Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Using comparative connectomics to understand variability and evolution in neural circuits

Advances in connectomics are enabling the mapping of connectomes across individuals, sexes or species. Multiple comparisons enable the categorization of differences in these wiring diagrams as either technical or biological variability, or those that might impact circuit function. Testing these predictions experimentally will help us understand how evolution operates in neural circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of connectomes across development, sexes and species.

References

  1. Cook, S. J. et al. Nature 571, 63–71 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Witvliet, D. et al. Nature 596, 257–261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cook, S. J. et al. Science 389, eadx2143 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ohyama, T. et al. Nature 520, 633–639 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Winding, M. et al. Science 379, eadd9330 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scheffer, L. K. et al. eLife 9, e57443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dorkenwald, S. et al. Nature 634, 124–138 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schlegel, P. et al. Nature 634, 139–152 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takemura, S.-Y. et al. Reviewed preprint at eLife 13, RP97769 https://doi.org/10.7554/eLife.97769.1 (2024).

  10. Azevedo, A. et al. Nature 631, 360–368 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bates, A. S. et al. Preprint at bioRxiv https://doi.org/10.1101/2025.07.31.667571 (2025).

  12. Stürner, T. et al. Nature 643, 158–172 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roberts, R. J. V. et al. Preprint at bioRxiv https://doi.org/10.1101/2025.06.11.659158 (2025).

  14. Allen, A. M. et al. Preprint at bioRxiv https://doi.org/10.1101/2025.06.04.657833 (2025).

  15. Cachero, S. et al. Preprint at bioRxiv https://doi.org/10.1101/2025.07.16.664682 (2025).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Costa.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, M. Using comparative connectomics to understand variability and evolution in neural circuits. Nat Methods 22, 2481–2483 (2025). https://doi.org/10.1038/s41592-025-02946-2

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-025-02946-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing