Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Confronting racially exclusionary practices in the acquisition and analyses of neuroimaging data

An Author Correction to this article was published on 09 November 2023

This article has been updated

Abstract

Across the brain sciences, institutions and individuals have begun to actively acknowledge and address the presence of racism, bias, and associated barriers to inclusivity within our community. However, even with these recent calls to action, limited attention has been directed to inequities in the research methods and analytic approaches we use. The very process of science, including how we recruit, the methodologies we utilize and the analyses we conduct, can have marked downstream effects on the equity and generalizability of scientific discoveries across the global population. Despite our best intentions, the use of field-standard approaches can inadvertently exclude participants from engaging in research and yield biased brain–behavior relationships. To address these pressing issues, we discuss actionable ways and important questions to move the fields of neuroscience and psychology forward in designing better studies to address the history of exclusionary practices in human brain mapping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In the United States, white and non-Hispanic or Latino participants are overrepresented in human neuroscience research.

Similar content being viewed by others

Change history

References

  1. Caicedo, H. H. Surfacing anti-Black science and building antiracist teams. Nat. Biotechnol. 38, 923–925 (2020).

    Article  PubMed  Google Scholar 

  2. Gilpin, N. W. & Taffe, M. A. Toward an anti-racist approach to biomedical and neuroscience research. J. Neurosci. 41, 8669–8672 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wheaton, L. A. Racial equity and inclusion still lacking in neuroscience meetings. Nat. Neurosci. 24, 1645–1647 (2021).

    Article  PubMed  Google Scholar 

  4. De Los Reyes, A. & Uddin, L. Q. Revising evaluation metrics for graduate admissions and faculty advancement to dismantle privilege. Nat. Neurosci. 24, 755–758 (2021).

    Article  Google Scholar 

  5. Henrich, J., Heine, S. J. & Norenzayan, A. Most people are not WEIRD. Nature 466, 29–29 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Halpin, Z. T. Scientific objectivity and the concept of ‘the other’. Women’s Stud. Intl Forum 12, 285–294 (1989).

    Article  Google Scholar 

  7. Allchin, D. Pseudohistory and pseudoscience. Sci. Educ. 13, 179–195 (2004).

    Article  Google Scholar 

  8. Challis, D. The Archaeology of Race: the Eugenic Ideas of Francis Galton and Flinders Petrie (A&C Black, 2013).

  9. Selden, S. Transforming better babies into fitter families: archival resources and the history of the American eugenics movement, 1908–1930. Proc. Am. Philos. Soc. 149, 199–225 (2005).

  10. Ma, C. & Schapira, M. An Analysis of Richard J. Herrnstein and Charles Murray’s: The Bell Curve: Intelligence and Class Structure in American Life (Macat Library, 2017).

  11. Girolamo, T., Parker, T. C. & Eigsti, I. M. Incorporating dis/ability studies and critical race theory to combat systematic exclusion of Black, Indigenous, and People of Color in clinical neuroscience. Front Neurosci. 8, 988092 (2022).

    Article  Google Scholar 

  12. US Food & Drug Administration. Diversity plans to improve enrollment of participants from underrepresented racial and ethnic populations in clinical trials; draft guidance for industry; availability. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/diversity-plans-improve-enrollment-participants-underrepresented-racial-and-ethnic-populations (2022).

  13. US Department of Health and Human Services. NIH RCDC Inclusion Statistics Report (National Institutes of Health, 2018–2021).

  14. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li, J. et al. Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity. Sci. Adv. 8, eabj1812 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013).

    Article  PubMed  Google Scholar 

  18. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Henrich, J., Heine, S. J. & Norenzayan, A. The weirdest people in the world? Behav. Brain Sci. 33, 61–83 (2010).

    Article  PubMed  Google Scholar 

  20. Woitowich, N. C., Beery, A. & Woodruff, T. Meta-research: a 10-year follow-up study of sex inclusion in the biological sciences. Elife 9, e56344 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Littlejohns, T. J. et al. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat. Commun. 11, 2624 (2020).

  22. George, S., Duran, N. & Norris, K. A systematic review of barriers and facilitators to minority research participation among African Americans, Latinos, Asian Americans, and Pacific Islanders. Am. J. Public Health 104, e16–e31 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Habibi, A., Sarkissian, A. D., Gomez, M. & Ilari, B. Developmental brain research with participants from underprivileged communities: strategies for recruitment, participation and retention. Mind Brain Educ. 9, 179–186 (2015).

    Article  Google Scholar 

  24. Hodge, F. S. No meaningful apology for American Indian unethical research abuses. Ethics Behav. 22, 431–444 (2012).

    Article  Google Scholar 

  25. Scharff, D. P. et al. More than Tuskegee: understanding mistrust about research participation. J. Health Care Poor Underserved 21, 879–897 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gamble, V. N. Under the shadow of Tuskegee: African Americans and healthcare. Am. J. Public Health 87, 1773–1778 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brandt, A. M. Racism and research: the case of the Tuskegee Syphilis Study. Hastings Cent. Rep. 8, 21–29 (1978).

  28. Khabele, D., Holcomb, K., Connors, N. K. & Bradley, L. A perspective on James Marion Sims, MD, and anti-black racism in obstetrics and gynecology. J. Minim. Invasive Gynecol. 28, 153–155 (2021).

    Article  PubMed  Google Scholar 

  29. Rodriguez, M. A. & García, R. First, do no harm: the US sexually transmitted disease experiments in Guatemala. Am. J. Public Health 103, 2122–2126 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reverby, S. M. Ethical failures and history lessons: the US Public Health Service research studies in Tuskegee and Guatemala. Public Health Rev. 34, 189206 (2012).

    Article  Google Scholar 

  31. Skloot, R. The Immortal Life of Henrietta Lacks (Broadway Paperbacks, 2017).

  32. Corbie-Smith, G., Thomas, S. B. & George, D. M. M. S. Distrust, race, and research. Arch. Intern. Med. 162, 2458–2463 (2002).

    Article  PubMed  Google Scholar 

  33. Momplaisir, F. et al. Understanding drivers of coronavirus disease 2019 vaccine hesitancy among blacks. Clin. Infect. Dis. 73, 1784–1789 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hussain‐Gambles, M., Atkin, K. & Leese, B. Why ethnic minority groups are under‐represented in clinical trials: a review of the literature. Health Soc. Care Community 12, 382–388 (2004).

    Article  PubMed  Google Scholar 

  35. Dula, A. African American suspicion of the healthcare system is justified: what do we do about it? Camb. Q. Healthc. Ethics 3, 347–357 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Brandon, D. T., Isaac, L. A. & LaVeist, T. A. The legacy of Tuskegee and trust in medical care: is Tuskegee responsible for race differences in mistrust of medical care? J. Natl Med. Assoc. 97, 951 (2005).

    PubMed  PubMed Central  Google Scholar 

  37. Jaiswal, J. & Halkitis, P. N. Towards a more inclusive and dynamic understanding of medical mistrust informed by science. Behav. Med. 45, 79–85 (2019).

    Article  PubMed  Google Scholar 

  38. Mehra, R. et al. Black pregnant women ‘Get the Most Judgment’: a qualitative study of the experiences of Black women at the intersection of race, gender, and pregnancy. Women’s Health Issues 30, 484–492 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Razai, M. S., Osama, T., McKechnie, D. G. & Majeed, A. COVID-19 vaccine hesitancy among ethnic minority groups. BMJ 372, n513 (2021).

  40. Choy, T., Baker, E. & Stavropoulos, K. Systemic racism in EEG research: considerations and potential solutions. Affec. Sci. https://doi.org/10.1007/s42761-021-00050-0 (2021).

  41. Etienne, A. et al. Novel electrodes for reliable EEG recordings on coarse and curly hair. 42nd Annual Intl Conf. of the IEEE Engineering in Medicine & Biology Society (EMBC) 6151–6154 (IEEE, 2020).

  42. Webb, E. K., Etter, J. A. & Kwasa, J. A. Addressing racial and phenotypic bias in human neuroscience methods. Nat. Neurosci. 25, 410–414 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parker, T. C. & Ricard, J. A. Structural racism in neuroimaging: perspectives and solutions. Lancet Psychiatry 9, e22 (2022).

    Article  PubMed  Google Scholar 

  44. Sjoding, M. W., Dickson, R. P., Iwashyna, T. J., Gay, S. E. & Valley, T. S. Racial bias in pulse oximetry measurement. N. Engl. J. Med. 383, 2477–2478 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bradford, D. E. et al. Whose signals are we amplifying? Towards a more equitable clinical psychophysiology. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/c2naf (2022).

  46. Thompson, C. Black women, beauty, and hair as a matter of being. Women’s Studies 38, 831–856 (2009).

    Article  Google Scholar 

  47. Kapoor, R., Wang, J., Zavala, A. M., Truong, A. T. & Truong, D.-T. Metallic microbeads for hair extensions: hidden dangers for magnetic resonance imaging. Radiol. Case Rep. 17, 3274–3276 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Duncan, I. C. The ‘aura’ sign: an unusual cultural variant affecting MR imaging. AJR Am. J. Roentgenol. 177, 1487 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. McKinstry, R. C. & Jarrett, D. Y. Magnetic susceptibility artifacts on MRI: a hairy situation. Am. J. Roentgenol. 182, 532 (2004).

  50. Wang, X., Thayer, J. F., Treiber, F. & Snieder, H. Ethnic differences and heritability of heart rate variability in African and European American youth. Am. J. Cardiol. 96, 1166–1172 (2005).

    Article  PubMed  Google Scholar 

  51. Celedón, J. C. et al. Respiratory health equality in the United States. The American Thoracic Society perspective. Ann. Am. Thorac. Soc. 11, 473–479 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Whittaker, J. R., Driver, I. D., Venzi, M., Bright, M. G. & Murphy, K. Cerebral autoregulation evidenced by synchronized low frequency oscillations in blood pressure and resting-state fMRI. Front. Neurosci. 13, 433 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Van Harten, B., de Leeuw, F. -E., Weinstein, H. C., Scheltens, P. & Biessels, G. J. Brain imaging in patients with diabetes: a systematic review. Diabetes Care 29, 2539–2548 (2006).

    Article  PubMed  Google Scholar 

  54. Kalaria, R. N. Diabetes, microvascular pathology and Alzheimer disease. Nat. Rev. Neurol. 5, 305–306 (2009).

    Article  PubMed  Google Scholar 

  55. Black, J. L. & Macinko, J. Neighborhoods and obesity. Nutr. Rev. 66, 2–20 (2008).

    Article  PubMed  Google Scholar 

  56. Bennett, A., Parto, P. & Krim, S. R. Hypertension and ethnicity. Curr. Opin. Cardiol. 31, 381–386 (2016).

    Article  PubMed  Google Scholar 

  57. Murphy, K., Birn, R. M. & Bandettini, P. A. Resting-state fMRI confounds and cleanup. Neuroimage 80, 349–359 (2013).

    Article  PubMed  Google Scholar 

  58. Calvin, R. et al. Racism and cardiovascular disease in African Americans. Am. J. Med. Sci. 325, 315–331 (2003).

    Article  PubMed  Google Scholar 

  59. Hinkelbein, J., Koehler, H., Genzwuerker, H. V. & Fiedler, F. Artificial acrylic finger nails may alter pulse oximetry measurement. Resuscitation 74, 75–82 (2007).

    Article  PubMed  Google Scholar 

  60. Stolier, R. M. & Freeman, J. B. Neural pattern similarity reveals the inherent intersection of social categories. Nat. Neurosci. 19, 795–797 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Sturge-Apple, M. L. et al. Vagal tone and children’s delay of gratification: differential sensitivity in resource-poor and resource-rich environments. Psychol. Sci. 27, 885–893 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Miller, G. E., White, S. F., Chen, E. & Nusslock, R. Association of inflammatory activity with larger neural responses to threat and reward among children living in poverty. Am. J. Psychiatry 178, 313–320 (2021).

    Article  PubMed  Google Scholar 

  63. White, S. F., Nusslock, R. & Miller, G. E. Low socioeconomic status is associated with a greater neural response to both rewards and losses. J. Cogn. Neurosci. 34, 1939–1951 (2022).

  64. Handwerker, D. A., Ollinger, J. M. & D’Esposito, M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. NeuroImage 21, 1639–1651 (2004).

    Article  PubMed  Google Scholar 

  65. Greene, A. S. et al. Brain–phenotype models fail for individuals who defy sample stereotypes. Nature 609, 109–118 (2022).

  66. Will, T. R. et al. Problems and progress regarding sex bias and omission in neuroscience research. eNeuro 4, ENEURO.0278-17.2017 (2017).

  67. Goldfarb, M. G. & Brown, D. R. Diversifying participation: the rarity of reporting racial demographics in neuroimaging research. NeuroImage 254, 119122 (2022).

    Article  PubMed  Google Scholar 

  68. Dhamala, E., Jamison, K. W., Jaywant, A. & Kuceyeski, A. Shared functional connections within and between cortical networks predict cognitive abilities in adult males and females. Hum. Brain Mapp. 43, 1087–1102 (2022).

    Article  PubMed  Google Scholar 

  69. Dhamala, E. et al. Proportional intracranial volume correction differentially biases behavioral predictions across neuroanatomical features and populations. NeuroImage 260, 119485 (2022).

    Article  PubMed  Google Scholar 

  70. Coley, R. Y., Johnson, E., Simon, G. E., Cruz, M. & Shortreed, S. M. Racial/ethnic disparities in the performance of prediction models for death by suicide after mental health visits. JAMA Psychiatry 78, 726–734 (2021).

  71. Singleton, K. S., Tesfaye, R., Dominguez, E. N. & Dukes, A. J. An open letter to past, current and future mentors of Black neuroscientists. Nat. Rev. Neurosci. 22, 71–72 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Subbaraman, N. How #BlackInTheIvory put a spotlight on racism in academia. Nature 582, 327–328 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Murray, D.-S. et al. Black in neuro, beyond one week. J. Neurosci. 41, 2314–2317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, S. et al. Chinese Color Nest Project: an accelerated longitudinal brain-mind cohort. Dev. Cogn. Neurosci. 52, 101020 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. National Science Foundation. Doctorate Recipients from US Universities: 2020. https://ncses.nsf.gov/pubs/nsf22300/report (2020).

  76. Blignaut, P. & Wium, D. Eye-tracking data quality as affected by ethnicity and experimental design. Behav. Res. Methods 46, 67–80 (2014).

    Article  PubMed  Google Scholar 

  77. United States Census Bureau: American Community Survey, S1601 Language Spoken at Home. https://data.census.gov/cedsci/table?q=United%20States%20Spanish%20speaking&g=0100000US (2020).

  78. Flores, A. 2015, Hispanic Population in the United States Statistical Portrait. Pew Research Center’s Hispanic Trends Project. https://www.pewresearch.org/hispanic/2017/09/18/2015-statistical-information-on-hispanics-in-united-states/ (2020).

  79. Ramírez-Castañeda, V. Disadvantages in preparing and publishing scientific papers caused by the dominance of the English language in science: the case of Colombian researchers in biological sciences. PLoS ONE 15, e0238372 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Blasi, D. E., Henrich, J., Adamou, E., Kemmerer, D. & Majid, A. Over-reliance on English hinders cognitive science. Trends Cogn. Sci. 14, S1364–S6613 (2022).

    Google Scholar 

  81. Krueger, P. M. & Reither, E. N. Mind the gap: race/ethnic and socioeconomic disparities in obesity. Curr. Diab. Rep. 15, 95 (2015).

  82. Ocloo, J. & Matthews, R. From tokenism to empowerment: progressing patient and public involvement in healthcare improvement. BMJ Qual. Saf. 25, 626–632 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ginde, A. A., Foianini, A., Renner, D. M., Valley, M. & Camargo, C. A. Jr The challenge of CT and MRI imaging of obese individuals who present to the emergency department: a national survey. Obesity 16, 2549–2551 (2008).

    Article  PubMed  Google Scholar 

  84. Roberts, S. O., Bareket-Shavit, C., Dollins, F. A., Goldie, P. D. & Mortenson, E. Racial inequality in psychological research: Trends of the past and recommendations for the future. Perspect. Psychol. Sci. 15, 1295–1309 (2020).

    Article  PubMed  Google Scholar 

  85. DeJesus, J. M., Callanan, M. A., Solis, G. & Gelman, S. A. Generic language in scientific communication. Proc. Natl Acad. Sci. USA 116, 18370–18377 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dotson, V. M. & Duarte, A. The importance of diversity in cognitive neuroscience. Ann. N. Y. Acad. Sci. 1464, 181–191 (2020).

    Article  PubMed  Google Scholar 

  87. Conley, M. I. et al. The racially diverse affective expression (RADIATE) face stimulus set. Psychiatry Res. 270, 1059–1067 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nichols, T. E. et al. Best practices in data analysis and sharing in neuroimaging using MRI. Nat. Neurosci. 20, 299–303 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Harnett, N. G. & Ressler, K. J. Structural racism as a proximal cause for race-related differences in psychiatric disorders. Am. J. Psychiatry 178 579–581 (2021).

  90. Harrell, C. J. P. et al. Multiple pathways linking racism to health outcomes. Du Bois Rev. 8, 143–157 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Mental Health (R01MH120080 and R01MH123245 to A.J.H.) and the Kavli Institute for Neuroscience at Yale University (Postdoctoral Fellowship for Academic Diversity to E.D.). J.K. was supported by NIH K00NS115331 and the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. A. Ricard or T. C. Parker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Deanna Barch, Karla Miller, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricard, J.A., Parker, T.C., Dhamala, E. et al. Confronting racially exclusionary practices in the acquisition and analyses of neuroimaging data. Nat Neurosci 26, 4–11 (2023). https://doi.org/10.1038/s41593-022-01218-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41593-022-01218-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing