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Deep-learning-based gene perturbation
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simple linear baselines
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Recentresearchin deep-learning-based foundation models promises to
learn representations of single-cell data that enable prediction of the effects
of genetic perturbations. Here we compared five foundation models and

two other deep learning models against deliberately simple baselines for
predicting transcriptome changes after single or double perturbations.
None outperformed the baselines, which highlights the importance of
critical benchmarking in directing and evaluating method development.

Thesuccess of large language models in knowledge representation has
spawned efforts to apply the foundation model concept to biology' .
Several single-cell foundation models trained on transcriptomics data
from millions of single cells have been published*. Two recent mod-
els—scGPT” and scFoundation®—claim to be able to predict gene expres-
sion changes caused by genetic perturbations.

In the present study, we benchmarked the performance of these
models against GEARS’ and CPA" and against deliberately simplistic
baselines. To provide additional perspective, we also included three
single-cell foundation models—scBERT*, Geneformer® and UCE®—that
were not explicitly designed for this task but can be repurposed for it
by combining them withalinear decoder that maps the cellembedding
to the gene expression space. In the figures, we marked their results
with an asterisk.

We first assessed prediction of expression changes after double
perturbations. We used data by Norman et al.”, in which 100 individual
genesand 124 pairs of genes were upregulated inK562 cellswitha CRISPR
activationsystem (Extended DataFig.1). The phenotypesforthese 224 per-
turbations, plus the no-perturbation control, arelogarithm-transformed
RNA sequencing expression values for 19,264 genes.

We fine-tuned the models on all 100 single perturbations and on
62 of the double perturbations and assessed the prediction error on
the remaining 62 double perturbations. For robustness, we ran each
analysis five times using different random partitions.

For comparison, we included two simple baselines: (1) the ‘no
change’ model that always predicts the same expressionasin the con-
trol condition and (2) the ‘additive’ model that, for each double per-
turbation, predicts the sum of the individual logarithmic fold changes
(LFCs). Neither uses the double perturbation data.

All models had a prediction error substantially higher than the
additive baseline (Fig. 1a,b). Here, prediction error is the L, distance
between predicted and observed expression values for the 1,000 most
highly expressed genes. We also examined other summary statistics, such
asthe Pearson deltameasure, and L, distances for other gene subsets: the
nmost highly expressed or the n most differentially expressed genes, for
various n. We got the same overall result (Extended Data Fig. 2).

Next, we considered the ability of the models to predict genetic
interactions. Conceptually, ageneticinteraction existsifthe phenotype
of two (or more) simultaneous perturbations s ‘surprising’. We opera-
tionalized this as double perturbation phenotypes that differed from
the additive expectation more than expected under anull model with
aNormal distribution (Extended Data Fig. 3 and Methods). Using the
full dataset, we identified 5,035 genetic interactions (out of potentially
124,000) at afalse discovery rate of 5%.

Wethen obtained geneticinteraction predictions from eachmodel
by computing, for each of its 310,000 predictions (1,000 read-out
genes and 62 held-out double perturbations across five test-training
splits), the difference between predicted expression and additive
expectation, and, if that difference exceeded a given threshold D, we
called a predicted interaction. We then computed, for all possible
choicesof D, the true-positive rate (TPR) and the false discovery propor-
tion, whichresultedin the curves showninFig.1c. The additive model
did not compete as, by definition, it does not predict interactions.

None of the models was better than the ‘no change’ baseline.
The same ranking of models was observed when using other metrics
(Extended DataFig. 4).

To further dissect this finding, we classified the interactions as
‘buffering’, ‘synergistic’ or ‘opposite’ (Fig. 1d,e and Methods). Allmodels
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Fig.1|Double perturbation prediction. a, Beeswarm plot of the prediction errors
for 62 double perturbations across five test-training splits. The prediction error is
measured by the L, distance between the predicted and the observed expression
profile of the n=1,000 most highly expressed genes. The horizontal red lines show
the mean per model, which, for the best-performing model, is extended by the
dashed line. b, Scatterplots of observed versus predicted expression fromone
example of the 62 double perturbations. The numbers indicate error measured

by the L, distance and the Pearson delta (R?). ¢, TPR (recall) of the interaction
predictions as a function of the false discovery proportion. FN, false negative; FP,
false positive; TP, true positive. d, Schematic of the classification of interactions

based on the difference from the additive expectation (the error bars show the
additive range). e, Bar chart of the composition of the observed interaction
classes. f, Top: scatterplot of observed versus predicted expression compared
to the additive expectation. Each pointis one of the 1,000 read-out genes under
one of the 62 double perturbations across five test-training splits. The 500
predictions that deviated most from the additive expectation are depicted

with bigger and more saturated points. Bottom: mosaic plots that compare the
composition of highlighted predictions from the top panel stratified by the
interaction class of the prediction. The width of the bars is scaled to match the
number of instances. Source data for Fig.1are provided. expr., expression.
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Fig. 2|Single perturbation prediction. a, Beeswarm plot of the prediction
errors for 134,210 and 24 unseen single perturbations across two test-training
splits (Methods). The prediction error is measured by the L, distance between
the mean predicted and observed expression profile of then =1,000 most
highly expressed genes. The horizontal red lines show the mean per model,
which, for the best-performing model, is extended by the dashed line. DL, deep
learning; LM, linear model. b, Schematic of the LM and how it can accommodate

available gene (G) or perturbation (P) embeddings. ¢, Forest plot comparing the
performance of all models relative to the error of the ‘mean’ baseline. The point
ranges show the overall mean and 95% confidence interval of the bootstrapped
mean ratio between each model and the baseline for 134, 210 and 24 unseen
single perturbations across two test-training splits. The opacity of the point
range is reduced if the confidence interval contains 0. Source data for Fig. 2
areprovided.

mostly predicted buffering interactions. The ‘no change’ baseline
cannot, by definition, find synergistic interactions, but also the deep
learning models rarely predicted synergistic interactions, and it was
even rarer that those predictions were correct (Fig. 1f).

To our surprise, we often found the same pair of hemoglobin
genes (HBG2 and HBZ) among the top predicted interactions, across
models and double perturbations (Extended Data Fig. 5). Examining the
data, we noted that all models except Geneformer and scFoundation
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predicted LFC = O—like the ‘no change’ baseline—for the double per-
turbation of these two genes, despite their strong individual effects
(Extended DataFig. 6). More generally, we noted that, for most genes,
the predictions of scGPT, UCE and scBERT did not vary across perturba-
tions, and those of GEARS and scFoundation varied considerably less
than the ground truth (Extended Data Fig. 7).

GEARS, scGPT and scFoundation also claim the ability to predict
the effect of unseen perturbations. GEARS uses shared Gene Ontol-
ogy'? annotations to extrapolate from the training data, whereas the
foundation models are supposed to have learned the relationships
between genes during pretraining to predict unseen perturbations.

To benchmark this functionality, we used two CRISPR interfer-
ence datasets by Replogle et al.” obtained with K562 and RPE1 cells
and a dataset by Adamson et al."* obtained with K562 cells (Extended
DataFig.1).

Asabaseline, we devised asimple linear model. It represents each
read-out gene with aK-dimensional vector and each perturbation with
an/-dimensional vector. These vectors are collected in the matrices G,
with onerow perread-outgene, and P, withone row per perturbation.
GandPareeitherobtained as dimension-reducing embeddings of the
training data (Methods) or provided by an external source (see below).
Then, given a datamatrix Y,,,;, of gene expression values, with one row
perread-out gene and one column per perturbation (that s, per condi-
tion pseudobulk of the single-cell data), the K x L matrix Wis found as

argvrvnin I Y¢rain — (GWPT + b)|3, oy

where b is the vector of row means of Y,,,;, (Fig. 2b).

Wealsoincluded anevensimpler baseline, b, the mean across the
perturbations in the training set, following the preprints by Kernfeld
etal.”and Csendes et al.” that appeared while this paper was in revision.

None ofthe deep learning models was able to consistently outper-
form the mean prediction or the linear model (Fig. 2a and Extended
Data Fig. 8). We did not include scFoundation in this benchmark, as it
required each dataset to exactly match the genes fromits own pretrain-
ingdata, and, for the Adamson and Replogle data, most of the required
genes were missing. We also did not include CPA, as it is not designed
to predict the effects of unseen perturbations.

Next, we asked whether we could find utility in the datarepresen-
tations that GEARS, scGPT and scFoundation had learned during their
pretraining. We extracted agene embedding matrix G from scFounda-
tion and scGPT, respectively, and a perturbation embedding matrix
P from GEARS. The above linear model, equipped with these embed-
dings, performed as well or better than scGPT and GEARS with their
in-built decoders (Fig. 2c). Furthermore, the linear models with the
gene embeddings from scFoundation and scGPT outperformed the
‘mean’ baseline, but they did not consistently outperform the linear
model using G and P from the training data.

The approach that did consistently outperform all other mod-
els was a linear model with P pretrained on the Replogle data (using
the K562 cell line data as pretraining for the Adamson and RPE1 data
and the RPE1 cell line for the K562 data). The predictions were more
accurate for genes that were more similar between K562 and RPE1
(Extended DataFig.9). Together, these results suggest that pretraining
onthesingle-cellatlas data provided only asmall benefit over random
embeddings, but pretraining on perturbation data increased predic-
tive performance.

In summary, we presented prediction tasks where current foun-
dation models did not perform better than deliberately simplistic
linear prediction models, despite significant computational expenses
for fine-tuning the deep learning models (Extended Data Fig. 10).
As our deliberately simple baselines are incapable of representing
realistic biological complexity, yet were not outperformed by the
foundation models, we conclude that the latter’s goal of providing

ageneralizable representation of cellular states and predicting the
outcome of not-yet-performed experiments is still elusive.

The publications that presented GEARS, scGPT and scFoundation
included comparisons against GEARS and CPA and against a linear
model. Some of these comparisons may have happened to be particu-
larly ‘easy’. For instance, CPA was never designed to predict effects of
unseen perturbations and was particularly uncompetitivein the double
perturbation benchmark. The linear model used in scGPT’s benchmark
appearstohavebeensetupsuchthatitrevertsto predicting nochange
over the control condition for any unseen perturbation.

Ourresults areinline with previously published benchmarks that
assessed the performance of foundation models for other tasks and
found negligible benefits compared to simpler approaches” ™. Our
results also concur with two previous studies showing that simple
baselines outperform GEARS for predicting unseen single or double
perturbations®®?. Since the release of our paper as a preprint, several
other benchmarks'>'***?” were released that also show that deep learn-
ing models struggle to outperform simple baselines. Two of these
preprints'° suggested an even simpler baseline than our linear model
(equation (1)), namely, to always predict the overall average, and we
haveincluded this idea here.

Onelimitation of our benchmarkis that we used only four datasets.
We chose these as they were used in the publications presenting GEARS,
scGPT and scFoundation. Another limitationis that all datasets are from
cancer cell lines, which, for example, Theodoris et al.” excluded from
their training data because of concerns about their high mutational bur-
den. Wealso did not attempt toimprove the original quality control, for
example, by excluding perturbations that did not affect the expression
oftheirowntargetgene and, thus, might not have worked as intended.

Deep learning is effective in many areas of single-cell omics*?.
However, prediction of perturbation effects still remains an open chal-
lenge, as our present work shows. We expect that increased focus on
performance metrics and benchmarking will be instrumental to facili-
tate eventual successin applying transfer learning to perturbation data.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-025-02772-6.
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Methods

Data

We ran the double perturbation benchmark on the data produced by
Norman et al." and reprocessed by scFoundation. For the single gene
perturbationbenchmarks, we used the datafrom Adamson etal."* and
Replogle et al.” as provided by GEARS (details in ‘Data availability’).

Software versions and parameters

We ran GEARS version 0.1.2, scGPT version 0.2.1, scFoundation
(which is built on top of a GEARS version 0.0.2 fork), CPA version
0.8.8, Geneformer version 0.1.0, scBERT from commit hash 262fd4b9
with model weights provided by the authors and UCE at commit
hash 8227a65c. We used each model, as much as possible, with their
default parameters. All scripts that were used to predict the expres-
sion changes are available on GitHub (https://github.com/const-ae/
linear_perturbation_prediction-Paper/tree/main/benchmark/src).

«  GEARS and scFoundation provide a straightforward application
programming interface (API) to predict the expression change
after perturbation. We limited the fine-tuning time to 3 days,
which meant that we trained scFoundation for five epochs.

e ForscGPT, we used the same parameters and code as in their
tutorial for perturbation prediction.

«  For CPA, we used the code from their tutorial on how to predict
combinatorial CRISPR perturbations on the Norman dataset.

« For Geneformer, we fine-tuned the provided model by predict-
ing the perturbation labels of the training data. We then used
the built-in in silico perturbation functionality to calculate the
perturbed embedding.

- UCEis designed for zero-shot use, which means that it does not
need to be fine-tuned. We report results from the four-layer ver-
sion of UCE (as we found no performance difference between
the four-layer and 33-layer versions). UCE does not provide
functionality for in silico perturbation, so we calculated the
post-perturbation embedding by taking the expression matrix
for the unperturbed cells and overwrote the rows for the genes
that we wanted to perturb with the values from the ground
truth expression matrix. We, thus, tried to ensure that we
tested the model under the best conditions, accepting that test
dataleakage could theoretically give the model an advantage
over the other models.

«  Wefine-tuned scBERT on predicting the perturbation labels of
the training data. We then used the same approach to calculate
the embedding after in silico perturbation that we used for UCE.

To predict the expression changes from the embeddings of
Geneformer, UCE and scBERT, we added alinear decoder to the models.
We fitted aridge regression model that predicted the gene expression
ofthe perturbed cells fromthe perturbed embeddings of the training
data. We then used thatridge regression to predict the gene expression
of the test data from the corresponding perturbed embeddings and
continued with the mean of the predicted values per perturbation.

To reduce the probability that we understate the performance for
any of the models, due towrong or suboptimal operation by ourselves, we
reached out to the originalauthors of the benchmarked models and asked
them to review our code. The authors of CPA perceived a problem with
our code and submitted a fix; however, as the new code had worse perfor-
mancethantheoriginal version, here wereportresults of the original code.

Double perturbation benchmark setup

Forthe double perturbation benchmark, we splitthe datainto testand
training sets. We assigned all single-gene perturbations and arandomly
chosen half of the double perturbations to the training set and used
the other half of the double perturbations as the test set. To reduce
stochastic effects on our results, we repeated the whole procedure,
including the random test-training splitting, five times.

We used two baseline models: ‘no change’ and ‘additive’. The ‘no
change’ model ‘predicted’, foreach double perturbation, the expression
values seeninthe control condition ( y9). The ‘additive’ model predicts
the expression after a double perturbation of genes Aand B as

P =yt 1yt - y2, @)

where y" and y® are the mean observed expression vectors for the single
perturbation of genes A and B, respectively.

We defined genetic interactions as follows. For each of the 124
double perturbations and the 1,000 read-out genes, we computed the
difference between the observed expression value and the additive
expectation. These values showed amixture distribution composed of
alarge component withasingle narrow peak around O (corresponding
toamajority of non-interactions) and asmaller component consisting
of two pronounced tails on either side (corresponding tointeractions)
(Extended Data Fig. 3). To decompose this mixture, we used Efron’s
empirical null approach®, as implemented in the ‘locfdr’ package
(version 1.1-8).

We further classified the interactions, if the two individual LFCs
had the same ssign, as:

» ‘buffering’, if the LFC was between 0 and the additive expectation

« ‘synergistic’, if it exceeded the additive expectation

« ‘opposite’, ifits sign differed from that of the individual
perturbations

If the individual effects were in opposite directions, ‘other’. Accord-
ing to this classification, 2.3% of the read-out gene expression values
across all double perturbation were bufferinginteractions; 0.6% were
synergistic; and zero were in the opposite direction of the individual
perturbations.

Single perturbation benchmark setup

For the single perturbation benchmark, we used the data as provided by
GEARS and also used its ‘simulation’ test-training splitting procedure,
which we repeated twice.

To predict the effects of unseen single perturbations, we used two
baselines. The ‘mean’ model calculated the mean of the expression values
inthetraining data. The ‘linear model’ isimplied inequation (1). Weset b
totherow meansof the training data (b = I/NY,Y"*"). Wefind Gand P as
follows. Perform a principal component analysis (PCA) on Y,,,;, and use
thetop K principal components for G. Then, subset this Gto only the rows
corresponding to genes that were perturbed in the training data (and,
hence, appear as columnsin Y@") and use the resulting matrix for P.

Then, we find W using the normal equations

W = (G'G + A1) 'G7 Yy — BP(PTP + A1), 3)

where we use a ridge penalty of 1= 0.1 for numerical stability. Having
found a W, we can use it for prediction, Y = GWP' + b, where now P is
the matrix formed by the rows of G corresponding to genes perturbed
inthe testdata.

For the single perturbation analysis, not all models were able to
predict the expression change for allunseen perturbations. For exam-
ple, the linear model with G and P from the training data could only
predict perturbations where the target genes were also part of the
read-outgenes. To evaluate allmodels on a consistent set of perturba-
tions, we restricted our analysis to those perturbations for which we
had predictions from all models (73 perturbations for Adamson, 398
for Replogle K562 and 629 for Replogle RPE1).

We converted GEARS’ Gene Ontology annotationsintoaperturbation
embeddingPby computingaspectralembedding™** of the pathway mem-
bership matrix. We extracted the gene embedding G from scGPT following
their tutorialongene regulatory inference. For scFoundation, we extract
Gdirectlyfromthe pretrained model weights (‘pos_emb.weight’). For the
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linear model with Pfromthe Replogle data, we fitted a10-dimensional PCA
onthe columns of the matrix with the perturbation means of the reference
data. Wefitted all linear models as described inthe main text with K=10;
ifGorPwasprovided, wesimply replaced the estimate fromthe training
datawith the provided matrix before calculating W.

The additive modelisaspecial case of the linear model (equation
(1)) where the gene embedding is simply the single perturbation data,
without any further transformation or dimension reduction (G = Y*"&');
the perturbation embeddingPis abinary coding, where each column
vector has1sinthe rows of the perturbed genes and is O otherwise; and
Wis anidentity matrixand b = —y2.

Evaluation metrics
We measured the prediction error using the distance L,(3,y)

= /Eg(ﬁg —yg)2 (also called root mean squared error) between the
observed expression values and predictions for the 1,000 most

highly expressed genes in the control condition. We also calculated
the Pearson delta correlation metric, as suggested by Cui et al.”:
PearsonDelta (3,y) = cor ( —y2,y —y9).Unlike the L, distance, the Pear-
son delta metric does not penalize predictions that are consistently
toosmallortoolargeinamplitude and, thus, prioritizes correct predic-
tion of the direction of the expression change.

For the double perturbation data, we assess the TPR (recall) as a
function of the false discovery rate. First, we find the order statistic of
absolute difference of predictions and additive expectation across all
test perturbations (j = argsort (abs (Y — Y2dd))) where Y is the matrix of
the predictions for allgenes and perturbations and Y?ddare the additive
expectations.

The false discovery proportion (FDP) at position /€ {1, ---, N}
for a threshold u, which separates the interactions from the non-
interactions, is

¥y 1abs (Y - V244, < u)
1

FDP, = “4)

andthe TPRis

_ ¥y 1abs (Y - Y244, > 1)
¥ 1(abs (Y — Yadd), > i)’

TPR, (5)

where Y is the matrix of observed value and N is the product of the
number of genes and perturbations. The indicator function (- ) counts
how often the observed values Y deviate enough from the additive
expectation so that the observations are considered an interaction.
The order statisticj ensures that we consider the gene-perturbation
pairs first, where the model prediction deviates most from the addi-
tive expectation.

Lastly, we find the order statistic of the FDPs (s = argsort(FDP))
and plotthe tuplesl, ---, N

(FDPy,, max}{(TPRy)). 6)

An advantage of considering here the false discovery versus
true-positive curve, compared with the precision-recall or the receiver
operator curve, is that it provides a direct assessment of which fraction
ofiinteractions amodelidentifies for a fixed fraction of false positives.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Alldatasets used in this paper are publicly available: the Norman et al."”
was downloaded via scFoundation (https://figshare.com/ndown-
loader/files/44477939); the Adamson et al."* was downloaded via

GEARS (https://dataverse.harvard.edu/api/access/datafile/6154417);
the Replogle et al.”> K562 was downloaded via GEARS (https://data-
verse.harvard.edu/api/access/datafile/7458695); and the Replogle
etal.”RPE1was also downloaded via GEARS (https://dataverse.harvard.
edu/api/access/datafile/7458694). Source data for Figs.1and 2 and
Extended Data Figs.1-3, 5, 6 and 8-10 are provided.

Code availability

The code to reproduce the analyses presented here and details about
the software package versions are available at github.com/const-ae/
linear_perturbation_prediction-Paper, which we also archived on
Zenodo®. The Zenodo repository also contains the results of the inter-
mediate calculations needed to reproduce all figures.
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(A) Table: Dataset overview

Dataset (cell line)

Size (Genes x Cells)

Perturbations

Norman (K562)

Replogle (K562)
Replogle (RPE1)
Adamson (K562)

19264 x 84143
5000 x 162264
5000 x 161423
5060 x 65899

124 double and 100 single perturbations
1087 single perturbations

1534 single perturbations

81 single perturbations

(B) UMAP of the datasets

Norman Replogle K562 Replogle RPE1 Adamson
/
4
RRP9 .
POLR2G & ISC\U\
DHX33
MAP2K PLK4+STIL A ’ SUGPT. . % Acss? CAD, IDH3A
ECH
?RRE‘(A&FOXH - 7 OPSF3 EIF4A3 IM i i—— .
FOXA1 4 f42 SGK1+S LSMe """ o LR SCYL1 -1
ATPEVOB —1&
.'? CBUYUBASHA 608 - EN + eeip CENPW 13- COPBT MARS
I .
/ N
POLR1B N
UMAP UMAP t UMAP UMAP
* No Perturbation * Single Perturbation + Double Perturbation
(C) Change of perturbation target gene expression
Norman Replogle K562 Replogle RPE1 Adamson
« i
b %
g {
b
3 &
E o, 41
<<
14‘
> }
@ z @ ) o ¢ <
c [ =4 c c <
[5 % [} [5] [}
(0] .{ (0] (0] (0] f
B [, ® I B |4
o (¥ =4 = o 3
8 'g & & 8
i=4 < c c *
S | > S S ]
FRES E ] =z
= £ £ £
2 2 2 2
G [ > ) o )
a | =% N a o a
3N
> >
:'.'
i >
3 > |
?,‘ [S«
5, ;
>
>, o
> 5 1
T } T T T T T T T T L T T T T T “ T T T T T
0 1 2 3 4 5 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5

Gene Expression Gene Expression

Extended Data Fig. 1| Dataset Overview. (a) Table with the size of the data

and the number of perturbations. (b) UMAP on the perturbations per dataset
(aggregated to the mean per perturbation). The position of the control condition
without perturbationis showninred, and arandom selection of perturbations

Gene Expression Gene Expression

islabeled. (c) Change in the expression of the target gene of each perturbation.
The base of the arrow indicates the expression without perturbation, and the tip
indicates the expression after perturbation. For genes targeted multiple times in
the Norman dataset, we show the average expression after perturbation.
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(A) Double perturbation prediction correlation
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(B) Prediction error stratified by the considered gene sets
genes sorted by expression genes sorted by differential expression
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Extended Data Fig. 2 | Alternative measures of the double perturbation model. (b) Prediction error as a function of n, the number of read-out genes.
prediction performance. (a) The Pearson delta measure calculates the Left: genes ranked by expression in the control condition, right: by differential
correlation of the prediction and observations after subtracting the expression expression between observed value and expression in the control condition.

inthe control condition. The correlation for the no change predictions could not Note that sorting by differential expressionis only possible if access to the
be calculated because they were all zero. The horizontal red lines show the mean ground truthis available and can thus not be applied in real-world use cases. The
per model, and the dashed line indicates the correlation of the best-performing dashed lineat n=1000 is the choice in Panel aand elsewhere in this work.
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(A) Quantile-Quantile plot of the difference from the additive expectation (B) Empirical null decomposition

0 0.001 001 01 02

0.8 09

Quantiles of the observed
expression minus additive expectation

25 0.0

Quantiles of a standard normal distribution
Extended Data Fig. 3 | Distribution of the observed difference from the
additive model. (a) Quantile-quantile plot comparing the distribution of the
differences between observed expression values and the additive expectation
againstastandard normal distribution. The slope of the line is the standard
deviation of the null model. (b) Histogram of the differences with ared curve
overlayed that shows the null distribution fitted using locfdr. Values under the

64 1,408 118,965 3,627

Percentile . 44
099 0999 Z
c
[}
el

2

i 0 " ;
25 -0.25 0.00 0.25

Observed LFC over additive expectation

curveare grey, and the black bars show the observations that exceed what we
would expect under the null model. The vertical bar shows the upper and lower
thresholds for which the observations have a false discovery rate of less than 5%
(thatis, the grey fraction of the bars outside the vertical lines is 5%). The numbers
at the top count the observations per group.
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(A) Precision-Recall Curve (PRC)
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(B) Receiver Operator Curve (ROC)
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Extended Data Fig. 4 | Alternative measures how well each model detects parenthesis are the area under the curve (AUC) with the standard error across
geneticinteractions. (a) Precision-recall and (b) receiver operator curve for all five test-training splits. 7P: true positive, FP: false positive, FN: false negative,

models distinguishing interactions from additive combinations. The numbersin TN:true negative.
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(A) Reoccuring genes among top 100 interaction predictions
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(B) Reoccuring perturbations among top 100 interaction predictions
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Extended DataFig. 5| Reoccurrence of genes and perturbations for top facetted by the test-training split. The ground truth column shows the genes and
predictions. (a) Reoccurrence of genes and (b) perturbations among the perturbations sorted by observed difference from the additive expectation. The
100 predictions that differed most from the additive expectation. The data is highlighted genes and perturbations are the four most reoccurring ones.
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Analysis of the predicted and observed expression patterns for HBG2 and HBZ

against predicted value = for each double perturbation. The grey box in the background shows the additive range.
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(A) Variation of predictions across double perturbations for Norman
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Extended Data Fig. 7 | Variation of the predicted and observed expression
values. Histogram of the standard deviation per gene for the predicted and
observed expression values across perturbations facetted by the model. The red
vertical bar indicates the mean of the standard deviations for the ground truth
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for (a) the Norman dataset and (b) the Replogle K562 dataset. The datareflects
the variation for the 1000 most highly expressed genes and is aggregated across

five test-training splits. LM: linear model.
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(A) Single unseen perturbation prediction correlation
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Alternative measures of the single perturbation
prediction performance. (a) The Pearson delta measure calculates the
correlation of the prediction and observations after subtracting the expression
inthe control condition. The horizontal red lines show the mean per model and
the dashed line indicates the correlation of the best-performing model.

(b) Prediction error as afunction of n, the number of read-out genes.

Top: genes ranked by expression in the control condition. Bottom: by
differential expression between observed value and expression in the control
condition. Note that sorting by differential expressionis only possible if access
to the ground truth is available and can thus not be applied in real-world use
cases. The dashed lineat n=1000 is the choice in Panel a and elsewhere in this
work. LM:linear model, DL: deep learning.
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(A) Overall expression similarity (B) Read-out gene error depends its on diff. expression between K562 and RPE1
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Extended DataFig. 9 | Analysis how differential expression between K562 ofthe 122 double perturbations from five test-training splits. The blue line
and RPE1 effects prediction accuracy of transfer learning. (a) Scatter plot of shows thelinear fit with a slope indicated in the subtitle. (c) Scatter plot of the
the mean gene expression for shared genes between RPE1and K562 without Pearson delta score per perturbation for the RPE1 dataset against the differential
perturbation. The dashed line indicates the diagonal. (b) Scatter plot of the expression of the perturbation target gene between RPE1and K562. The blue
absolute prediction error per read-out gene against the differential expression line shows the linear fit with a slope indicated in the subtitle, and the shaded area
ofthat gene between RPE1and K562. Each point is one read-out gene from one indicates the standard error of the fit.
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Extended Data Fig. 10 | Computational resource requirements. The resource (a) Elapsed time on alog scale to fine-tune and predict the double perturbations.
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