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Deep-learning-based gene perturbation  
effect prediction does not yet outperform 
simple linear baselines
 

Constantin Ahlmann-Eltze    1,2,3  , Wolfgang Huber    2 & Simon Anders    1

Recent research in deep-learning-based foundation models promises to 
learn representations of single-cell data that enable prediction of the effects 
of genetic perturbations. Here we compared five foundation models and 
two other deep learning models against deliberately simple baselines for 
predicting transcriptome changes after single or double perturbations. 
None outperformed the baselines, which highlights the importance of 
critical benchmarking in directing and evaluating method development.

The success of large language models in knowledge representation has 
spawned efforts to apply the foundation model concept to biology1–3. 
Several single-cell foundation models trained on transcriptomics data 
from millions of single cells have been published4–6. Two recent mod-
els—scGPT7 and scFoundation8—claim to be able to predict gene expres-
sion changes caused by genetic perturbations.

In the present study, we benchmarked the performance of these 
models against GEARS9 and CPA10 and against deliberately simplistic 
baselines. To provide additional perspective, we also included three 
single-cell foundation models—scBERT4, Geneformer5 and UCE6—that 
were not explicitly designed for this task but can be repurposed for it 
by combining them with a linear decoder that maps the cell embedding 
to the gene expression space. In the figures, we marked their results 
with an asterisk.

We first assessed prediction of expression changes after double  
perturbations. We used data by Norman et al.11, in which 100 individual 
genes and 124 pairs of genes were upregulated in K562 cells with a CRISPR 
activation system (Extended Data Fig. 1). The phenotypes for these 224 per-
turbations, plus the no-perturbation control, are logarithm-transformed 
RNA sequencing expression values for 19,264 genes.

We fine-tuned the models on all 100 single perturbations and on 
62 of the double perturbations and assessed the prediction error on 
the remaining 62 double perturbations. For robustness, we ran each 
analysis five times using different random partitions.

For comparison, we included two simple baselines: (1) the ‘no 
change’ model that always predicts the same expression as in the con-
trol condition and (2) the ‘additive’ model that, for each double per-
turbation, predicts the sum of the individual logarithmic fold changes 
(LFCs). Neither uses the double perturbation data.

All models had a prediction error substantially higher than the  
additive baseline (Fig. 1a,b). Here, prediction error is the L2 distance 
between predicted and observed expression values for the 1,000 most 
highly expressed genes. We also examined other summary statistics, such 
as the Pearson delta measure, and L2 distances for other gene subsets: the 
n most highly expressed or the n most differentially expressed genes, for 
various n. We got the same overall result (Extended Data Fig. 2).

Next, we considered the ability of the models to predict genetic 
interactions. Conceptually, a genetic interaction exists if the phenotype 
of two (or more) simultaneous perturbations is ‘surprising’. We opera-
tionalized this as double perturbation phenotypes that differed from 
the additive expectation more than expected under a null model with 
a Normal distribution (Extended Data Fig. 3 and Methods). Using the 
full dataset, we identified 5,035 genetic interactions (out of potentially 
124,000) at a false discovery rate of 5%.

We then obtained genetic interaction predictions from each model 
by computing, for each of its 310,000 predictions (1,000 read-out 
genes and 62 held-out double perturbations across five test–training 
splits), the difference between predicted expression and additive 
expectation, and, if that difference exceeded a given threshold D, we 
called a predicted interaction. We then computed, for all possible 
choices of D, the true-positive rate (TPR) and the false discovery propor-
tion, which resulted in the curves shown in Fig. 1c. The additive model 
did not compete as, by definition, it does not predict interactions.

None of the models was better than the ‘no change’ baseline. 
The same ranking of models was observed when using other metrics 
(Extended Data Fig. 4).

To further dissect this finding, we classified the interactions as 
‘buffering’, ‘synergistic’ or ‘opposite’ (Fig. 1d,e and Methods). All models 
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Fig. 1 | Double perturbation prediction. a, Beeswarm plot of the prediction errors 
for 62 double perturbations across five test–training splits. The prediction error is 
measured by the L2 distance between the predicted and the observed expression 
profile of the n = 1,000 most highly expressed genes. The horizontal red lines show 
the mean per model, which, for the best-performing model, is extended by the 
dashed line. b, Scatterplots of observed versus predicted expression from one 
example of the 62 double perturbations. The numbers indicate error measured 
by the L2 distance and the Pearson delta (R2). c, TPR (recall) of the interaction 
predictions as a function of the false discovery proportion. FN, false negative; FP, 
false positive; TP, true positive. d, Schematic of the classification of interactions 

based on the difference from the additive expectation (the error bars show the 
additive range). e, Bar chart of the composition of the observed interaction 
classes. f, Top: scatterplot of observed versus predicted expression compared 
to the additive expectation. Each point is one of the 1,000 read-out genes under 
one of the 62 double perturbations across five test–training splits. The 500 
predictions that deviated most from the additive expectation are depicted 
with bigger and more saturated points. Bottom: mosaic plots that compare the 
composition of highlighted predictions from the top panel stratified by the 
interaction class of the prediction. The width of the bars is scaled to match the 
number of instances. Source data for Fig. 1 are provided. expr., expression.
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mostly predicted buffering interactions. The ‘no change’ baseline 
cannot, by definition, find synergistic interactions, but also the deep 
learning models rarely predicted synergistic interactions, and it was 
even rarer that those predictions were correct (Fig. 1f).

To our surprise, we often found the same pair of hemoglobin 
genes (HBG2 and HBZ) among the top predicted interactions, across 
models and double perturbations (Extended Data Fig. 5). Examining the 
data, we noted that all models except Geneformer and scFoundation 
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Fig. 2 | Single perturbation prediction. a, Beeswarm plot of the prediction 
errors for 134, 210 and 24 unseen single perturbations across two test–training 
splits (Methods). The prediction error is measured by the L2 distance between 
the mean predicted and observed expression profile of the n = 1,000 most 
highly expressed genes. The horizontal red lines show the mean per model, 
which, for the best-performing model, is extended by the dashed line. DL, deep 
learning; LM, linear model. b, Schematic of the LM and how it can accommodate 

available gene (G) or perturbation (P) embeddings. c, Forest plot comparing the 
performance of all models relative to the error of the ‘mean’ baseline. The point 
ranges show the overall mean and 95% confidence interval of the bootstrapped 
mean ratio between each model and the baseline for 134, 210 and 24 unseen 
single perturbations across two test–training splits. The opacity of the point 
range is reduced if the confidence interval contains 0. Source data for Fig. 2  
are provided.
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predicted LFC ≈ 0—like the ‘no change’ baseline—for the double per-
turbation of these two genes, despite their strong individual effects 
(Extended Data Fig. 6). More generally, we noted that, for most genes, 
the predictions of scGPT, UCE and scBERT did not vary across perturba-
tions, and those of GEARS and scFoundation varied considerably less 
than the ground truth (Extended Data Fig. 7).

GEARS, scGPT and scFoundation also claim the ability to predict 
the effect of unseen perturbations. GEARS uses shared Gene Ontol-
ogy12 annotations to extrapolate from the training data, whereas the 
foundation models are supposed to have learned the relationships 
between genes during pretraining to predict unseen perturbations.

To benchmark this functionality, we used two CRISPR interfer-
ence datasets by Replogle et al.13 obtained with K562 and RPE1 cells 
and a dataset by Adamson et al.14 obtained with K562 cells (Extended 
Data Fig. 1).

As a baseline, we devised a simple linear model. It represents each 
read-out gene with a K-dimensional vector and each perturbation with 
an L-dimensional vector. These vectors are collected in the matrices G, 
with one row per read-out gene, and P, with one row per perturbation. 
G and P are either obtained as dimension-reducing embeddings of the 
training data (Methods) or provided by an external source (see below). 
Then, given a data matrix Ytrain of gene expression values, with one row 
per read-out gene and one column per perturbation (that is, per condi-
tion pseudobulk of the single-cell data), the K × L matrix W is found as

argmin
W

||Ytrain − (GWPT + bbb)||22, (1)

where b is the vector of row means of Ytrain (Fig. 2b).
We also included an even simpler baseline, b, the mean across the 

perturbations in the training set, following the preprints by Kernfeld 
et al.15 and Csendes et al.16 that appeared while this paper was in revision.

None of the deep learning models was able to consistently outper-
form the mean prediction or the linear model (Fig. 2a and Extended 
Data Fig. 8). We did not include scFoundation in this benchmark, as it 
required each dataset to exactly match the genes from its own pretrain-
ing data, and, for the Adamson and Replogle data, most of the required 
genes were missing. We also did not include CPA, as it is not designed 
to predict the effects of unseen perturbations.

Next, we asked whether we could find utility in the data represen-
tations that GEARS, scGPT and scFoundation had learned during their 
pretraining. We extracted a gene embedding matrix G from scFounda-
tion and scGPT, respectively, and a perturbation embedding matrix 
P from GEARS. The above linear model, equipped with these embed-
dings, performed as well or better than scGPT and GEARS with their 
in-built decoders (Fig. 2c). Furthermore, the linear models with the 
gene embeddings from scFoundation and scGPT outperformed the 
‘mean’ baseline, but they did not consistently outperform the linear 
model using G and P from the training data.

The approach that did consistently outperform all other mod-
els was a linear model with P pretrained on the Replogle data (using 
the K562 cell line data as pretraining for the Adamson and RPE1 data 
and the RPE1 cell line for the K562 data). The predictions were more 
accurate for genes that were more similar between K562 and RPE1 
(Extended Data Fig. 9). Together, these results suggest that pretraining 
on the single-cell atlas data provided only a small benefit over random 
embeddings, but pretraining on perturbation data increased predic-
tive performance.

In summary, we presented prediction tasks where current foun-
dation models did not perform better than deliberately simplistic 
linear prediction models, despite significant computational expenses 
for fine-tuning the deep learning models (Extended Data Fig. 10). 
As our deliberately simple baselines are incapable of representing 
realistic biological complexity, yet were not outperformed by the 
foundation models, we conclude that the latter’s goal of providing 

a generalizable representation of cellular states and predicting the 
outcome of not-yet-performed experiments is still elusive.

The publications that presented GEARS, scGPT and scFoundation 
included comparisons against GEARS and CPA and against a linear 
model. Some of these comparisons may have happened to be particu-
larly ‘easy’. For instance, CPA was never designed to predict effects of 
unseen perturbations and was particularly uncompetitive in the double 
perturbation benchmark. The linear model used in scGPT’s benchmark 
appears to have been set up such that it reverts to predicting no change 
over the control condition for any unseen perturbation.

Our results are in line with previously published benchmarks that 
assessed the performance of foundation models for other tasks and 
found negligible benefits compared to simpler approaches17–19. Our 
results also concur with two previous studies showing that simple 
baselines outperform GEARS for predicting unseen single or double 
perturbations20,21. Since the release of our paper as a preprint, several 
other benchmarks15,16,22–27 were released that also show that deep learn-
ing models struggle to outperform simple baselines. Two of these 
preprints15,16 suggested an even simpler baseline than our linear model 
(equation (1)), namely, to always predict the overall average, and we 
have included this idea here.

One limitation of our benchmark is that we used only four datasets. 
We chose these as they were used in the publications presenting GEARS, 
scGPT and scFoundation. Another limitation is that all datasets are from 
cancer cell lines, which, for example, Theodoris et al.5 excluded from 
their training data because of concerns about their high mutational bur-
den. We also did not attempt to improve the original quality control, for 
example, by excluding perturbations that did not affect the expression 
of their own target gene and, thus, might not have worked as intended.

Deep learning is effective in many areas of single-cell omics28,29. 
However, prediction of perturbation effects still remains an open chal-
lenge, as our present work shows. We expect that increased focus on 
performance metrics and benchmarking will be instrumental to facili-
tate eventual success in applying transfer learning to perturbation data.
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Methods
Data
We ran the double perturbation benchmark on the data produced by 
Norman et al.11 and reprocessed by scFoundation. For the single gene 
perturbation benchmarks, we used the data from Adamson et al.14 and 
Replogle et al.13 as provided by GEARS (details in ‘Data availability’).

Software versions and parameters
We ran GEARS version 0.1.2, scGPT version 0.2.1, scFoundation 
(which is built on top of a GEARS version 0.0.2 fork), CPA version 
0.8.8, Geneformer version 0.1.0, scBERT from commit hash 262fd4b9 
with model weights provided by the authors and UCE at commit 
hash 8227a65c. We used each model, as much as possible, with their 
default parameters. All scripts that were used to predict the expres-
sion changes are available on GitHub (https://github.com/const-ae/
linear_perturbation_prediction-Paper/tree/main/benchmark/src).

•	 GEARS and scFoundation provide a straightforward application 
programming interface (API) to predict the expression change 
after perturbation. We limited the fine-tuning time to 3 days, 
which meant that we trained scFoundation for five epochs.

•	 For scGPT, we used the same parameters and code as in their 
tutorial for perturbation prediction.

•	 For CPA, we used the code from their tutorial on how to predict 
combinatorial CRISPR perturbations on the Norman dataset.

•	 For Geneformer, we fine-tuned the provided model by predict-
ing the perturbation labels of the training data. We then used 
the built-in in silico perturbation functionality to calculate the 
perturbed embedding.

•	 UCE is designed for zero-shot use, which means that it does not 
need to be fine-tuned. We report results from the four-layer ver-
sion of UCE (as we found no performance difference between 
the four-layer and 33-layer versions). UCE does not provide 
functionality for in silico perturbation, so we calculated the 
post-perturbation embedding by taking the expression matrix 
for the unperturbed cells and overwrote the rows for the genes 
that we wanted to perturb with the values from the ground 
truth expression matrix. We, thus, tried to ensure that we 
tested the model under the best conditions, accepting that test 
data leakage could theoretically give the model an advantage 
over the other models.

•	 We fine-tuned scBERT on predicting the perturbation labels of 
the training data. We then used the same approach to calculate 
the embedding after in silico perturbation that we used for UCE.

To predict the expression changes from the embeddings of  
Geneformer, UCE and scBERT, we added a linear decoder to the models. 
We fitted a ridge regression model that predicted the gene expression 
of the perturbed cells from the perturbed embeddings of the training 
data. We then used that ridge regression to predict the gene expression 
of the test data from the corresponding perturbed embeddings and 
continued with the mean of the predicted values per perturbation.

To reduce the probability that we understate the performance for 
any of the models, due to wrong or suboptimal operation by ourselves, we 
reached out to the original authors of the benchmarked models and asked 
them to review our code. The authors of CPA perceived a problem with 
our code and submitted a fix; however, as the new code had worse perfor-
mance than the original version, here we report results of the original code.

Double perturbation benchmark setup
For the double perturbation benchmark, we split the data into test and 
training sets. We assigned all single-gene perturbations and a randomly 
chosen half of the double perturbations to the training set and used 
the other half of the double perturbations as the test set. To reduce 
stochastic effects on our results, we repeated the whole procedure, 
including the random test–training splitting, five times.

We used two baseline models: ‘no change’ and ‘additive’. The ‘no 
change’ model ‘predicted’, for each double perturbation, the expression 
values seen in the control condition ( yyy∅). The ‘additive’ model predicts 
the expression after a double perturbation of genes A and B as

̂yyyadd = yyyA + yyyB − yyy∅, (2)

where yA and yB are the mean observed expression vectors for the single 
perturbation of genes A and B, respectively.

We defined genetic interactions as follows. For each of the 124 
double perturbations and the 1,000 read-out genes, we computed the 
difference between the observed expression value and the additive 
expectation. These values showed a mixture distribution composed of 
a large component with a single narrow peak around 0 (corresponding 
to a majority of non-interactions) and a smaller component consisting 
of two pronounced tails on either side (corresponding to interactions) 
(Extended Data Fig. 3). To decompose this mixture, we used Efron’s 
empirical null approach30, as implemented in the ‘locfdr’ package 
(version 1.1-8).

We further classified the interactions, if the two individual LFCs 
had the same sign, as:

•	 ‘buffering’, if the LFC was between 0 and the additive expectation
•	 ‘synergistic’, if it exceeded the additive expectation
•	 ‘opposite’, if its sign differed from that of the individual 

perturbations

If the individual effects were in opposite directions, ‘other’. Accord-
ing to this classification, 2.3% of the read-out gene expression values 
across all double perturbation were buffering interactions; 0.6% were 
synergistic; and zero were in the opposite direction of the individual 
perturbations.

Single perturbation benchmark setup
For the single perturbation benchmark, we used the data as provided by 
GEARS and also used its ‘simulation’ test–training splitting procedure, 
which we repeated twice.

To predict the effects of unseen single perturbations, we used two 
baselines. The ‘mean’ model calculated the mean of the expression values 
in the training data. The ‘linear model’ is implied in equation (1). We set b 
to the row means of the training data (bbb = 1/N∑iY

train
∶i ). We find G and P as 

follows. Perform a principal component analysis (PCA) on Ytrain and use 
the top K principal components for G. Then, subset this G to only the rows 
corresponding to genes that were perturbed in the training data (and, 
hence, appear as columns in Ytrain) and use the resulting matrix for P.

Then, we find W using the normal equations

W = (GTG + λI)−1GT(Ytrain − bbb)P(PTP + λI)−1, (3)

where we use a ridge penalty of λ = 0.1 for numerical stability. Having 
found a W, we can use it for prediction, Ŷ = GW ̃PT + bbb, where now ̃P is 
the matrix formed by the rows of G corresponding to genes perturbed 
in the test data.

For the single perturbation analysis, not all models were able to 
predict the expression change for all unseen perturbations. For exam-
ple, the linear model with G and ̃P from the training data could only 
predict perturbations where the target genes were also part of the 
read-out genes. To evaluate all models on a consistent set of perturba-
tions, we restricted our analysis to those perturbations for which we 
had predictions from all models (73 perturbations for Adamson, 398 
for Replogle K562 and 629 for Replogle RPE1).

We converted GEARS’ Gene Ontology annotations into a perturbation 
embedding P by computing a spectral embedding31,32 of the pathway mem-
bership matrix. We extracted the gene embedding G from scGPT following 
their tutorial on gene regulatory inference. For scFoundation, we extract 
G directly from the pretrained model weights (‘pos_emb.weight’). For the 
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linear model with P from the Replogle data, we fitted a 10-dimensional PCA 
on the columns of the matrix with the perturbation means of the reference 
data. We fitted all linear models as described in the main text with K = 10; 
if G or P was provided, we simply replaced the estimate from the training 
data with the provided matrix before calculating W.

The additive model is a special case of the linear model (equation 
(1)) where the gene embedding is simply the single perturbation data, 
without any further transformation or dimension reduction (G = Ysingle); 
the perturbation embedding P is a binary coding, where each column 
vector has 1s in the rows of the perturbed genes and is 0 otherwise; and 
W is an identity matrix and bbb = −yyy∅.

Evaluation metrics
We measured the prediction error using the distance L2( ̂yyy,yyy)  

= √∑g( ̂yg − yg)
2  (also called root mean squared error) between the 

observed expression values and predictions for the 1,000 most  
highly expressed genes in the control condition. We also calculated 
the Pearson delta correlation metric, as suggested by Cui et al.7: 
PearsonDelta ( ̂yyy,yyy) = cor ( ̂yyy − yyy∅,yyy − yyy∅). Unlike the L2 distance, the Pear-
son delta metric does not penalize predictions that are consistently 
too small or too large in amplitude and, thus, prioritizes correct predic-
tion of the direction of the expression change.

For the double perturbation data, we assess the TPR (recall) as a 
function of the false discovery rate. First, we find the order statistic of 
absolute difference of predictions and additive expectation across all 
test perturbations ( jjj = argsort (abs (Ŷ − Ŷadd))), where Ŷ is the matrix of 
the predictions for all genes and perturbations and Ŷadd are the additive 
expectations.

The false discovery proportion (FDP) at position l ∈ {1, ⋯, N}  
for a threshold u, which separates the interactions from the non- 
interactions, is

FDPl =
∑l

i=1 111(abs (Y − Ŷadd)jjji < u)
l

(4)

and the TPR is

TPRl =
∑l

i=1 111(abs (Y − Ŷadd)jjji ≥ u)

∑N
i=1 111(abs (Y − Ŷadd)i ≥ u)

, (5)

where Y is the matrix of observed value and N is the product of the 
number of genes and perturbations. The indicator function 1( ⋅ ) counts 
how often the observed values Y deviate enough from the additive 
expectation so that the observations are considered an interaction. 
The order statistic j ensures that we consider the gene–perturbation 
pairs first, where the model prediction deviates most from the addi-
tive expectation.

Lastly, we find the order statistic of the FDPs (s = argsort(FDP)) 
and plot the tuples 1, ⋯, N

(FDPsssl ,max1⋯l
i (TPRsssi )). (6)

An advantage of considering here the false discovery versus 
true-positive curve, compared with the precision-recall or the receiver 
operator curve, is that it provides a direct assessment of which fraction 
of interactions a model identifies for a fixed fraction of false positives.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this paper are publicly available: the Norman et al.11 
was downloaded via scFoundation (https://figshare.com/ndown-
loader/files/44477939); the Adamson et al.14 was downloaded via 

GEARS (https://dataverse.harvard.edu/api/access/datafile/6154417); 
the Replogle et al.13 K562 was downloaded via GEARS (https://data-
verse.harvard.edu/api/access/datafile/7458695); and the Replogle 
et al.13 RPE1 was also downloaded via GEARS (https://dataverse.harvard.
edu/api/access/datafile/7458694). Source data for Figs. 1 and 2 and 
Extended Data Figs. 1–3, 5, 6 and 8–10 are provided.

Code availability
The code to reproduce the analyses presented here and details about 
the software package versions are available at github.com/const-ae/
linear_perturbation_prediction-Paper, which we also archived on 
Zenodo33. The Zenodo repository also contains the results of the inter-
mediate calculations needed to reproduce all figures.
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Extended Data Fig. 1 | Dataset Overview. (a) Table with the size of the data 
and the number of perturbations. (b) UMAP on the perturbations per dataset 
(aggregated to the mean per perturbation). The position of the control condition 
without perturbation is shown in red, and a random selection of perturbations 

is labeled. (c) Change in the expression of the target gene of each perturbation. 
The base of the arrow indicates the expression without perturbation, and the tip 
indicates the expression after perturbation. For genes targeted multiple times in 
the Norman dataset, we show the average expression after perturbation.

http://www.nature.com/naturemethods
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Extended Data Fig. 2 | Alternative measures of the double perturbation 
prediction performance. (a) The Pearson delta measure calculates the 
correlation of the prediction and observations after subtracting the expression 
in the control condition. The correlation for the no change predictions could not 
be calculated because they were all zero. The horizontal red lines show the mean 
per model, and the dashed line indicates the correlation of the best-performing 

model. (b) Prediction error as a function of n, the number of read-out genes. 
Left: genes ranked by expression in the control condition, right: by differential 
expression between observed value and expression in the control condition. 
Note that sorting by differential expression is only possible if access to the 
ground truth is available and can thus not be applied in real-world use cases. The 
dashed line at n = 1000 is the choice in Panel a and elsewhere in this work.

http://www.nature.com/naturemethods
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Extended Data Fig. 3 | Distribution of the observed difference from the 
additive model. (a) Quantile-quantile plot comparing the distribution of the 
differences between observed expression values and the additive expectation 
against a standard normal distribution. The slope of the line is the standard 
deviation of the null model. (b) Histogram of the differences with a red curve 
overlayed that shows the null distribution fitted using locfdr. Values under the 

curve are grey, and the black bars show the observations that exceed what we 
would expect under the null model. The vertical bar shows the upper and lower 
thresholds for which the observations have a false discovery rate of less than 5% 
(that is, the grey fraction of the bars outside the vertical lines is 5%). The numbers 
at the top count the observations per group.

http://www.nature.com/naturemethods
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Extended Data Fig. 4 | Alternative measures how well each model detects 
genetic interactions. (a) Precision-recall and (b) receiver operator curve for all 
models distinguishing interactions from additive combinations. The numbers in 

parenthesis are the area under the curve (AUC) with the standard error across  
five test-training splits. TP: true positive, FP: false positive, FN: false negative,  
TN: true negative.

http://www.nature.com/naturemethods
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Extended Data Fig. 5 | Reoccurrence of genes and perturbations for top 
predictions. (a) Reoccurrence of genes and (b) perturbations among the 
100 predictions that differed most from the additive expectation. The data is 

facetted by the test-training split. The ground truth column shows the genes and 
perturbations sorted by observed difference from the additive expectation. The 
highlighted genes and perturbations are the four most reoccurring ones.

http://www.nature.com/naturemethods
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Extended Data Fig. 6 | Comparison of predicted and observed expression for 
HBG2 and HBZ. Comparison of the predicted expression (black squares), the 
observed expression values (points colored by interaction type), and the range 

of values that are considered additive (grey boxes) for all test perturbations 
with seed = 1. The grey horizontal line shows the expression of HBG2 and HBZ 
without perturbation.

http://www.nature.com/naturemethods
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Extended Data Fig. 7 | Variation of the predicted and observed expression 
values. Histogram of the standard deviation per gene for the predicted and 
observed expression values across perturbations facetted by the model. The red 
vertical bar indicates the mean of the standard deviations for the ground truth 

for (a) the Norman dataset and (b) the Replogle K562 dataset. The data reflects 
the variation for the 1 000 most highly expressed genes and is aggregated across 
five test-training splits. LM: linear model.

http://www.nature.com/naturemethods
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Extended Data Fig. 8 | See next page for caption.

http://www.nature.com/naturemethods
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Extended Data Fig. 8 | Alternative measures of the single perturbation 
prediction performance. (a) The Pearson delta measure calculates the 
correlation of the prediction and observations after subtracting the expression 
in the control condition. The horizontal red lines show the mean per model and 
the dashed line indicates the correlation of the best-performing model.  
(b) Prediction error as a function of n, the number of read-out genes.  

Top: genes ranked by expression in the control condition. Bottom: by 
differential expression between observed value and expression in the control 
condition. Note that sorting by differential expression is only possible if access 
to the ground truth is available and can thus not be applied in real-world use 
cases. The dashed line at n = 1000 is the choice in Panel a and elsewhere in this 
work. LM: linear model, DL: deep learning.

http://www.nature.com/naturemethods
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Extended Data Fig. 9 | Analysis how differential expression between K562 
and RPE1 effects prediction accuracy of transfer learning. (a) Scatter plot of 
the mean gene expression for shared genes between RPE1 and K562 without 
perturbation. The dashed line indicates the diagonal. (b) Scatter plot of the 
absolute prediction error per read-out gene against the differential expression 
of that gene between RPE1 and K562. Each point is one read-out gene from one 

of the 122 double perturbations from five test-training splits. The blue line 
shows the linear fit with a slope indicated in the subtitle. (c) Scatter plot of the 
Pearson delta score per perturbation for the RPE1 dataset against the differential 
expression of the perturbation target gene between RPE1 and K562. The blue 
line shows the linear fit with a slope indicated in the subtitle, and the shaded area 
indicates the standard error of the fit.

http://www.nature.com/naturemethods
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Extended Data Fig. 10 | Computational resource requirements. The resource 
usage was measured for the Norman dataset, which had 19 624 genes and 81 143 
cells grouped into 225 conditions. Each point is one of the five test-training splits. 

(a) Elapsed time on a log scale to fine-tune and predict the double perturbations. 
(b) Peak memory usage for each model was measured using GNU time. The points 
are colored by the respective GPU model that was used.

http://www.nature.com/naturemethods
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