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Genetic variants (both coding and noncoding) can impact gene function and 
expression, driving disease mechanisms such as cancer progression. The 
systematic study of endogenous genetic variants is hindered by inefficient 
precision editing tools, combined with technical limitations in confidently 
linking genotypes to gene expression at single-cell resolution. We developed 
single-cell DNA–RNA sequencing (SDR-seq) to simultaneously profile up 
to 480 genomic DNA loci and genes in thousands of single cells, enabling 
accurate determination of coding and noncoding variant zygosity alongside 
associated gene expression changes. Using SDR-seq, we associate coding 
and noncoding variants with distinct gene expression in human induced 
pluripotent stem cells. Furthermore, we demonstrate that in primary B cell 
lymphoma samples, cells with a higher mutational burden exhibit elevated  
B cell receptor signaling and tumorigenic gene expression. SDR-seq 
provides a powerful platform to dissect regulatory mechanisms encoded 
by genetic variants, advancing our understanding of gene expression 
regulation and its implications for disease.

Genomic variation in both coding and noncoding regions of the 
genome drives human population differences and disease1–3. Over 
90% of predicted genome-wide association study variants for common 
diseases are located in the noncoding genome, while their gene regula-
tory impact is challenging to assess. Genetic loss-of-function screening 
of coding genes and CRISPR interference (CRISPRi)/CRISPR activation 
screens in noncoding regions have provided valuable insights into 
disease mechanisms. However, they neglect precise genomic varia-
tion potentially masking more complex cellular disease phenotypes 
caused by individual variants4–7. Existing precision genome editing 
tools to introduce variants have limited efficiency and variable editing 
outcomes in mammalian cells8–10. This makes it difficult to use guide 
RNAs (gRNAs) as a proxy to annotate the variant perturbation in pooled 
screens. Although some droplet-based technologies enable assessment 
of variants within transcripts, they neglect the impact of noncoding 

variants, which constitute the vast majority of disease-associated vari-
ants11. Exogenous introduction of sequence variants, via episomal mas-
sively parallel reporter assays for noncoding variants or open reading 
frame expression for coding sequences, allows for high-throughput 
screening of variants for functional effects but lacks endogenous 
genomic position and sequence context12–15. These limitations hinder 
systematic studies of endogenous genetic variation and its impact on 
disease-relevant gene expression.

To confidently link precise genotypes to gene expression in their 
endogenous context, a combined single-cell genomic DNA (gDNA) and 
RNA assay is required to directly assess coding and noncoding variants 
and gene expression in the same cell. Current technologies that enable 
simultaneous high-sensitivity readout of both gDNA and RNA are well 
established and laborious with low throughput16–25. High-throughput 
droplet-based or split-pooling approaches can measure thousands 
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Data Fig. 2a–d)33. Comparing bulk RNA-seq data of human stem cells 
to pseudo-bulked SDR-seq gene expression showed comparable levels 
of expression for the vast majority of targets with high correlation 
(Fig. 1m,n). SDR-seq showed reduced gene expression variance and 
higher correlation between individually measured cells than iPS cell 
data from 10x Genomics and ParseBio, indicating greater measurement 
stability (Fig. 1o and Extended Data Fig. 2e).

To test for potential cross-contamination of gDNA and RNA 
between cells during in situ RT, we performed a species-mixing experi-
ment using human WTC-11 iPS cells and mouse NIH-3T3 cells. Cells were 
processed either separately or as a mixed population during in situ RT 
(Extended Data Fig. 2f). This allowed us to distinguish contamination 
introduced during in situ RT from general ambient nucleic acids by 
comparing the mixed-species condition to the single-species controls. 
We obtained a total of 16,000 cells across the different in situ RT condi-
tions with the vast majority of doublets effectively removed using the 
sample BC information introduced during in situ RT (Extended Data 
Fig. 2g,h). Cross-contamination of gDNA was minimal (<0.16% on aver-
age), with no difference between the mixed-species and single-species 
conditions (Extended Data Fig. 2i,k,l). RNA cross-contamination was 
low (0.8–1.6% on average), with increased levels in the mixed-species 
condition compared to in the single-species controls (Extended 
Data Fig. 2j,m,n). The majority of cross-contaminating RNA from 
ambient RNA could be removed using the sample BC information 
introduced during in situ RT (Extended Data Fig. 2m,n). These data 
indicate that overall levels of cross-contaminating nucleic acids are low  
in SDR-seq.

Together, these results demonstrate that SDR-seq enables highly 
sensitive detection of DNA and RNA targets across thousands of single 
cells in a single experiment, with the potential to link both modalities 
in a high-throughput manner.

SDR-seq is scalable to hundreds of gDNA loci and genes
Next, we tested whether SDR-seq is scalable to detect hundreds of gDNA 
and RNA targets simultaneously. We designed an experiment using 
panels of 120, 240 and 480 targets, with equal numbers of gDNA and 
RNA targets in iPS cells (Fig. 2a). To enable cross-panel comparison,  
60 gDNA and 30 RNA targets were shared between panels. To adjust 
for differences in sequencing depth, reads were subsampled for gDNA 
and RNA based on panel size to achieve equal average read coverage 
per cell for shared targets (Extended Data Fig. 3a–d). We confirmed 
that separately prepared NGS libraries for gDNA and RNA mapped with 
high specificity to their respective references (Extended Data Fig. 3e,f). 
Overall, 80% of all gDNA targets were detected with high confidence in 
more than 80% of cells across all panels, with only a minor decrease in 
detection for larger panel sizes (Extended Data Fig. 4a–c). Detection 
and coverage of shared gDNA targets were highly correlated between 
panels, indicating that gDNA target detection is largely independent 
of panel size (Fig. 2b,c). The minor decrease in detection for the larger 
panel sizes predominantly affected low-coverage targets (Extended 
Data Figs. 4d,e and 5a). Similarly, RNA target detection showed a minor 
decrease in larger panels compared to the 120 panel (Extended Data 
Fig. 4f–h). Detection and gene expression of shared RNA targets were 
highly correlated between panels (Fig. 2d,e and Extended Data Fig. 4i,j), 
indicating robust and sensitive detection independent of panel size. 
Variability was predominantly observed for lowly expressed genes 
(Extended Data Fig. 5b).

To assess whether chromosomal context influences gDNA detec-
tion using SDR-seq, we included target sites among the shared panels 
that were either overlapping expressed genes (OEGs) or not OEGs 
(NOEGs). Additionally, we tested for different chromatin marks and 
states (H3K3me3, H3K27ac and DNase sensitive), reflecting different 
genomic regulatory element types depending on their proximity to 
the transcription start site (TSS; Fig. 2f)34. We did not observe a strong 
impact on detection and coverage across panels based on OEG or NOEG 

of cells simultaneously but lack combined high-sensitivity and 
tagmentation-independent readout of gDNA and RNA26–29. This results 
in sparse data with high allelic dropout (ADO) rates (>96%), making it 
impossible to correctly determine zygosity of variants on a single-cell 
level. Here, we developed targeted droplet-based single-cell DNA–RNA 
sequencing (SDR-seq), a scalable and sensitive method to screen 
genetic variation in high throughput, linking it to gene expression 
and distinct cellular states.

Results
Droplet-based SDR-seq
We developed SDR-seq to simultaneously measure RNA and gDNA 
targets in the same cell with high coverage across all cells. The assay 
combines in situ reverse transcription (RT) of fixed cells with a multi-
plexed PCR in droplets using Tapestri technology from Mission Bio 
(Fig. 1a). Cells are dissociated into a single-cell suspension, fixed and 
permeabilized. In situ RT is performed by using custom poly(dT) prim-
ers, adding a unique molecular identifier (UMI), a sample barcode 
(BC) and a capture sequence (CS) to cDNA molecules. Cells containing 
cDNA and gDNA are loaded onto the Tapestri machine. After genera-
tion of the first droplet, cells are lysed, treated with proteinase K and 
mixed with reverse primers for each intended gDNA or RNA target. 
During generation of the second droplet, forward primers with a CS 
overhang, PCR reagents and a barcoding bead containing distinct cell 
BC oligonucleotides with matching CS overhangs are introduced. A 
multiplexed PCR amplifies both gDNA and RNA targets within each 
droplet. Cell barcoding is achieved through the complementary CS 
overhangs on PCR amplicons and cell BC oligonucleotides. After multi-
plexed PCR, emulsions are broken, and sequencing-ready libraries are 
generated. Distinct overhangs on reverse primers containing either 
R2N (gDNA, Nextera R2) or R2 (RNA, TruSeq R2) allow for separation 
of next-generation sequencing (NGS) library generation for gDNA and 
RNA. This enables optimized sequencing of each library: (1) full-length 
to entirely cover variant information on gDNA targets along with the 
cell BC and (2) transcript and BC information (cell BC, sample BC and 
UMI) for RNA targets.

To test SDR-seq, we performed a proof-of-principle (POP) experi-
ment amplifying a small number of gDNA (28) and RNA (30) targets in 
human induced pluripotent stem (iPS) cells (Fig. 1b). As fixation is criti-
cal for in situ RT, we tested two different fixatives, paraformaldehyde 
(PFA) and glyoxal. PFA is commonly used in in situ RT reactions but can 
impair gDNA and RNA quality as it cross-links nucleic acids30. Glyoxal 
does not cross-link nucleic acids and was expected to provide a more 
sensitive readout31,32. For simplicity, overhangs on reverse primers for 
gDNA and RNA were the same (R2N) in this experiment (Extended Data 
Fig. 1a). After filtering high-quality cells and removing doublets using 
distinct sets of sample BCs during in situ RT for each fixation condi-
tion, we obtained ~9,000 cells from a single SDR-seq run (Fig. 1c,d and 
Extended Data Fig. 1b–f). Cells were evenly distributed over the two 
fixation conditions, with over 95% of reads per cell mapping to the 
correct sample BC on average (Fig. 1e,f). For downstream analysis, 
contaminating reads were removed from each cell.

gDNA target coverage is expected to be uniform across cells as 
each cell contains the same gDNA input. We detected 23 of 28 gDNA 
targets (82%) with high coverage and in the vast majority of cells 
(Fig. 1g–i). Minimal differences in gDNA target detection and cover-
age were observed between PFA and glyoxal conditions (Extended Data 
Fig. 1g,i). RNA target coverage is expected to vary as they were chosen 
based on a range of expression levels. Indeed, individual RNA targets 
showed varying expression levels, with some only expressed in a subset 
of cells (Fig. 1j–l). RNA target detection and UMI coverage increased 
when using glyoxal compared to PFA (Extended Data Fig. 1h,j). Ubiq-
uitously expressed housekeeping and iPS cell maintenance genes were 
detected in all cells, whereas other genes showed specific expression 
only in a subset of cells, consistent with published data (Extended 
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Fig. 1 | SDR-seq links gDNA variants and gene expression in single cells.  
a, Overview of targeted SDR-seq. R2N (Nextera) or R2 (TruSeq) overhangs on 
reverse primers enable separate NGS library generation for gDNA and RNA.  
b, Outline of the POP experiment. The fixation conditions and number of 
gDNA/RNA targets are indicated. c, Knee plot of ranked cells by sequencing depth 
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bulk RNA-seq data. o, Average expression and variance of genes assayed in the 
POP experiment using SDR-seq, 10x Genomics and ParseBio.
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location (Fig. 2g). Notably, no specific regulatory element type showed 
a systematic detection bias, and even sites with low DNase signal were 
confidently recovered.

Genes were selected based on a range of expression levels and 
grouped into high, medium and low expression (Fig. 2h). High- and 
medium-expression genes were detected in almost all cells, whereas 
low-expression genes showed reduced detection rates across panel 
sizes (Fig. 2i). This aligns with published data suggesting that some 
genes are not expressed in all iPS cells33. Overall expression levels of 
shared genes were highly similar across the different panel sizes tested 
(Fig. 2e,j).

To determine the ADO rate of SDR-seq, we selected gDNA ampli-
con loci containing heterozygous single-nucleotide polymorphisms 
based on bulk sequencing data. In amplicons detected in more than 
80% of cells, heterozygous variants were correctly called in an aver-
age of 87–94% of cells (Extended Data Fig. 5c,d). The primary cause of 
ADO in larger panels was overall low detection rates of a gDNA target 
(Extended Data Fig. 5e). Noise levels of both miscalled variants and 
deletions or insertions were low (<0.15%) and showed comparable 
levels across panels (Extended Data Fig. 5f–h). The frequency of these 

lowly abundant miscalled variants depends on the reference base, with 
PCR deamination byproducts likely being the most common. Variant 
allele frequencies (VAFs) of individual variants could distinguish true 
heterozygous alleles from variant noise (Extended Data Fig. 5i).

SDR-seq is thus scalable to assay hundreds of gDNA and RNA tar-
gets simultaneously with high reproducibility and sensitivity across 
different panel sizes, independently of chromatin state and expression 
level. This makes it a versatile tool to analyze variants at hundreds 
of loci in single cells, while simultaneously measuring cellular gene 
expression.

SDR-seq confidently detects gene expression changes
Genomic variants can increase or decrease gene expression, but effect 
sizes are often small. Therefore, a sensitive readout of these gene 
expression changes is essential. We probed the ability of SDR-seq to 
detect strong and subtle gene expression changes across different 
perturbation systems designed to repress gene expression or introduce 
variants that alter expression levels.

To assess whether SDR-seq can detect strong gene expression 
changes, we designed a CRISPRi experiment composed of four gRNA 
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categories: (1) nontargeting control gRNAs (NTC), (2) gRNAs targeting 
expression quantitative trait loci (eQTLs), (3) gRNAs targeting the TSS 
of genes predicted to be affected by those eQTLs (CRISPRi controls) and 
(4) gRNAs targeting gene bodies to possibly introduce STOP codons 
through editing (STOP controls; Fig. 3a). CRISPRi-expressing human iPS 
cells infected with a lentiviral CROP-seq gRNA library were selected via 
fluorescence-activated cell sorting, followed by SDR-seq. The SDR-seq 
primer panel amplified the gDNA sites of the eQTLs together with 
associated transcripts, the viral CROP-seq transcript to assign cells 
to gRNAs and multiple housekeeping genes to normalize data. Cells 
were successfully assigned to gRNAs (75%), with an average of 30 cells 
per gRNA (Extended Data Fig. 6a,b). NTC gRNAs showed no significant 
effect on any of the genes measured, whereas most (95%) TSS-targeting 
CRISPRi control gRNAs caused a strong reduction in target gene expres-
sion (Fig. 3b). Seven eQTLs (24%) and three STOP control gRNAs (60%) 
significantly reduced target gene expression. Significantly scoring 
eQTL and STOP control gRNAs were located within a 2-kb window of 
the TSS, suggesting a direct inhibitory effect similar to CRISPRi control 
gRNAs (Extended Data Fig. 6c). This demonstrates that SDR-seq can 
confidently detect gene expression changes mediated by CRISPRi. 
Additionally, these data highlight the importance of directly assessing 
variants in proximity to the TSS to evaluate their impact on gene expres-
sion rather than approximating such effects with CRISPRi.

Next, we aimed to directly install eQTL variants and measure more 
subtle effects on gene expression (Fig. 3c). We generated two human 
iPS cell lines expressing a prime editing (PE) transgene, with or without 
the coexpression of a dominant-negative regulator of the mismatch 
repair pathway designed to enhance editing efficiency (Pemax or 
Pemax-MLH1dn)10. To validate the system, we used a fluorescent len-
tiviral reporter system that measures editing efficiency via reconsti-
tution of a nonfunctional enhanced green fluorescent protein (eGFP; 
Extended Data Fig. 6d). Using a PE gRNA (pegRNA) that repairs eGFP, 
we observed ~50% editing efficiency, demonstrating the system’s edit-
ing potential in human iPS cells (Extended Data Fig. 6e). We lipofected 
these PE iPS cells with a pegRNA library designed to introduce the 
same eQTLs tested in the CRISPRi screen, as well as STOP codons to 
assess nonsense-mediated decay. Following fluorescence-activated 
cell sorting enrichment of lipofected cells, we performed SDR-seq 
(Fig. 3c). Editing efficiency was limited in both PE cell lines, compli-
cating the interpretation of many variants (Extended Data Fig. 7a,b). 
Despite this limitation, we performed differential gene expression 
testing for between called reference (REF), heterozygous (HET) and 
alternative (ALT) variant alleles (Extended Data Fig. 7c–e). Significant 
gene expression changes were only observed for the STOP controls 
(Fig. 3d). Depending on the position of the STOP codon within the 
transcript, effects of nonsense-mediated decay on transcript levels 
can vary35. For SOX11, we observed no changes, whereas STOP codons 
introduced in ATF4 and MYH10 resulted in significant reductions in 
gene expression (Fig. 3e).

In addition to installing eQTLs with PE, we tested the use of base 
editing (BE) in human iPS cells. We selected 56 high-likelihood eQTLs 
with a potential association for gene expression changes based on 
multiple studies, including noncoding variants that are located in open 
chromatin and editable with ABE8e or CBE base editors36–38 (Fig. 3f). 
None of these variants have previously been experimentally validated 
in an endogenous context as causative for transcriptional regulation, 
to our knowledge. After introducing gRNA libraries into iPS cells, cells 
were selected, and SDR-seq was performed. We found several eQTL 
variants with a significant effect on target gene expression (Fig. 3g). 
Additionally, we measured the effect of non-BE-associated mutations 
using SDR-seq. Human iPS cells accumulate somatic mutations dur-
ing cell culture, while they undergo constant competitive selection 
for variants that are advantageous in culture conditions39. We found a 
synonymous variant in the 3′ end of POU5F1, a gene encoding a critical 
pluripotency factor, which significantly altered gene expression in the 

same direction as observed in prior eQTL studies36 (Extended Data 
Fig. 8a). However, after assessing variants that may have accumulated 
during culturing along the entire amplicon, we found that certain 
combinations of variants showed different effects on POU5F1 expres-
sion (Fig. 3h and Extended Data Fig. 8b). In particular a set of variants 
in the 3′ untranslated region was associated with significantly differ-
ent transcript levels. The presence of these variants was confirmed by 
bulk amplicon sequencing of this locus (Extended Data Fig. 8c). This 
highlights the importance of directly assessing variants at the locus of 
interest to accurately resolve their impact on gene expression.

SDR-seq can confidently detect variants at the single-cell level 
and associate them with gene expression differences, demonstrating 
sensitivity even for subtle changes. This is the case even under condi-
tions of limited editing efficiency in our experiments, which confound 
the interpretation of many tested eQTLs.

B cell lymphoma variants linked to tumorigenic expression
Linking genetic variants to gene expression profiles is crucial for 
understanding cancer pathogenesis yet remains challenging in pri-
mary samples. B cell lymphomas are heterogenous cancers of the lym-
phatic system arising from distinct stages of B cell maturation. In this 
maturation process, naive B cells are stimulated to migrate through the 
dark zone (DZ) and light zone (LZ) of the germinal center, where they 
undergo somatic hypermutation and selection, followed by maturation 
into memory B cells and plasma cells40–43. Although the cell of origin is 
central to the classification of B cell lymphomas, it was recently shown 
that cancer cells retain their ability to differentiate. Thereby tumors 
acquire multiple maturation states from the same cell of origin while 
simultaneously undergoing clonal evolution through the accumulation 
of heterogenous genetic variants over time44,45.

We used B cell lymphomas to investigate how genetic variation 
impacts gene expression and differentiation within tumors. We ana-
lyzed primary tumor samples from two individuals with follicular lym-
phoma and one individual with germinal center subtype diffuse large B 
cell lymphoma using SDR-seq (Fig. 4a). A targeted gDNA panel, based 
on variants from bulk DNA sequencing, was applied to profile 3,600 to 
8,400 cells per sample. Clustering of cells showed distinct separation 
between B cells and non-B cells in both RNA- and variant-based analy-
sis (Fig. 4b,c). Using a reference mapping approach based on mutual 
nearest neighbors and canonical correlation analysis, we mapped B cell 
maturation states from a dataset of nonmalignant reactive lymph nodes 
to tumor samples (Extended Data Fig. 9a,b)44,46. Immunoglobulin light 
chain restriction confirmed monoclonality and malignancy of tumor 
B cells (Extended Data Fig. 9c)47. Somatic HET or ALT variants detected 
in both malignant B cells and non-B cells suggested limited contribu-
tions to disease progression, whereas variants occurring exclusively 
in malignant B cells may be oncogenic (Fig. 4d). Variants found in bulk 
gDNA sequencing of the same samples could also be recovered using 
SDR-seq (Extended Data Fig. 9d). The three samples showed a num-
ber of distinct variants, while some predominately somatic variants  
were shared.

Next, we focused on a comparative analysis between DZ and LZ 
maturation states as most B cells belonged to these states (>80%). 
Clustering DZ and LZ cells based on variant information covered with 
our targeted gDNA panel revealed that two samples (FL2 (follicular 
lymphoma) and GCB1 (germinal center subtype diffuse large B cell 
lymphoma)) showed clonal structures (Fig. 4e). Genetic clones showed 
differences in proportions of the DZ and LZ states annotated by gene 
expression, indicating that clonal evolution and differentiation are pre-
dominantly separate processes. Our data suggest that genetic clones 
with different variant composition continue differentiating after they 
arise and can have an impact on differentiation rates.

Differential abundance testing showed that BCL2 variants, a gene 
encoding an antiapoptotic factor frequently overexpressed in B cell 
lymphomas and central to B cell maturation, were enriched in the LZ 
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compared to DZ (Fig. 4f)48. Variants were also enriched in many immu-
noglobulin variable region genes, which are targeted during somatic 
hypermutation. LZ cells predominantly exhibited an increase in ALT or 
REF variant alleles compared to DZ cells (Fig. 4f). Next, we tested if fre-
quent variants impact gene expression in cells belonging to either the 
LZ or DZ state. We subset cells within each state into variant containing 
or not containing and performed differential gene expression testing. 
This revealed a number of genes involved in B cell receptor signaling 
and tumorigenesis, frequently affected in both DZ and LZ states, with 
increased participant-specific expression levels predominantly in the 
LZ compared to in the DZ (Fig. 4g,h and Extended Data Fig. 9e). Elevated 
B cell receptor signaling is associated with repressing apoptosis in B cell 
lymphomas49,50. Cells with higher mutational burden, characterized by 

frequent HET and ALT variants, showed elevated levels of B cell receptor 
signaling compared to cells with lower mutational burden (Fig. 4i). LZ 
cells in the geminal center can revert to the DZ following unsuccessful 
binding to antigens from antigen-presenting cells and thereby undergo 
multiple rounds of somatic hypermutations51. Our data suggest that 
cells with a high mutational burden may have undergone more rounds 
of somatic hypermutation and have increased B cell receptor signaling 
and tumorigenic gene expression patterns to evade apoptosis induced 
by unsuccessful antigen binding in the LZ. This is in line with the distinct 
enrichment of variants in the LZ compared to in the DZ that we observe.

Using SDR-seq, we profiled variants and gene expression simul-
taneously in primary tumor samples, linking cell states to mutational 
burden. We could distinguish variants present in malignant B cells and 
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non-B cells, perform clustering analysis based on variants identifying 
clonal structures, test for enrichment of variants in maturation states 
and assess their impact on gene expression. This revealed elevated 
tumorigenic and antiapoptotic signaling in cells with higher muta-
tional burden.

Discussion
Here, we developed SDR-seq to directly measure gene expression 
combined with coding and noncoding variants in single cells with 
high throughput and sensitivity. This method uses targeted primer 
panels for droplet-based multiplexed PCR to assess both gDNA and 
RNA in the same cells. Importantly, SDR-seq enables variant detec-
tion in noncoding regions of the genome, where the vast majority of 
disease-associated variants are located1–3,11. The targeted approach of 
SDR-seq facilitates high coverage of gDNA and RNA targets, allowing 
for confident detection of genomic variants and their zygosity, sen-
sitive gene expression readout and reduced sequencing costs. This 
contrasts with existing split-pooling or droplet-based approaches, 
which rely on tagmentation of nucleosome-depleted chromatin and 
require whole-genome sequencing of each cell, resulting in sparse data 
and difficulties in correctly determining variant zygosity26–29. For these 
methods, ADO rates are high (>96%), whereas SDR-seq enables accurate 
detection of ~90% of alleles at the single-cell level. ADO levels of SDR-seq 
are comparable to targeted single-cell DNA sequencing using Tapestri 
(ADO < 10%)52. Lower-throughput single-cell methods that are plate 
based rely on tagmentation, amplification via multiple displacement 
or primary template-directed amplification (PTA) for gDNA readouts 
while enabling a whole-genome sequencing readout16–25. Although 
tagmentation- and multiple displacement amplification-based tech-
nologies also have high ADO rates, PTA achieves a high recovery rate 
for correctly determined alleles (>90%) when sequencing libraries 
are at saturation20,23,24,53. SDR-seq achieves a drastic ~100-fold increase 
in cell throughput compared to PTA-based single-cell DNA and 
RNA-sequencing technologies, while reducing total genome cover-
age due to its targeted approach24.

