualize a particular gene or ligand-receptor pair
onboth the 3D graph and the histogram using a fuzzy search feature.

CelINEST-Interactive is designed with responsiveness in mind for both
mobile and desktop. CelINEST-Interactive is available on GitHub at
https://github.com/schwartzlab-methods/CelINEST-interactive.

Discussion

Detecting communication through ligand-receptor interactionsis nec-
essarytodecipher cellular activity in tissue. Existing scRNA-seq-based
computational methods for identifying CCC in tissue samples often
produce an extensive number of false positives, as they lack cell-cell
proximity information. Recent spatial transcriptomics-based tools
either quantify CCC at cell-population resolution, missing critical rare
communication events, or do not consider patterns of ligand-receptor
usage. We overcome these challenges by introducing CelINEST, which
integrates ligand-receptor information with cell location through a
graph attention network at single-cell or spot resolution. We quantita-
tively evaluated CelINEST and found our model to have superior perfor-
mance against other available methodologies using new benchmarks
of 21 different arrangements of synthetic data representing different
technologies and species. CelINEST consistently captured known CCC
in both healthy and diseased conditions at various resolutions and
dimensions. CelINEST predicted subtype-specific CCC across patients
with pancreatic ductaladenocarcinoma, with associated genes corre-
lating with survivalinindependent cohorts from The Cancer Genome
Atlas and the Human Pathology Atlas.

Existing spatial transcriptomic methods for detecting CCC, such as
COMMOT and NICHES, focus on high coexpression of ligand-receptor
pairs and do not attempt to recognize patterns of activity. However,
patterns may correlate with tissue regions even when lowly expressed.
Using a pattern recognition algorithm may contribute to CelINEST’s
advantage over other methods whenidentifying T cell homing signals
in precise locations of T cell zones in human lymph nodes. Moreover,
CelINEST uses all genes to identify CCC, orders communication based
onlearnedimportance, and spatially pinpoints their location. Notably,
CelINEST does not filter out low-variance ligand-receptor pairs, as this
would prevent the method from detecting well-characterized genes
that belong to informative modules but are stable across the tissue.
CelINEST identified expected signals that were not among the most
highly expressed, indicating theimportance of integrating spatial and
molecular information. These unique capabilities of CelINEST help
associate CCC with a target disease and its subtypes.

Recent methods alternatively use scRNA-seq datafor CCC detec-
tion before mapping ligand-receptor pairs to spatial data'*>*; how-
ever, suchtools only resolve CCCbetween adjacent cells or spotsand do
notdiscriminate between distantligand-receptor mechanisms, such
as paracrine communication, which constitutes the majority of ligand-
receptor databases. In contrast, CelINEST is capable of detecting three
major types of communication: autocrine (self-communication), jux-
tacrine (communicationbetween adjacent cells) and paracrine (com-
munication between nearby, nonadjacent cells). Furthermore, existing
machine-learning-based tools such as GraphComm® use supervised
learning, which s difficult to train due to the unavailability of labeled
data. To overcome the ground-truth data scarcity problem, CelINEST
applies contrastive learning, an unsupervised training approach. This
powerful and generalizable architecture enables CelINEST to accom-
modate dataacross varying resolutions, two or three dimensions, and
healthy or diseased conditions.

To enable this flexibility, CelINEST only requires a ligand-recep-
tor database, and optionally, pathway information with experimental
confidence scores for a priori knowledge. CelINEST reports active
cell-cell communication and relay networks based on their learned
importance and frequency of appearance within the tissue; however, as
spatial transcriptomic dataare asnapshot of expression, alimitation of
CelINEST is that the algorithm cannot determine whether the observed
ligand expressionis truly caused by receptor activation. CelINEST’s pre-
dicted relay-network results are likely events based on learned patterns
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of frequent coexpressed signals from the data which suggest a strong
role of specific CCCinthetissue. CelINEST assigns confidence scores to
the proposed relay networks based on a model of intracellular signals
downstream of a receptor triggering ligand production. As such, Cell-
NEST generates hypotheses that assist users in identifying candidate
ligand-receptor pairs for further validation, which may produce some
false-positive results in noisy conditions thatimpact CCCinatissue.

CelINEST’s underlying model is flexible with the expecta-
tion of integrating additional data types. With the advancement of
spatial-omics technologies, future models may incorporate other data
modalities to improve CCC detection, such as protein or chromatin
accessibility from emerging assays. In addition, an extension of Cell-
NEST may include subcellular information provided by technologies
like MERFISH and Xenium. We anticipate methods like CelINEST that
take full advantage of the spatial proximity of cells will provide new
avenues for determining cellular neighborhoods and their contribu-
tions to health and disease.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
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Methods

CelINEST architecture

CelINEST is an end-to-end solution for processing data directly from
a spatial transcriptomic data structure from programs such as Space
Ranger, detecting strong signals and patterns of communication within
specific regions of tissue, and displaying CCC through an accessible
visualization. There are four main steps in the CelINEST workflow: a
datapreprocessing step, input graph generation step, communication
prediction step and output graph generation step (Fig. 1).

Data preprocessing step. CelINEST takes four inputs: a spatial tran-
scriptomic dataset, aligand-receptor database, athreshold percentile
--threshold gene_ exp (for example, 80th or 98th percentile) to
select highly expressed genes, and a threshold distance - -
neighborhood_threshold as a neighborhood cutoff distance
(Fig.1a-c). The default database provided by our model is acombina-
tion of the CellChat and NicheNet databases, totaling 12,605 ligand-
receptor pairs. For N spots or cells (here called vertices) and M genes
inaspatial transcriptomic dataset, CelINEST generates agene expres-
sion matrix A € RVM, CelINEST calculates the Euclidean distance
between each pair of vertices to generate a physical distance matrix of
dimension D € R¥V, CelINEST uses quantile normalization®*° on the
gene expression matrix to standardize gene distributions across ver-
ticestoenable direct comparisons. For each vertexin the gene expres-
sion matrix, CelINEST considers genes having expression over
--threshold gene_exp percentile (default 98) as active.

Input graph generation step. After preprocessing, CelINEST gener-
ates aninput graph G=(V, E), where V(|V| = N) represents the set of
vertices and E (where |E| is typically over 1 x 10°) represents the set of
neighborhood relations among the vertices in G (Fig. 1d). We add a
neighborhood relation between avertexiandjif the distance between
iandjislessthanorequalto - -neighborhood threshold.Foreach
ligand /and paired receptor rfrom the ligand-receptor database, ifA;,
and A, areactive, CelINEST will insert a directed edge from i toj. Cell-
NEST allows for multiple edges to represent multiple ligand-receptor
pairsbetween two vertices. Of note, an edge between a pair of vertices
does not necessarily mean that acommunication is happening along
that edge, because CCC is highly context-dependent™ and affected
by various epigenetic factors*. An edge is a neighborhood relation
representation between a pair of vertices, which CelINEST evaluates
asaprobable CCC or random coincidence.

We next pass G to the deep-learning module ‘communication
prediction step’ through two input feature matrices: a vertex feature
matrix H, e R*Mand an edge feature matrix H, € RfxIfl. Each column
inH,isavertexinput feature vector (for example, h; for vertex ), which
represents each cell or spot in the dataset. CelINEST uses a one-hot
vector to present each vertex uniquely, so F, = |V| (Fig. 1d). Similarly,
each column in the edge feature matrix, H,, is an edge feature vector
representing an edge (neighborhood relation) in G. The edge feature
vector has dimension F, =3, asit hasthree attributes (Fig. 1d): physical
distance between vertices (for example, d;;from the physical distance
matrix D € RVV), ligand-receptor coexpression score for the corre-
sponding edge (for example, L, x R, from Fig. 1c), and the identifier of
that ligand-receptor pair from the input database (Fig. 1b). We pass
these twoinput feature matricesto the next step, the ‘communication
predictionstep’.

Communication prediction step: overview. The CelINEST archi-
tecture builds on two main deep-learning concepts: graph attention
networks® (GAT) as encoders and deep graph infomax* (DGI) to train
encoders through contrastive learning (Fig. 1e and Supplementary
Fig.13a). Although GAT-based models are traditionally used with a
training set, there is no ground truth for CCC detection, so CelINEST
instead uses DGl for training. We provide implementation functions for

integrating GAT into the DGl model in our GitHub repository located
at https://github.com/schwartzlab-methods/CelINEST/blob/main/
CCC_gat.py.

Communication prediction step: graph attention network. The GAT
generates avertex embedding that encodesinformation about a vertex
iin G along with its neighborhood information, here meaning which
vertices can i communicate with and through which ligand-receptor
pairs. The attention module in the GAT assigns ‘attention scores’ to
each edge based on how necessary and sufficient those edges are to
capture hidden patterns that together reconstruct the input sample.

Let input vertex feature vectors for vertices i andj be hThj € RF,
input edge feature vectors from,to i be €;; € R*,, and the dimensions
of vertex and edge embeddings be F'. The learnable weight matrix for
the linear transformation of vertex features is W, € RF**F, while the
equivalent matrix for edge features is W, e RxF', Then, the attention
score for the edge fromjtoiis

ay; = Tanh@ [W,h; + W,h; + W,&]) M

Thisscoreindicates theimportance of vertex j'sfeaturesto vertex
i.Here, the attention a isalearnable parameter, where a € R*'. Here we
use tanh, as we found increased performance using tanh nonlinearity
instead of the parametric rectified linear unit and rectified linear unit
activation functions, the latter of which was too unstable (Supplemen-
taryFig.13b,c). After learning the attention scores, we apply a Softmax
normalization over all incoming edges to vertex i from its neighbors
N, using

“}, = Softmax jey,(a; ;) 2)

a; jranges fromOtolinanefforttoscaleattentionscores. We use
Softmax normalization for the message propagating principle. Using
the normalized attention scores, we obtain a vertex embedding for i
with

7=o(2a;,,wul17) @)

JEN;

Here, the GAT generates a vertex embedding matrix H, € RIM*F;
however, for communication prediction, we use the attention scores
rather thanthe vertex embeddingto prioritize edgesinset Ebased on
global context. To detect which regions are more active than othersin
theinputsample, we use unnormalized attention scores from equation
(1), asthese scores are globally comparable across the tissue (Supple-
mentary Fig.14a). As such, we use the scores obtained by equation (1)
directly to represent CCC probability. We can scale these scores
between Otoloveralltheedgesin Esuchthatscoresclosertolpresent
ahigher probability of communication.

CelINEST generally assigns higher attention scores to input
edges with high ligand-receptor coexpression scores (Supplemen-
tary Fig. 14b-m). Of note, the conventional way of using normalized
attention scores cannot achieve this goal (Supplementary Fig.14a), so
CelINEST uses the unnormalized attention scores assigned by the GAT.

Communication prediction step: DGI for encoder training. We apply
the contrastive learning model DGI** to train the GAT inan unsupervised
approach. DGl takes the input graph G = (V, E) and applies random
permutation, shuffling edges to form a corrupted graph G. = (V,£"),
where E'is the set of corrupted edges (Supplementary Fig. 13a). We
store the original input graph as G. This contrastive learning approach
has two branches to handle each version of the input graph: the cor-
rupted branch and the original branch.

Both branches use the same GAT encoder with shared learnable
parameters or weight matrices to generate a vertex embedding matrix
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H, € RV The vertex embedding generated from G, through the
original branch is summed to obtain the ‘summary vector’s. This
summary vector captures global information content of the entire
graph. We use a discriminator function to measure the distance
between s from the corrupted graph embedding (negative sample)
andthetrue graphembedding (positive sample). CelINEST maximizes
the mutual information between the summary vector and vertex
embedding from the true graph by optimizing the Jensen-Shannon
divergencebetweenthe negative and positive graphs. This divergence
distance is related to the generative adversarial network distance®.
Through many iterations (approximately 60,000 in our testing),
CelINEST eventually converges to a minimal loss, and we save that
model state.

Output graph generation step: overview. CelINEST uses the sto-
chastic optimization algorithm Adam®, which may introduce small
variationsinthe output of multiple runs. Asan optional step toincrease
the accuracy and stability of communication detection, we run each
experiment multiple times (default of five) with different seeds and
combine the results from each run. Then, we apply postprocessing on
the aggregated result to obtain the final output graph (Fig. 1f).

Output graph generation step: ensemble of multiple runs. We
obtain the ranks of edges based on the attention scores assigned by
each encoder layer for each run. Using the rank product®, we sort by
the aggregated rank for each layer. We then merge the results for both
attention layers, as existing metapath work on GNNs suggests impor-
tant characteristics are present in each layer®. This step also acceptsa
top percentage of communications, - -top_percent,asinputfromthe
user. By default, we select the top - -top_percent =20% as the most
reliable signals for the analyses presented here, as most of the positive
CCCsaredetected withinthe top 20% based on synthetic benchmark-
ing (Supplementary Fig. 15). We select this threshold on both layers
independently. We must select a cutoff point, as the GAT architecture
does not discard any edge by default, only assigning attention scores
where a higher score correlates with importance. Optionally, Cell-
NEST provides a cutoff based on median absolute deviations fromthe
median attention (- -cutoff MaD) and skewness of the distribution
(--cutoff_z_ score)toprovidealternative statistical approaches. In
additionto filtering the CCC based on cutoff criteria, CelINEST option-
ally provides confidence intervals using a bootstrapping technique
invokedwiththe confidence intervalcommand,aswellaspvalues
(Supplementary Notes 14 and 15).

Output graph generation step: postprocessing. This step
postprocesses the list of strong CCC for better visualization and
downstream analysis. We apply a connected component finding
algorithm’® on the strongly communicating - -top_edge count
(user chosen) edges to generate subgraph components. In this way,
we observe subgraphs where all vertices are strongly communicating
with at least one other vertex in the community, suggesting a set of
vertices localized to specific regions. We provide several visualiza-
tion outputs to best quantify CelINEST’s predictions using graph,
list and tabular formats (Fig. 1g,h). Although we count the number
of detected CCCs and sort the ligand-receptor pairs by abundance
for histogram generation, we also provide the option (- -sort__
by attentionScore) to sort by total attention score, which here
resulted insimilar rankings (Supplementary Fig.16). When analyzing
relay networks with commands relay extract,relay cell-
type,and relay confidence, CelINEST outputs relay-network
abundance, spatial location, cell-type proportions and confidence
scores associated with relay networks using graph, table, pie and bar
charts. A detailedlist of generated outputsisavailable on GitHub at
https://github.com/schwartzlab-methods/CelINEST/blob/main/
vignette/user_guide.md.

Synthetic data preparation for benchmarks

To represent different distributions of cells and spots, we compared
methods across three types of benchmarks: equidistant data points
(n=3,000; for example, Visium data), uniformly distributed data
points (n=5,000; for example, MERFISH data) and data points with a
mixture of uniformand Gaussian distributions (n = 5,000) representing
other complex datatypes (Fig. 3f-h). To generate the gene expression
of each data point, werandomly sampled from Gaussian distributions
with varying levels of noise and separate distributions for active and
inactive ligand and receptor genes.

Wegenerated 3,000 equidistant data points representing Visium
spots, each having 10,000 genes. We assigned 10% of genes as ligand
or receptor genes and formed synthetic ligand-receptor pairs with
these genes. The syntheticligand-receptor database generatedin this
way has ~1,400 pairs. In this same way, we sampled 5,000 data points
fromauniformdistribution representing MERFISH cells, each having
350 genes. The synthetic ligand-receptor database generated this
way has 100 pairs with 12% of genes acting as ligand or receptor genes
to approximate observed proportions". Last, we sampled 5,000 data
points froma mixture of uniformand Gaussian distribution represent-
ing single-cell data types, each having 350 genes, with 12% of genes
formingligand-receptor pairs. The synthetic ligand-receptor database
generated this way has 100 pairs.

In the mechanistic model, we changed the criteria of neighbor
selection. For adding ground-truth connections, we considered a
Gaussian distribution around each sender cell such that closer neigh-
borswould have ahigher probability of acting as areceiver cell. In this
way, we drew ligand-receptor pairs with decreasing probability as a
function of distance from asender cell and set amaximum limiton the
number of ligands a receptor can accept.

Notably, while we sought to evaluate standard CCC of a single
ligand-receptor pair between spots or cells, we also introduced new
benchmarks to test the model’s ability to recognize relay networks
by incorporating such patterns in the synthetic data. The relay-based
benchmark models a sender cell i sending a type s signal to areceiver
cellj, after whichjsends atype tsignal to areceiver cell k.

Relay-network generation

CelINEST applies contrastive learning for the representation learning
of input data. During this process, CelINEST assigns higher atten-
tion scores to the CCCs that form repeated relay-network patterns.
We record these highly scored CCC through depth-first search. The
relay-network assignment algorithm starts at an arbitrary vertex in
the CelINEST-derived graph and follows the direction of outgoing
edges (CCC) recursively until there are no more outgoing edges or
a predefined number of hops is reached. Unless otherwise stated,
we here specified two-hop relay networks. CelINEST users may extend
the default to n-hops. The flexibility of the relay-network recovery
step allows us to apply this process to other method outputs as
well, for example, on COMMOT and NICHES (Supplementary
Fig.17a-d).

Intracellular signaling pathway generation

CelINEST builds directed knowledge graphs of signaling pathways
from areceptor node down to transcription factors ina manner con-
ceptually similar to SpaTalk® and FlowSig®*. CelINEST searches up to
a user-defined maximum hops (default - -num_hops =10 hops for
memory considerations). Using breadth-first search from the recep-
tor node, we identify the path to all downstream transcription factor
nodes as in SPAGI®®, aggregating their gene expression. We provide
options to either include the gene expression of the downstream
transcription factor only or both the genes encoding proteins in the
signaling pathway and the transcription factor genes, weighted or
unweighted by the previously calculated positive experimental score
values between nodes.
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Relay-network confidence scoring

CelINEST assigns a confidence score to eachrelay network by construct-
ing a putative intracellular network between the receptor and subse-
quentligand of the second vertex. CelINEST creates this network using
breadth-first search to identify paths that link the receptor protein
to a transcriptional activator of the ligand using the aforementioned
interaction databases. Due to memory considerations, we prune the
protein-proteininteraction database by minimum confidence scores
atfivethresholds from0.1to 0.5. CelINEST then computes thefirst path
found from the source to target node for each minimum edge weight.
CelINEST nominates the path with the highest cumulative confidence
score, which is calculated as the product of the experimental confi-
dencescores reported by the interaction databases along the path.

Spatial transcriptomics of human patients with pancreatic
cancer

Two solid tumor biospecimens were collected from the pancreas of
two patients with stage IIB PDAC (PDAC_64630, 76-year-old male;
PDAC_140694, 83-year-old female). Both biospecimens were col-
lected from the University Health Network Biospecimens Program
(Toronto, Canada). Ethical approval was obtained through the Uni-
versity Health Network Research Ethics Board (13-6377). Tumors
were collected at the time of resection. Samples were stabilized for
approximately 3 h at 4 °C until long-term preservation (embedded
in optimal-cutting-temperature compound). Samples were stored
at —80 °C until used. The cases were selected according to have
>30% tumor cellularity. The regions of interest for capture areas
(6.5 x 6.5 mm) were selected, targeting tumor areas with representa-
tive subtype morphologies®. The 10-uM cuts were placed into 10x
Genomics Visium FFPE spatial gene expression slides from selected
trimmed tissue areas. Spatial transcriptomics using the Visium plat-
form was carried out according to manufacturer’s instructions (10x
Genomics, part no. 1000200, protocol CGO00160 RevB, CG000239
RevD). Sequencing was performed on the lllumina NovaSeq 6000
platform with paired-end reads according to 10x Genomics specifica-
tions. Datawas processed using Space Ranger (v.2.0.0) and mappedto
the GRCH38v.93 genome assembly.

Annotation of pancreatic cancer samples

Histology categories of tumor and stroma were assigned based on
the following features. Tumor: malignant cells arranged in any archi-
tecture of glands, cords, strands, solid sheets and single cells”’; and
stroma: nontumor tissue surrounding tumor cells, composed mainly
of fibroblasts, myofibroblasts and collagen fibers®. Transcriptomic
subtype annotations were assigned using Loupe Browser v.6.4.1 (10x
Genomics) according to the log, Feature Sum filter using a previously
determined subtype gene list™.

Preparation of PDAC patient-derived organoid library

Anorganoid library with matching whole-transcriptome sequencing
from laser microcapture-enriched tumors was established from 44
cases with resectable (stage I/1l) and advanced (stage I1I/IV) PDAC.
Tumor transcriptomic subtype classifications were obtained from pub-
lished data”™. Advanced organoids were generated by University Health
Network Living Biobank as part of a clinical trial (NCT02750657) and
resectable organoids were generated at the Notta Laboratory (CAPCR
13-6377,21-5648) following established methods’. In brief, organoids
were cultured in DMEM/F-12 medium (Fisher, 12634-010) supple-
mented with B-27 supplement 1x (Life Technologies, 17504-044), Glu-
taMAX (2 mM; Life Technologies, 35050-061), HEPES (10 mM; Fisher,
15630080), nicotinamide (10 mM; Sigma, N0636-100G), N-acetyl-L
cysteine (1.25 mM; Sigma, A9165-5G), gastrin I (10 nM; sigma, G9020-
250UG), Noggin (100 ng ml™; Peprotech, 120-10C-500UG), FGF-10
(100 ng mlI™; Biotechne, NBP2-34927-5UG), A83-01(0.5 uM mlI™%; TOC-
RIS, 2939), Y-27632 (10 uM; Selleckchem, S1049-50MG), EGF (50 ng ml™%;

Peprotech, AF-100-15-500UG), CHIR (2.5 uM; Tocris, 4423), Wnt-3a
(20% v/v, condition medium by the University Health Network (UHN)
Living Biobank), R-spondinl (30% v/v, condition media by UHN living
biobank) and antibiotics, with medium replacement twice a week.
Organoids were passaging using TrypLE express enzyme (Thermo
Fisher 12605028) at 37 °C until dissociation. After passage 6, RNA
was extracted from dissociated organoids. Sequencing libraries were
prepared using the Smart-3SEQ protocol®” from 10 ng of RNA. Pools
of 20 libraries were sequenced on the [llumina NextSeq 500 using 150
cycleskitv.2 for Single Read 150 on a Mid-Output flow cell.

Development of CelINEST-Interactive

CelINEST-Interactive uses vanilla Javascript and HTML on the front
end with Tailwind CSS for styling. We used D3.js for the histogram and
Vasco Asturiano’s 3D-force-graph library (which extends off of D3.js
and Three.js) for the responsive graph. To obtain the data for display,
CelINEST-Interactive uses jQuery tosend AJAX requests to the back-end
server as well as to deep-copy current graph data. The back end uses
the Django framework. After receiving a request from the front end
with edge count as a parameter, a Python script reads all CSV records
stored locally and returns graphable nodes and edges inJSON format.
Necessary files to be read include complete records for cell (or spot),
cell coordinates, cell annotations (if available) and the list of top 20%
CCC detected by CelINEST. CelINEST-Interactive further processes
these data by separating vertices into connected components and
assigning colors using NumPy, Pandas, SciPy and Matplotlib libraries.
CelINEST-Interactive is available on GitHub at https://github.com/
schwartzlab-methods/CelINEST-interactive.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

PDAC spatial transcriptomic data for PDAC_64630 and PDAC_140694
are available on the Gene Expression Omnibus under accession
no. GSE262245. The spot annotations for both samples are avail-
able on GitHub at https://github.com/schwartzlab-methods/Cell-
NEST _paper_figures/blob/main/NEST _figures_input_PDAC.7z. We
obtained spatial transcriptomic data of human lymph nodes from
https://www.10xgenomics.com/datasets/human-lymph-node
-1-standard-1-0-0, mouse hypothalamic preoptic region from https://
doi.org/10.5061/dryad.8t8s248, LUAD from the Gene Expression
Omnibus under accession no. GSE189487 and human colorectal
cancer (Visium HD) from https://www.10xgenomics.com/datasets/
visium-hd-cytassist-gene-expression-libraries-of-human-crc. Pro-
cessed ligand-receptor and signaling pathway databases are available
on GitHub at https://github.com/schwartzlab-methods/CelINEST/
tree/main/database.

Code availability

CelINEST is available at GitHub at https://github.com/schwartzlab-
methods/CelINEST, on Zenodo at https://doi.org/10.5281/
zenodo.15459529 (ref. 98) or as a Singularity image at https://
cloud.sylabs.io/library/fatema/collection/nest_image.sif with a
tutorial on GitHub at https://github.com/schwartzlab-methods/
CelINEST#vignette. CelINEST-Interactive is available at https://github.
com/schwartzlab-methods/CelINEST-interactive and on Zenodo at
https://doi.org/10.5281/zenod0.15459868 (ref. 99). Scripts for generat-
ing the figures and plots of the manuscript can be found on GitHub at
https://github.com/schwartzlab-methods/CelINEST_paper figures.
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Extended Data Fig.1| CelINEST detects localized signaling in tumor and
stromal environments in lung adenocarcinoma tissue assayed with Visium.
CelINEST detects localized signaling in tumor and stromal environments in lung
adenocarcinoma tissue assayed with Visium (n=4,095 spots)*. a, CelINEST-
generated communication graph showing regions with strong CCC colored

by component. Gray indicates regions with no or weak CCC. The top right red
component has thinner arrow widths toaccommodate very high communication
frequency. The boxes outline three regions: cancer (orange), lymph (green),

and stromal (blue) based on prior histological annotations[35]. b, Histogram
displaying ligand-pair receptor abundance (y axis) froma, colored by connected

component. The APOE-SDCI and FNI-RPSA signals (black triangles, bold) are
exclusively detected by CelINEST. CelINEST also detects many TGFB signals
(blue text). c-e, Location of specific tumor and stromasignals found inb.

¢, Communication fromafiltered for APOE-SDCI signals. This is the most
abundant signal and is mainly found in cancer-annotated regions. d,e, Gene
expression of APOE (d) and SDCI (e) on a, found mainly in cancer regions.

f,g, Distribution of CelINEST-identified relay-network patterns. f, Histogram
showing the abundance of each two-hop relay-network pattern with PSAP-LRPI
to APOE-LRP1 communication highlighted inred. g, The spatial location of the
PSAP-LRPI to APOE-LRPI pattern from fon the tissue (red).
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Extended Data Fig. 2| CelINEST detectslocalized signaling in tumor and
stromal environments in colorectal cancer tissue assayed with Visium HD.
CelINEST detects localized signaling in tumor and stromal environments in
colorectal cancer tissue assayed with Visium HD (n = 24,068 cells). a, H& Eimage
of colorectal cancer tissue with adenoma and invasive cancer regions outlined
inblack. b, CelINEST-detected component graph, where each component is
shown with adistinct color and represents a disjoint network of CCC. Component
32 (black boundary) aligns with the invasive cancer regionin a. ¢, Histogram
showing the abundance of each CelINEST-detected CCC on the colorectal cancer

tissue froma, where each communication is mapped to a particular component
inbwith amatching color. APP-ITGA6 and APP-TGFBR2 are more frequently found
incomponent 32 (black boxes). d,e, Distribution of relay-network patterns along
with their location detected by CelINEST on the tissue ina. d, The most abundant
signals detected by CelINEST, with the signal C3-CXCR4 to C3-LRPI highlighted in
red. e, C3-CXCR4 to C3-LRPI signals on the tissue. This relay pattern is commonly
found in the tumor microenvironment region®, recapitulated by CelINEST.
Theinvasive cancer region fromais outlined in black.
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Extended Data Table 1| Comparison of CelINEST with other latest state-of-the-art methods for CCC detection

CCC Method Priors beyond LR LR output §ngle-cell Unsupervised  Non-adjacent CCC  Spatial distance  Relay network  Year
SpaCCC Pretrained scGPT & cell types v x v 2 hops x x 2024
NicheCompass  Gene programs x x v x v x 2024
Cytosignal v v N/A 2 hops v x 2024
TENET x v x v v x 2024
CellChat Cofactors v x N/A v v x 2024
TWCOM v x N/A v v x 2024
Clarify Gene regulatory networks x v x x v x 2023
holoNET Target genes Target gene v v 2 hops v x 2023
NICHES v v v v v x 2023
COMMOT Pathways v v v v v x 2023
Giotto v x N/A v v x 2021
CelINEST v v v v v v 2024

Comparison of CellNEST with other latest state-of-the-art methods for CCC detection based on: (1) prior requirements beyond a ligand-receptor (LR) database, (2) whether the output
returns name of the ligand-receptor pairs and (3) at single-cell resolution, (4) an unsupervised training strategy, (5) how far CCC is detected on the tissue, (6) integration of spatial distance,
(7) relay-network capability, and (8) publication or release year. CelINEST was the only method capable of every listed feature, including CelINEST’s unique ability to identify and reconstruct

relay networks.
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Software and code

Policy information about availability of computer code

Data collection Visium Technology (Visium Spatial Gene Expression Starter Kit 10X Genomics 1000200)
Space Ranger 2.0.0

Data analysis CellNEST: https://github.com/schwartzlab-methods/CelINEST
Packages: aiohttp==3.9.3, aiosignal==1.3.1, altair==5.2.0, anndata==0.10.6, array_api_compat==1.5.1, asgiref==3.8.1, asttokens==2.4.1,
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jsonschema==4.21.1, jsonschema-specifications==2023.12.1, kiwisolver==1.4.5, llvmlite==0.42.0, MarkupSafe==2.1.5, matplotlib==3.8.3,
matplotlib-inline==0.1.6, multidict==6.0.5, natsort==8.4.0, networkx==3.2.1, numba==0.59.1, numpy==1.26.4, packaging==24.0,
pandas==2.2.1, parso==0.8.3, patsy==0.5.6, pexpect==4.9.0, pillow==10.2.0, prompt-toolkit==3.0.43, psutil==5.9.8, ptyprocess==0.7.0, pure-
eval==0.2.2, Pygments==2.17.2, pygraphviz==1.12, pynndescent==0.5.11, pyparsing==3.1.2, python-dateutil==2.9.0.post0, pytz==2024.1,
pyvis==0.3.2, gnorm==0.8.1, referencing==0.34.0, requests==2.31.0, rpds-py==0.18.0, scanpy==1.9.8, scikit-learn==1.4.1.post1, scipy==1.12.0,
seaborn==0.13.2, session-info==1.0.0, six==1.16.0, sqlparse==0.4.4, stack-data==0.6.3, statsmodels==0.14.1, stdlib-list==0.10.0,
threadpoolctl==3.4.0, toolz==0.12.1, torch==1.13.1+cu117, torch-scatter==2.1.2, torch-sparse==0.6.18, torch_geometric==2.5.2,
torchaudio==0.13.1+cul17, torchvision==0.14.1+cull7, tqdm==4.66.2, traitlets==5.14.2, typing_extensions==4.10.0, tzdata==2024.1, umap-
learn==0.5.5, urllib3==2.2.1, wcwidth==0.2.13, yarl==1.9.4

Scripts for manuscript figure generation: https://github.com/schwartzlab-methods/NEST_paper_figures
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GRCH38 v93.

Interactive CellNEST: https://github.com/schwartzlab-methods/CelINEST-interactive
Packages: altair 5.2.0, Django 5.0.2, django-cors-headers 4.3.1, matplotlib 3.8.3, numpy 1.26.4, pandas 2.2.0, scipy 1.12.0, Fuse.js 6.6.2, D3.js
7.9.0, jQuery 3.6.4, 3d-force-graph 1.77.0, Three.js 0.160.1, chroma.js 2.4.2, Tailwind CSS 3.4.16, Font Awesome Free 6.5.1

Benchmarking and validation packages:
CellChat 2.1.2, Giotto 1.1.2, TWCOM 1.0, CytoSPACE 1.0.6a0, decoupleR 1.8.0, STRING 12.0, NicheNet 2.0.0, scikit-posthocs 0.7.0, scipy
1.11.3, DESeq?2 1.44.0, coin 1.4.3

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

PDAC spatial transcriptomic data for PDAC_64630 and PDAC_140694 are available on the Gene Expression Omnibus under accession number GSE262245. The spot
annotations for both samples are available at https://github.com/schwartzlab-methods/CelINEST_paper_figures/blob/main/NEST_figures_input_PDAC.7z. We
obtained spatial transcriptomic data of human lymph node from https://www.10xgenomics.com/datasets/human-lymph-node-1-standard-1-0-0, mouse
hypothalamic preoptic region from https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248, LUAD from the Gene Expression Omnibus under accession
number GSE189487, and human colorectal cancer (Visium HD) from https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene-expression-libraries-of-
human-crc. Processed ligand-receptor and signaling pathway databases are available at https://github.com/schwartzlab-methods/CelINEST/tree/main/database.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We used two biological samples one female and one male pancreatic cancer resection.

Reporting on race, ethnicity, or We do not report race or ethnicity of the samples used.
other socially relevant

groupings

Population characteristics Patients were treatment-naive and diagnosed with pancreatic ductal adenocarcinoma; PDAC_64630 (76-year-old male) and
PDAC_140694 (83-year-old female).

Recruitment The samples were collected retrospectively from University Heath Network Biospecimens Program (Toronto, Canada)

Ethics oversight The samples were collected under ethical approval (CAPCR 13-6377) of the University Health Network Research Ethics Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We include two human pancreatic cancer resections as proof of concept, we do not calculate sample size.
Data exclusions  All data was included.

Replication All the datasets and code are available.

Randomization  Randomization is not relevant to the study as there was no treatment arm.

Blinding Randomization is not relevant to the study as there was no treatment arm.
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Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization

Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.qg. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Describe the data collection procedure, including who recorded the data and how.
Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your studly.

Did the study involve field work? |:| Yes |:| No
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Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies g |:| ChIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

X X X X X X X
pguooogg

Plants

Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  yame any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,
export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.




Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.
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Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  CAPCR 13-6377

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[ ] public health

|:| National security

|:| Crops and/or livestock
|:| Ecosystems

|:| Any other significant area
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Experiments of concern

Does the work involve any of these experiments of concern:
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Plants

Seed stocks not applicable

Novel plant genotypes  not applicable

Authentication not applicable

ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEQO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChiP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community

repository, provide accession details.




Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group’ is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Instrument Identify the instrument used for data collection, specifying make and model number.
Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a

community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state,; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.q. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MINI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).
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Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based [ ] Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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