Supplementary Figure 6: Remodeling of metabolic liver zonation by activating Dkk1 in vivo. | Nature Neuroscience

Supplementary Figure 6: Remodeling of metabolic liver zonation by activating Dkk1 in vivo.

From: In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9-activator transgenic mice

Supplementary Figure 6

(a) Schematic of the plasmid used for sgDkk1 expression. (b,c) SPH mice were hyperdynamically injected with sgRNA-mCherry plasmids. Immunofluorescence staining were performed 4–6 days after plasmids injections on liver sections. mCherry (red) was stained to indicate cells receiving plasmids. Both GS and CYP2E1 (cyan) were β-catenin target genes locating inpericentral area of the liver lobule. Arrows indicate mCherry-positive cells showing downregulation of GS and CYP2E1. Note that expression of GS and CYP2E1 in pericentral hepatocytes receiving sgDkk1-Cre-mCherry was inhibited. Scale bar = 50 μm. (d) Increased Dkk1 transcripts were quantified by qPCR (n = 5 mice). (e, f) Percentage of cells showing suppressed expression of GS (88/439 VS 0/165, sgLacZ: n = 2 mice, sgDkk1: n = 2 mice) or CYP2E1 (127/829 VS 0/66, sgLacZ: n = 2 mice, sgDkk1: n = 5 mice) in plasmid-expressing hepatocytes. (g) Schematic illustration of DKK1-mediated suppression of Wnt/β-catenin signaling. Activation of Dkk1 leads to reduced expressions of two β-catenin target genes; green circles indicate mCherry-positive cells showing downregulation of GS and CYP2E1. The sgLacZ serves as a control sgRNA.

Back to article page