Our results demonstrate that SDR-seq can assay hundreds of 
gDNA loci and genes simultaneously with high reproducibility and 
sensitivity across different panel sizes, covering up to 42.8 kb of 
gDNA per cell. Variants could be detected independent of chroma-
tin context across hundreds of gDNA loci in the same cell. Distinct 
RNA targets can be picked and adjusted according to experimental 
needs. The scalability and sensitivity of SDR-seq make it a versatile 
tool for studying a wide range of coding and noncoding genetic vari-
ants and their effects on gene expression across diverse cell types. 
We can detect variants at a frequency of around 0.15% depending 
on the type and length of the variant. In both human iPS cells and 
primary human samples, we link variants to distinct gene expression 
patterns and can sensitively detect subtle gene expression changes. 
Advances in PE and pegRNA prediction tools might overcome limita-
tions that we observed in this study constraining the interpretation 
of several infrequently edited eQTLs. In B cell lymphoma samples, 
SDR-seq enabled the identification of tumor-specific variants and 
their associated gene expression profiles, highlighting its potential 
for studying intratumor heterogeneity and cancer evolution. We 
could associate cells with higher mutational burden to elevated B 
cell receptor signaling and tumorigenic gene expression in primary 
B cell lymphoma samples.

In future applications, SDR-seq could be combined with other 
readouts, including a targeted protein readout or DNA methylation, 
to provide a more holistic view of cellular regulation54,55. Targeting the 
mitochondrial genome with SDR-seq could enable clonal tracing of cell 
populations based on mitochondrial somatic variants56,57. Enhanced 
gene expression readouts might enable measurement of larger RNA 
panels or a whole-transcriptome readout in parallel to a highly sensitive 
targeted gDNA readout for multiple loci. Although our attempts for a 

combined whole-transcriptome readout by using template switch oli-
gonucleotides during the in situ RT reaction were unsuccessful, other 
experimental approaches might be successful, thereby broadening 
the scope of potential applications.

SDR-seq offers a powerful, scalable and sensitive approach to link 
genomic variants to gene expression in single cells, and this method 
is flexible to assay both genetically engineered cell lines and primary 
tissue samples. With the vast majority of predicted variants for com-
mon diseases located in the noncoding genome, SDR-seq enables the 
study of these variants systematically at scale1–3. In combination with 
gene editing tools, it holds great potential to decipher the regulatory 
mechanisms that underlie endogenous variants, complementing other 
high-throughput approaches that assay the gene expression-to-variant 
link of endogenous loci or via barcoding approaches12–15,58,59. This 
method advances our ability to study gene expression regulation and 
its implications for disease, providing insights that could drive the 
development of therapeutic strategies and enhance our understanding 
of complex genetic disorders.
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Methods
SDR-seq protocol
A detailed protocol for SDR-seq is published on protocols.oi at https://
doi.org/10.17504/protocols.io.6qpvr9q43vmk/v1.

Cell culture
WTC-11 iPS cells (Coriell Institute for Medical Research, GM25256) were 
verified to display a normal karyotype, were contamination free and 
were regularly tested for mycoplasma. Cells were cultured in Essential 
8 medium (E8; Thermo Fisher Scientific, A1517001) on Vitronectin 
XF-coated (StemCell Technologies, 07180) tissue culture plates. Cells 
were maintained at 37 °C and 5% CO2. iPS cells were split using Accutase 
(StemCell Technologies, 07922) and E8 supplemented with 10 µM 
Y-27632 dihydrochloride (RI; Tocris, 1254). After single-cell dissocia-
tion, 1 volume of E8 + RI was added, and cells were spun at 200g (5 min), 
resuspended and plated in E8 + RI. Mouse NIH-3T3 (DSMZ, ACC 59) 
cells were cultured in DMEM (Gibco, 11965092) supplemented with 
10% fetal bovine serum (FBS), 100 U ml−1 penicillin/streptomycin and 
1× nonessential amino acids on gelatin-coated tissue culture plates at 
37 °C with 5% CO2.

SDR-seq in human iPS cells
WTC-11 iPS cells were dissociated into single cells using Accutase, fil-
tered through a 40-µm cell strainer and counted. For all experiments 
performed in human iPS cells, 1.5 × 106 cells were used as input for fixa-
tion. This was the minimum number of cells that were used as input for 
fixation in any experiment that involved human iPS cells.

For glyoxal fixation, cells were resuspended in 200 µl of glyoxal 
fixation solution (3% glyoxal, 20% ethanol and 0.75% acetic acid (gla-
cial), pH 4.0) and incubated for 7 min at room temperature. One mil-
liliter of ice-cold wash buffer 1 (1× PBS with 2% bovine serum albumin 
(BSA), 1 mM DTT and 0.5 U µl−1 RNasin Plus ribonuclease inhibitor; 
Promega, N2615) was added, and cells were spun at 500g for 3 min at 
4 °C. The supernatant was carefully removed, and the wash step was 
repeated with wash buffer 1 for a total of two washes. Cells were resus-
pended in 175 µl of ice-cold permeabilization buffer (10 mM Tris-HCl 
(pH 7.5), 10 mM NaCl, 3 mM MgCl2, 0.1% Tween 20, 0.2 U µl−1 RNasin 
Plus ribonuclease inhibitor, 1 mM DTT, 2% BSA, 0.1% IGEPAL CA-630 
and 0.01% digitonin) and incubated for 4 min on ice. One milliliter of 
ice-cold wash buffer 2 (10 mM Tris (pH 7.5), 10 mM NaCl, 3 mM MgCl2, 
0.1% Tween 20, 0.2 U µl−1 RNasin Plus ribonuclease inhibitor, 1 mM 
DTT and 2% BSA) was added, and the tube was gently inverted four 
to six times. Cells were spun at 500g for 5 min at 4 °C, resuspended in 
ice-cold resuspension buffer (1× PBS, 2% BSA, 1 mM DTT and 0.2 U µl−1 
RNasin Plus ribonuclease inhibitor), filtered through a 40-µm strainer, 
counted and diluted to 1.4 × 106 cells per ml.

PFA fixation was performed as described elsewhere with adapta-
tions60. In short, cells were resuspended in 1 ml of 1× PBS with 0.2 U µl−1 
RNasin Plus ribonuclease inhibitor, 3 ml of 1.3% PFA solution (in 1× 
PBS) was added, and cells were fixed for 10 min on ice. One hundred 
and sixty microliters of permeabilization buffer (5% Triton X-100 with 
0.2 U µl−1 RNasin Plus ribonuclease inhibitor) was added, and the tube 
was gently inverted four to six times and incubated for 3 min on ice. 
Cells were spun at 500g for 3 min at 4 °C, the supernatant was carefully 
removed, and cells were resuspended in 500 µl of 1× PBS with 0.2 U µl−1 
RNasin Plus ribonuclease inhibitor. Ice-cold 100 mM Tris-HCl at pH 8.0 
(500 µl) was added and mixed by inverting the tube. Then, 20 µl of per-
meabilization buffer was added and mixed by inverting the tube four 
to six times. Cells were spun at 500g for 3 min at 4 °C, the supernatant 
was removed, resuspended in 300 µl of 0.5× PBS with 0.2 U µl−1 RNasin 
Plus ribonuclease inhibitor, filtered through a 40-µm strainer, counted 
and diluted to 1.4 × 106 cells per ml.

Cell loss during fixation ranged between 10 and 30%. This was 
achieved by performing spins in swinging-bucket rotors and using 15-ml 
polypropylene centrifuge tubes during the entire process.

RT master mix consisting of a final concentration of 1× RT buffer, 
0.25 U µl−1 Enzymatics RNase Inhibitor (Biozym, 180520), 0.2 U µl−1  
RNasin Plus ribonuclease inhibitor, 500 mM dNTPs and 20 U µl−1 
Maxima H Minus Reverse Transcriptase (Thermo Fisher, EP0752) was 
prepared on ice in 8 µl for a total reaction volume of 20 µl. Four micro-
liters of RT oligonucleotides (12.5 µM) was combined in each 96-well 
plate with 8 µl of RT master mix (Supplementary Tables 1 and 2). Eight 
microliters of fixed and permeabilized cells (10,000 cells) was added 
to each well, yielding a total reaction volume of 20 µl. We used a total 
of 48 RT reactions, yielding 480,000 cells, and recommend this num-
ber as it provides enough surplus to be in the range of the optimal 
cell concentration needed for the Tapestri microfluidic device from  
Mission Bio (105,000–200,000 cells). RT was performed in a thermo-
cycler using the following program: 10 min at 50 °C and three cycles 
of 2 s at 8 °C, 45 s at 15 °C, 45 s at 20 °C, 30 s at 30 °C, 2 min at 42 °C and 
3 min at 50 °C, followed by 5 min at 50 °C. All RT reactions were pooled 
into a 15-ml conical tube containing 10 ml of 1× PBS with 1% BSA, and 
cells were spun at 500g for 5 min.

Samples were processed using a Tapestri microfluidic device 
from Mission Bio (version 2, MB51-0007, MB51-0010 and MB51-0009) 
according to the manufacturer’s protocol, with modifications. The 
in situ RT-processed cell pellet was resuspended in cell buffer from 
Mission Bio, and cells were counted and diluted to the appropriate 
concentration of 4,000–8,000 cells per µl. Custom primers were used 
in the multiplexed droplet PCR amplification step. RNA primers were 
designed using the TAP-seq primer prediction tool with a targeted 
optimal melting temperature of 60 °C (minimum 58 °C and maximum 
62 °C) and a product size range from 150 to 300 bp using published 
single-cell RNA-sequencing iPS cell data for primer prediction (https://
www.ebi.ac.uk/biostudies/arrayexpress with E-MTAB-6687)4,33. gDNA 
primers were designed using the Tapestri Designer (https://designer.
missionbio.com). Primers were not validated before use; a dropout of 
around 10–20% is expected for gDNA primers.

Especially for gDNA primers a dropout of custom primers is to be 
expected. An overview of version 1 and version 2 primer sequences with 
corresponding overhangs can be found in Supplementary Tables 1 and 
2. Version 1 gDNA and RNA primers both had CS and R2N overhangs 
(only used in the POP experiment). Version 2 gDNA primers had CS 
and R2N overhangs, whereas RNA primers had CS and R2 overhangs. 
Detailed information on sample multiplexing using RT primers can be 
found in Supplementary Table 3. Forward and reverse stock primers 
had concentrations of 20 µM and 120 µM for both versions, respec-
tively. Both reverse and forward primer mixes contained equimo-
lar amounts of gDNA and RNA targeting primers. For version 1, final 
sequencing libraries were generated according to the Mission Bio user 
guide. For version 2, RNA and gDNA sequencing libraries were gener-
ated separately using the corresponding library amplification primers 
(Supplementary Table 2).

SDR-seq for species cell mixing experiments using human iPS 
cells and mouse NIH-3T3 cells
Human iPS cells (WTC-11) and mouse fibroblasts (NIH-3T3) were fixed 
as described above with glyoxal. Cells of each species origin were 
either used individually or mixed during subsequent in situ RT using 
a distinct sample BC-introducing RT primer per well (48 in total). 
Human and mouse genes to profile by SDR-seq were selected to dis-
play a range of expression. RNA targeted primers were designed as 
described above using public data (https://www.10xgenomics.com/
datasets/500-1-1-mixture-of-human-hek-293-t-and-mouse-nih-3-t-
3-cells-3-lt-v-3-1-chromium-x-3-1-low-6-1-0) from 10x Genomics for 
NIH-3T3 primer design. Genomic sites were randomly selected, and 
gDNA targeted primers were designed as described above. Samples 
were processed using a Tapestri microfluidic device from Mission Bio 
(version 3, MB03-0091, MB03-0092 and MB03-0093) with modifica-
tions as described above.
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SDR-seq in primary B cell lymphoma samples
The study (S-254/2016) was approved by the University of Heidelberg’s 
Ethics Committee. Informed consent from every participant was gath-
ered beforehand. Lymph node samples were processed and frozen fol-
lowing previously described methods61,62. Frozen samples were thawed, 
added to 10 ml of RPMI (Gibco, 11875093) supplemented with 10% FBS 
and 0.5 mM EDTA and spun at 400g for 5 min. Cells were resuspended in 
10 ml of 1× DPBS supplemented with 5% FBS, filtered through a 70-µm 
strainer and spun at 400g for 5 min. Cells were resuspended in 100 µl of 
bead solution from a Dead Cell Removal kit (Miltenyi Biotec, 130-090-
101) and incubated for 15 min in the dark. Binding buffer was prepared 
according to the manufacturer’s protocol, and the LS column (Miltenyi 
Biotec, 130-042-401) was washed with 500 µl of binding buffer. Cells 
were applied to the column and washed four times with binding buffer 
while collecting the flow through. Cells were spun at 400g for 5 min 
and resuspended in 1 ml of binding buffer. We proceeded with glyoxal 
fixation and SDR-seq as described above. For primary cells, input can 
be a limiting factor to perform SDR-seq. As described above, we recom-
mend 48 wells with 10,000 cells each for the in situ RT reaction yielding 
480,000 cells, enough surplus to be in the optimal range for the Mis-
sion Bio microfluidic device (105,000–200,000 cells). If there are not 
enough cells in an individual primary sample, they can be multiplexed 
on the same Tapestri run by using distinct sample BCs during the in situ 
RT reaction to achieve the optimal cell concentration needed as input 
for the Tapestri device. To fill up an entire lane of a Tapestri run, the 
minimum number of cells that was used in this study for a primary 
sample was 380,000 cells as input for the glyoxal fixation and 350,000 
cells as input for the in situ RT. This represents the lowest number used 
in this manuscript and yielded around 8,400 cells for this particular run.

The gDNA panel was constructed for regions with >20% VAF  
detected in the selected tumor samples from the targeted DNA-sequencing 
data, which were sampled previously in Fitzgerald et al.44. Genes for a 
targeted expression readout of the profiled B cell lymphoma samples 
were chosen based on both the literature and CITE-seq data from the 
same samples44. These included genes from maturation markers found 
in the literature and variable features, differentially expressed genes 
and housekeeping genes based on single-cell RNA-sequencing data  
(Supplementary Table 4). Primers were designed as described above.

SDR-seq data analysis
For each SDR-seq dataset generated, we first performed custom BC 
identification and error correction, mapped reads to custom ref-
erence sequences and built read and deduplicated UMI matrices. 
This was performed with a software package we named SDRranger 
(https://github.com/hawkjo/SDRranger; https://doi.org/10.5281/
zenodo.14762618 (ref. 63)).

The full BC structure for the RNA targeted libraries is of the format 
cell BC1 (variable-length linker (14–17 bp)), cell BC2 (constant length 
linker (15 bp)) and sample BC (UMI). The gDNA libraries are the same 
but lack the sample BC and UMI. To identify these, we first aligned 
each read to all possible linker backbone sequences to account for 
the variable-length linker sequences. We discarded alignments with 
length-normalized alignment scores more than two standard devia-
tions below average, measured from the first 10,000 reads. We then 
performed error correction on BC1 and BC2 to unique corrected BCs 
with a Levenshtein distance of 0 or 1. Due to the adjacent UMI, the sam-
ple BC does not have an identifiable end point in the case of insertions 
and deletions, so we corrected sample BCs with free divergence of 0 or 
1 and with no other BC with free divergence only 1 higher64.

Following BC identification, reads were mapped to custom align-
ment references built for each gDNA and RNA library. For gDNA, the 
chromosomal locations of the amplicons were used to extract refer-
ence sequences. For RNA, the site of the primer binding until the end 
of the poly(A) tail was used to extract reference sequences. Reference 
sequences were extracted from GRCh38.p14. Custom fasta and .gtf files 

were generated and used to build references using the genomeGener-
ate function of STAR (v2.7.11a). Separate gDNA or RNA-sequencing 
libraries were aligned to the corresponding reference, except for check-
ing the specificity of the sequencing libraries.

For the POP experiment, reads were separated into gDNA and 
RNA reads before BC identification by a separate mapping step to the 
corresponding references. Final bam files are produced, which contain 
tags with cell BC and sample BC sequences for each read, both before 
and after error correction.

Matrices were then constructed by tallying reads by cell BC and 
sample BC versus gene or gDNA amplicon. To construct the UMI matri-
ces, UMIs were deduplicated by adapting the directional network dedu-
plication method described in the UMItools package65. For all reads 
from a given cell and given gene or amplicon, a connectivity graph of 
all observed UMIs is constructed. Each node is a unique UMI sequence 
and read count of that sequence, and directed edges are added between 
nodes A and B if the two UMIs have a free divergence of 1 to allow for 
indels, but only if nA ≥ 2nB – 1 reads, where nA and nB are the respective 
numbers of reads. This is based on the observation that each additional 
error to a UMI sequence should reduce the frequency of observing that 
sequence. Furthermore, only one incoming ‘parent’ edge is allowed per 
node to avoid artifactual connections through singletons. The final 
number of UMIs is the number of connected components of the graph 
at the end of this process. This is repeated for each cell and sample BC 
for each gene or amplicon to build the full matrix.

The resulting cell–gene (UMIs–RNA) and cell–amplicon (reads–
gDNA) matrices were analyzed in R using the Seurat R package (v5.0.3). 
First, a general threshold per cell was set on reads per cell (RNA + gDNA) 
based on rank–rank plots of reads per cell ranked by size to determine 
an initial set of cells to include in the analysis. Then, multiple metrics 
were used to filter for high-quality cells. Only one distinct set of sam-
ple BCs is expected to be found per cell; therefore, this can be used 
to effectively remove doublets in the dataset. Contaminating reads 
that did not belong to the maximum sample BC found per cell were 
removed. RNA count matrixes were processed (log-normalized, scaled). 
A principal component analysis (PCA) was performed on all genes 
measured for RNA matrices. A probabilistic PCA was performed on all 
variants measured for VAF matrices. This was followed by subsequent 
UMAP embedding. For clustering, the shared nearest neighbor graph 
was calculated and used as input for Louvain clustering.

Each cell that was defined as high quality was then used to call 
variants using the GATK HaplotypeCaller (v4.2.3.0)66. Individual bam 
files were generated using the cell BC of the high-quality cells using the 
package sinto (v0.10.0). Each individual cell bam file was modified to 
contain the cell BC in the read name and indexed using samtools (v1.17), 
and the MAPQ scores were set from 255 (STAR output) to 60 and to be 
compatible as an input in the GATK HaplotypeCaller. GATK Haplotype-
Caller was run using no maximum read threshold per cell and using a 
diploidy of two, and resulting vcf files were merged to yield a matrix 
of cells to variants compatible as input for Seurat. Low-frequency vari-
ants (<0.1% for editing and <0.3% for primary human samples) were 
removed, and remaining variants were input into the Ensembl Variant 
Effect Predictor for functional annotation67. This functional annotation 
was added as metadata. Genotypes of the GATK HaplotypeCaller were 
added as an assay to the previous Seurat object, while the remaining 
output was added as metadata. Wild-type alleles were included based 
on the read depth for a given amplicon per cell. Both wild-type alleles 
and variant alleles were excluded from subsequent analysis if the read 
depth was low (<10 reads) or the genotype quality score of the GATK 
HaplotypeCaller was low (<30 GQ).

For comparison of variance in the proof-of-concept experi-
ment, published 10x Genomics and ParseBio data (https://www.
parsebiosciences.com/customer-datasets/multi-omics-approach- 
for-near-full-length-human-ipsc-transcriptomes-in-cardiomyocyte- 
models/#download) were used33.
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Cloning, molecular biology and generation of transgenic  
iPS cells
For constitutive CRISPRi and PEmax and PEmax-MLHdn1 cell lines, 
the corresponding transgene was inserted into the AAVS1 locus in 
WTC-11 iPS cells as previously described using specific TALENs5,68. 
The AAVS1 targeting vector containing the homology arms, the 
CAGG promotor and a WPRE was a kind gift from J. A. Knoblich 
(Institute of Molecular Biotechnology of the Austrian Academy 
of Science, Vienna BioCenter). For the CRISPRi plasmid, pHR- 
UCOE-SFFV-dCas9-mCherry-ZIM3-KRAB (Addgene, 154473) was mod-
ified to pHR-UCOE-SFFV-dCas9-mCherry-KRAB-MECP2 with DNA 
fragments ordered from Twist Bioscience containing KRAB–MECP2. 
dCas9, KRAB–MECP2 and dTomato were amplified and cloned into 
the AAVS1 targeting vector described above with NEBuilder HiFi DNA 
Assembly Master Mix (New England Biolabs, M5520). For the PEmax and 
PEmax-MLHdn1 plasmids, the CRISPRi plasmid was used as a backbone 
while inserting the PEmax or PEmax-P2A-MLHdn1 (Addgene, 174828) 
sequence with NEBuilder HiFi DNA Assembly Master Mix. To generate 
transgenic iPS cells expressing the CRISPRi, PEmax or PEmax-MLHdn1 
transgene from the AAVS1 locus, WTC-11 iPS cells were electroporated 
with the corresponding homology plasmid (3 µg per electroporation) 
and two TALEN plasmids (0.75 µg per electroporation each) targeting 
the AAVS1 locus (Addgene, 52341 and 52342). iPS cells were dissociated 
into a single-cell suspension and counted, and 1 × 106 cells were elec-
troporated using the CB-150 program of the 4D-Nucleofector System 
and the P3 Primary Cell 4D-Nucleofector X Kit L (Lonza, V4XP-3024), 
according to the manufacturer’s protocol and plated in E8 + RI. Cells 
were sorted 7–10 days after electroporation for dTomato using a BD 
Fortessa instrument running Diva (V9.0.1) sofware, plated at low density 
in E8 + RI, grown to colonies, picked and genotyped (Supplementary 
Table 5). Positively genotyped clones were checked for homogenous 
dTomato signal and validated for activity in a corresponding assay, 
and three clones of each cell line were subjected to a genotyping array 
screening using an Infinium Global Screening Array-24 kit (Illumina, 
20030770) to check for chromosomal rearrangements in iPS cell 
clones. Only clones that showed no or minor differences to the WTC-
11 wild-type parental cell line were used in this study.

gRNA/pegRNA design and library cloning
All gRNA and pegRNA libraries were cloned in pools. eQTLs were 
selected based on high confidence from published data, and both 
lowly expressed genes (counts per million (CPM) > 150) and essential 
genes in iPS cells were removed also based on published data5,36,37,69. 
eQTLs for the base editor screen were further filtered by overlap with 
ATAC-seq peaks, expression (transcripts per million > 10) and compat-
ibility with transversion by adenine or cytosine base editors (A > G, 
C > T, G > A, T > C)38. Sites to introduce STOP codons were chosen 
manually in the selected genes. pegRNAs were designed using Prime-
Design (https://drugthatgene.pinellolab.partners.org), and linkers to 
separate the pegRNA from the tevopreQ1 3′ stabilizing sequence were 
designed using pegLIT (https://peglit.liugroup.us)70,71. For the CRISPRi 
experiment, the spacer sequences of the above pegRNAs were used 
for eQTLs and STOP controls, whereas gRNAs targeting the TSS for 
genes predicted to be affected by eQTLs were designed using CRISPick 
(https://portals.broadinstitute.org/gppx/crispick/public), and NTCs 
were chosen from the GeCKO-v2 library72–74. BE gRNAs were designed 
and selected based on highest predicted editing efficiency using the 
BE-Hive tool75. The pegRNA screening vector was a kind gift from J. 
A. Knoblich. This vector was modified to remove the ERT2-Cre-ERT2 
sequence and the gRNA scaffold and include a 3′ stabilizing tevopreQ1 
after the insertion site for pegRNAs via BbsI Golden Gate cloning. The 
BE vectors were all-in-one cytosine or adenine base editor + guide 
expression constructs (Addgene, 158581 and 179097). The gRNA screen-
ing vector was a modified CROP-seq vector (Addgene, 86708) to also 
express eGFP and include a distinct gRNA CS in the scaffold of the 

gRNA76. Oligonucleotide pools for pegRNA and gRNA libraries were 
checked for the presence of BbsI and Esp3I sites within the spacer/RT/
PBS sites and ordered from IDT as oPools. pegRNA oligonucleotides 
included a spacer sequence, PBS and RT with overhangs for amplifi-
cation that included BbsI sequences compatible with Golden Gate 
cloning. Spacer and PBS/RT sequences were separated by a constant 
sequence containing two Esp3I sites for a second round of Golden Gate 
cloning to introduce the pegRNA scaffold. gRNA oligonucleotides 
consisted of spacer sequences and overhangs for amplification that 
included BbsI sequences compatible with Golden Gate cloning. Oligo-
nucleotides were amplified (eight cycles) with compatible primers. The 
purified PCR product was cloned into the respective pegRNA or gRNA 
screening vector described above using BbsI and Golden Gate cloning. 
Electrocompetent bacteria (Lucigen, 60242-1) were electroporated 
(10 µF, 600 Ω, 1,800 V, E = 184 V cm−1) with purified ligation product 
and grown in a pool for 10 h at 30 °C before extracting plasmid DNA. 
For pegRNA and base editor guide libraries, a scaffold sequence was 
ordered with overhangs that included Esp3I overhangs (IDT), amplified 
with complementary primers (eight cycles), purified and cloned as 
described above using Esp3I Golden Gate cloning. Sequence overviews 
for cloning of the respective gRNA/pegRNA libraries can be found in 
Supplementary Table 5.

Virus production, infection of human iPS cells and lipofection 
of human iPS cells
Lentiviruses were produced in HEK293T (ATCC, CRL-3216) cells grown 
in DMEM supplemented with 10% FBS, 1× GlutaMAX (Gibco, 35050061), 
100 U ml−1 penicillin–streptomycin (Gibco, 15140122) and 1× MEM 
nonessential amino acids (Gibco, 11140050) and coated using VSV-G. 
The day before transfection, HEK293T cells were plated at 80% conflu-
ency, plasmids were lipofected using Lipofectamine 3000 Transfection 
reagent (L3000001), and the cells were split 1:10 5 h after lipofection. 
The supernatant was collected 3 days after lipofection, cell debris was 
pelleted at 200g for 5 min at 4 °C, the remaining supernatant was spun 
at 28,000g for 5 h, and the virus pellet was resuspended in the appropri-
ate volume of E8 + RI. On the day of infection, human iPS cells were split 
1:2.5 2 h before infection using Accutase. Infections were performed 
overnight in E8 + RI. Medium was replaced the next day with E8. For 
some editing experiments, constructs were only expressed transiently 
in human iPS cells. For this, transfection was performed using Lipo-
fectamine Stem Transfection Reagent (STEM00003) according to the 
manufacturer’s protocol.

Target selection and subsampling for panel size testing
Public variant information data for the WTC-11 cell line was down-
loaded from University of California, Santa Cruz (https://s3-us-west-2.
amazonaws.com/downloads.allencell.org/genome-sequence/
AH77TTBBXX_DS-229105_GCCAAT_recalibrated.vcf.gz). Variants  
were filtered using bcftools for heterozygous variants and quality 
(GT = ‘het’, filter = ‘PASS’, format/DP > 70, format DP < 150, QUAL > 1,000,  
INFO/MQ > 59.8) and subset to contain single-nucleotide poly
morphisms, insertions/deletions or multinucleotide polymorphisms. 
Candidate cis-regulatory elements (cCREs) for five human iPS cell 
lines (H1, H7, H9, iPS DF 6.9 and iPS DF 19.11) were obtained from 
SCREEN (https://screen.encodeproject.org), and corresponding 
regulatory elements were subset from these34. Genomic regions 
were defined as OEGs or NOEGs if the gene overlapping that genomic 
region was expressed in bulk RNA-seq data (>10 CPM)5. These OEG or 
NOEG regions were then overlapped with the filtered WTC .vcf file to 
select for regions containing high-quality variant information. One 
hundred and twenty regions were randomly subsampled for each 
cCRE within the OEG and NOEG classes, and primers were designed 
as described above. Each cCRE with OEG and NOEG was equally rep-
resented in both the total and shared panels. Genes were subset 
into highly (>400 CPM), medium (<400, >40) and lowly (<40, >4) 
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expressed gene groups. Primers were designed as described above. 
After determining high-quality cells in all panels, as described above, 
they were subset from the bam file, and reads per cell for gDNA and 
RNA were scaled according to panel size in a way so that the average 
number of reads per cell for shared gDNA and RNA targets was the 
same. Variants were called as described above.

Maturation state assignment in primary tumor samples and 
immunoglobulin light chain restriction analysis
B cell maturation states were mapped to each tumor sample from a 
published reactive lymph node single-cell RNA-sequencing dataset 
through shared gene expression features using previously described 
methods44,46. Gene expression was used to determine immunoglobulin 
light chain restriction. Log-normalized counts (without batch effect 
correction to prevent bias introduced by sample integration) were 
used to find transfer anchors and project samples on the reference PCA 
(50 dimensions) and UMAP (2 dimensions) reductions. The expression 
of genes encoding immunoglobulin-κ (IGKC) and immunoglobulin-λ 
(IGLC1–IGLC7) light chain was used to determine cell malignancy 
through light chain restriction47.

Data analysis for primary B cell lymphoma samples
Separate NGS sequencing libraries for gDNA and RNA were ana-
lyzed with SDRranger, and variants were called as described above. 
Low-frequency variants (<5% or less than 30 heterozygous/homozy-
gous variants) were excluded from the analysis. GO term analysis was 
performed using the R package topGO (v2.54.0), the weigth01 algo-
rithm and a Fisher’s exact test. Enrichment for biological processes 
was computed for the top 21 differentially expressed genes in the LZ 
versus DZ across all samples versus all genes measured.

Statistics and reproducibility
No data were excluded from analysis, and cutoffs for defining 
high-quality cells in SDR-seq were set as described above. Differential 
gene expression testing in the single-cell data was performed using 
MAST and by subsetting cells in the respective genotype within a given 
cell or perturbation state77. Differential abundance testing of variants 
between maturation states in primary B cell lymphoma samples was 
performed using χ2 testing, followed by adjusting P values with the 
Benjamini–Hochberg method. All box plots shown in this study show 
the center line as the median, box limits indicate 25th and 75th per-
centiles, and whiskers indicate 1.5× the interquartile range; all outliers 
are displayed.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data and processed data for nonprimary human sam-
ples are available on Gene Expression Omnibus under accession 
number GSE268646. Sequencing data and processed data for pri-
mary human samples are available on the European Genome–
Phenome Archive under study number EGAS50000000374 and 
dataset ID EGAD50000000551. The dataset on European Genome–
Phenome Archive is read-only under ega-archive.org/datasets/
EGAD50000000551. Access to the data will be granted for appropri-
ate use in research and will be governed by the provisions laid out in 
the terms contained in the Data Access Agreement. Source data are 
provided with this paper.

Code availability
All relevant code will be deposited on GitHub upon publication. Code 
containing SDRranger to generate count/read matrices from RNA or 
gDNA raw sequencing data is available under https://github.com/

hawkjo/SDRranger. Code for TAP-seq prediction, generation of custom 
STAR references and processing of the data is available under https://
github.com/DLindenhofer/SDR-seq.
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Extended Data Fig. 1 | Quality controls and comparison of PFA and glyoxal 
fixation conditions. a, Overview of targeted scDNA-scRNA-seq (SDR-seq) 
method for proof-of-principle (POP) experiment. R2N (Nextera) reverse primer 
overhangs were used for both gDNA and RNA. b, Quality control plots to remove 
doublets showing RNA reads per cell for each set of sample barcodes used to 
discriminate PFA and glyoxal fixation conditions. Doublets are indicated in grey. 

Cell numbers are indicated on the right. c–f, Quality control plots before (c, d) 
and after (e, f) filtering for low quality cells. Color indicates fraction of detected 
gDNA or RNA targets respectively. g, h, Coverage and detection of each gDNA 
(g) or RNA (h) target. Dashed line indicates 80% detection. i, j, Comparison of 
coverage and detection between PFA and glyoxal for each gDNA (i) and RNA (j) 
target. LFC, log fold change (log2).
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Extended Data Fig. 2 | UMAPs and clustering of POP data. a, UMAP clustering of 
POP SDR-seq data based on gene expression. b, Color coding of UMAP by fixation 
condition. c, UMAP plots of ubiquitously expressed genes GAPDH, POU5F1 and 
SOX2. Color indicates normalized expression (log1p). d, UMAP plots of cluster-
specifically expressed genes KLF5, SALL4 and ESRRB. Color indicates normalized 
expression (log1p). e, Gene expression correlation (Pearson) between 100 
subsampled cells comparing them individually against each other for SDR-seq, 
10x Genomics and ParseBio. n = 4950 comparisons for SDR-seq, 10x Genomics 
and ParseBio. f, Outline of cell mixing experiment using either human (WTC-11) 

or mouse (NIH-3T3) cells. During in situ RT cells were either used in individual 
wells or mixed together. g, h, Number of cells found for each species per in situ RT 
condition before (g) and after (h) doublet removal using sample BC information 
during analysis. i, j, Cross contamination of gDNA (i) and RNA (j) molecules 
between species for each in situ RT condition. n = 3865 cells (WTC-11), 4308 cells 
(NIH-3T3) and 7930 cells (Mix) from 1 independent SDR-seq experiment.  
k–n, Quality control plots to show either gDNA reads/cell (k, l) or RNA UMIs/cell 
(m, n) for each in situ RT condition before and after doublet removal and ambient 
RNA/UMI removal using sample BC information.
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Extended Data Fig. 3 | SDR-seq with separate library generation for RNA and 
gDNA targets. a–d, Subsampled reads/cell for all gDNA (a) or RNA (c) targets or 
shared gDNA (b) or RNA (d) targets (d). n = 9680 cells (120 panel), 6610 cells  
(240 panel) and 804 cells (480 panel) from 1 independent SDR-seq experiment 
for each panel size testing. e, Overview of SDR-seq with separate library 
generation for RNA and gDNA. Distinct R2 (RNA) or R2N (gDNA) overhangs for 

each library. Sequencing ready libraries can be generated using specific library 
primers binding to R2 or R2N, respectively. f, Specificity of gDNA and RNA NGS 
libraries. Data from gDNA or RNA libraries was mapped to either gDNA or RNA 
references. Data points represent means ± SEM. n = 3 independent SDR-seq 
experiments.
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Extended Data Fig. 4 | Metrics for target detection and coverage across 
differently sized target panels. a, Quality metrics of panel size experiment. 
Color indicates fraction of gDNA targets/cell recovered. b, gDNA coverage 
and detection for all targets across panels tested. Dashed line indicates 80% 
detection. c, gDNA target detection per cell for all targets across panels tested. 
n = 9680 cells (120 panel), 6610 cells (240 panel) and 804 cells (480 panel) from 1 
independent SDR-seq experiment for each panel size testing. d, gDNA coverage 
and detection for shared targets across panels tested. Dashed line indicates 80% 
detection. e, gDNA target detection per cell for shared targets across panels 
tested. n = 9680 cells (120 panel), 6610 cells (240 panel) and 804 cells (480 panel) 
from 1 independent SDR-seq experiment for each panel size testing. f, Quality 

metrics of panel size experiment. Color indicates fraction of RNA targets/cell 
recovered. g, RNA coverage and detection for all targets across panels tested. 
Dashed line indicates 80% detection. h, RNA target detection per cell for all 
targets across panels tested. n = 9680 cells (120 panel), 6610 cells (240 panel) and 
804 cells (480 panel) from 1 independent SDR-seq experiment for each panel size 
testing. i, RNA coverage and detection for shared targets across panels tested. 
Dashed line indicates 80% detection. j, RNA target detection per cell for shared 
targets across panels tested. n = 9680 cells (120 panel), 6610 cells (240 panel) and 
804 cells (480 panel) from 1 independent SDR-seq experiment for each panel  
size testing.
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Extended Data Fig. 5 | Comparison of target detection and coverage across 
differently sized target panels. a, b, Comparison of coverage and detection 
for shared targets across panels tested for each gDNA (a) and RNA (b) target. 
LFC, log fold change (log2). c, Coverage and detection for shared targets across 
panels. Dashed line indicates 80% of cells detected in, which is the threshold used 
for categorizing highly covered amplicons that were used to determine allelic 
dropout (ADO). d, Percentage of correctly called heterozygous alleles across 

panels on shared targets. n = 58 variants from 1 independent SDR-seq experiment 
for each panel size testing. e, Influence of detection and gDNA coverage on 
correctly called heterozygous alleles. f, g, Normalized frequency of miscalled 
variants across panels on shared targets for conversions (f) or deletions/
insertions (g). h, Example gDNA target amplicon with indicated frequencies of 
variants. Dashed lines indicate primer binding sites. i, Density of variant allele 
frequencies for heterozygous variants and noise.
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Extended Data Fig. 6 | Quality metrics for CRISPRi screen and functional 
testing of PE iPSCs. a, Overview of gRNA assignment for CRISPRi screen.  
b, Coverage for each gRNA in CRISPRi screen. Data points represent 
means ± SEM. n = individual gRNAs from 1 SDR-seq experiment. c, Relative 
distance of gRNA binding site to transcription start site (TSS). Positive values are 

after TSS (within transcript), negative values before transcript. Size indicates 
P-value calculated using MAST with Benjamini-Hochberg correction for multiple 
testing. Significant hits (P-value < 0.05) are colored. d, Outline of testing for 
PE iPSCs. Editing can be measured by repairing a non-functional EGFP that was 
integrated via a lentivirus. e, Flow cytometry indicating editing in PE iPSCs.
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Extended Data Fig. 7 | Editing efficiency and genotyping in PE screen. a, Editing 
efficiency in PE screen. CRISPRi is indicated as a control. Data points represent 
means ± SEM. n = 19 variants from 1 CRISPRi SDR-seq experiment and 1 PEmax/
PEmax-MLHdn1 SDR-seq experiment. b, Editing efficiency for each locus that was 
assessed. Loci that had somatic alleles in the PE iPCSs that were either HET or ALT 

are not shown. Color indicates PE cell lines. Data points represent means ± SEM. 
n = 19 variants from 1 PEmax/PEmax-MLHdn1 SDR-seq experiment. c–e, Called 
genotypes and genotype quality vs. variant allele frequency (VAF) for SOX11 (c), 
ATF4 (d) and MYH10 (e).
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Extended Data Fig. 8 | POU5F1 locus in BE screen. a, Intended edit to be 
introduced by base editing gRNA is shown at the POU5F1 locus and its impact on 
gene expression. ***P < 10−4, MAST with Benjamini-Hochberg correction. n = 46 
cells (POU5F1:REF), 4172 cells (POU5F1:HET) and 1163 cells (POU5F1:ALT) from 
1 SDR-seq experiment. P-value = 5.78x10−20 (POU5F1: HET-ALT), b, All measured 

variants in combination along the measured gDNA site shown for POU5F1 with 
their impact on gene expression. Number of cells are indicated on top.  
c, Comparison of variants at POU5F1 locus identified with SDR-seq to bulk 
amplicon sequencing.
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Extended Data Fig. 9 | Assignment of maturation states in B-cell lymphoma 
patient samples, comparison of variant abundance and analysis of 
differentially expressed genes in DZ and LZ states in cells with and without 
variants. a, Prediction scores of cell types assignment using a reference 
dataset44,46. Each cell is assigned a state, higher score indicates better assignment 
of this cell to the respective state. b, UMAP of cells belonging to the geminal 
center (GC) maturation states including DZ and LZ. Color indicates the state.  

c, Ig light chain restriction. Color coded are either kappa or lamda Ig light chains. 
d, Comparison of variant allele frequencies (VAF) of variants found in bulk 
or in SDR-seq in either B-cells or non-B-cells. Color indicates VAF. e, Summed 
counts for differentially expressed (DE) genes between variant containing and 
non-containing cells within both DZ and LZ for most frequent variants for each 
patient.
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