Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Implementation and validation of single-cell genomics experiments in neuroscience

Abstract

Single-cell or single-nucleus transcriptomics is a powerful tool for identifying cell types and cell states. However, hypotheses derived from these assays, including gene expression information, require validation, and their functional relevance needs to be established. The choice of validation depends on numerous factors. Here, we present types of orthogonal and functional validation experiment to strengthen preliminary findings obtained using single-cell and single-nucleus transcriptomics as well as the challenges and limitations of these approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Considerations for orthogonal and functional validation of sc/snRNA-seq data.
Fig. 2: Overview of perturbation-based validation approaches.
Fig. 3: Illustration of cell-type homology, convergence and innovation.
Fig. 4: Illustration of technical and biological artifacts.

Similar content being viewed by others

References

  1. Adameyko, I. et al. Applying single-cell/nucleus genomics to studies of cellular heterogeneity and cell fate transitions in the nervous system. Nat. Neurosci. https://doi.org/10.1038/s41593-024-01827-9 (2024).

  2. Bonev, B. et al. Opportunities and challenges of single-cell and spatially resolved genomics methods for neuroscience discovery. Nat. Neurosci. https://doi.org/10.1038/s41593-024-01806-0 (2024).

  3. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res. 25, 1491–1498 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kiselev, V. Y. et al. SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483–486 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    Article  PubMed  Google Scholar 

  7. Nayak, R. & Hasija, Y. A hitchhiker’s guide to single-cell transcriptomics and data analysis pipelines. Genomics 113, 606–619 (2021).

    Article  PubMed  Google Scholar 

  8. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dominguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu, C. et al. Automatic cell-type harmonization and integration across Human Cell Atlas datasets. Cell 186, 5876–5891 (2023).

    Article  PubMed  Google Scholar 

  11. Menon, V. Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data. Brief. Funct. Genomics 17, 240–245 (2018).

    Article  PubMed  Google Scholar 

  12. Pancheva, A., Wheadon, H., Rogers, S. & Otto, T. D. Using topic modeling to detect cellular crosstalk in scRNA-seq. PLoS Comput. Biol. 18, e1009975 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sokol, L. et al. Prioritization and functional validation of target genes from single-cell transcriptomics studies. Commun. Biol. 6, 648 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lahnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Biol. 21, 31 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ding, J. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat. Biotechnol. 38, 737–746 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zeng, H. & Sanes, J. R. Neuronal cell-type classification: challenges, opportunities and the path forward. Nat. Rev. Neurosci. 18, 530–546 (2017).

    Article  PubMed  Google Scholar 

  18. Scala, F. et al. Phenotypic variation of transcriptomic cell types in mouse motor cortex. Nature 598, 144–150 (2021). This paper applies Patch-seq to explore the connection between single-cell gene expression, morphology and electrophysiological properties in neurons of the mouse motor cortex, illustrating the complex relationship between a cell’s transcriptional subtype and its functional properties.

    Article  PubMed  Google Scholar 

  19. Clark, I. C. et al. Identification of astrocyte regulators by nucleic acid cytometry. Nature 614, 326–333 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jung, N. & Kim, T. K. Spatial transcriptomics in neuroscience. Exp. Mol. Med 55, 2105–2115 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fangma, Y., Liu, M., Liao, J., Chen, Z. & Zheng, Y. Dissecting the brain with spatially resolved multi-omics. J. Pharm. Anal. 13, 694–710 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hartman, A. & Satija, R. Comparative analysis of multiplexed in situ gene expression profiling technologies. eLife 13, RP96949 (2024).

    Google Scholar 

  23. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Russell, A. J. C. et al. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics. Nature 625, 101–109 (2024). This paper describes a new approach for spatial single-nucleus genomic profiling in frozen tissue sections using spatial barcoding, which can be applied to multiple modalities including snRNA-seq, ATAC-seq and T cell antigen receptor sequencing. This tool can be applied for multimodal, orthogonal discovery and validation experiments.

    Article  PubMed  Google Scholar 

  25. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    Article  PubMed  Google Scholar 

  28. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    Article  PubMed  Google Scholar 

  29. Wegler, C. et al. Global variability analysis of mRNA and protein concentrations across and within human tissues. NAR Genom. Bioinform 2, lqz010 (2020).

    Article  PubMed  Google Scholar 

  30. Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).

    Article  PubMed  Google Scholar 

  31. Almet, A. A., Cang, Z., Jin, S. & Nie, Q. The landscape of cell-cell communication through single-cell transcriptomics. Curr. Opin. Syst. Biol. 26, 12–23 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dimitrov, D. et al. Comparison of methods and resources for cell-cell communication inference from single-cell RNA-seq data. Nat. Commun. 13, 3224 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell-cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).

    Article  PubMed  Google Scholar 

  34. Gault, J. et al. Combining native and ‘omics’ mass spectrometry to identify endogenous ligands bound to membrane proteins. Nat. Methods 17, 505–508 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

    Article  PubMed  Google Scholar 

  36. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kearns, N. A. et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12, 401–403 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Thakore, P. I. et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wheeler, M. A. et al. Droplet-based forward genetic screening of astrocyte-microglia cross-talk. Science 379, 1023–1030 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wu, D. et al. Dual genome-wide coding and lncRNA screens in neural induction of induced pluripotent stem cells. Cell Genom. 2, 100177 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cooper, Y. A. et al. Functional regulatory variants implicate distinct transcriptional networks in dementia. Science 377, eabi8654 (2022).

    Article  PubMed  Google Scholar 

  45. Yang, X. et al. Functional characterization of Alzheimer’s disease genetic variants in microglia. Nat. Genet. 55, 1735–1744 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tian, R. et al. CRISPR interference-based platform for multimodal genetic screens in human iPSC-derived neurons. Neuron 104, 239–255 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Drager, N. M. et al. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. Nat. Neurosci. 25, 1149–1162 (2022). This paper uses a multiplex CRISPRi and CRISPRa platform using iPS cell microglia to identify genes that alter microglial cell states and functions when perturbed. It also uses scRNA-seq and dataset integration to demonstrate that microglial states in this in vitro system replicate states observed in postmortem human brain tissue.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Leng, K. et al. CRISPRi screens in human iPSC-derived astrocytes elucidate regulators of distinct inflammatory reactive states. Nat. Neurosci. 25, 1528–1542 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li, E. et al. CRISPRi-based screens in iAssembloids to elucidate neuron-glia interactions. Preprint at bioRxiv https://doi.org/10.1101/2023.04.26.538498 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Esk, C. et al. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science 370, 935–941 (2020).

    Article  PubMed  Google Scholar 

  51. Jin, X. et al. In vivo Perturb-seq reveals neuronal and glial abnormalities associated with autism risk genes. Science 370, eaaz6063 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wertz, M. H. et al. Genome-wide in vivo CNS screening identifies genes that modify CNS neuronal survival and mHTT toxicity. Neuron 106, 76–89 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ramani, B. et al. Scalable, cell type-selective, AAV-based in vivo CRISPR screening in the mouse brain. Preprint at bioRxiv https://doi.org/10.1101/2023.06.13.544831 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wheeler, M. A. et al. Environmental control of astrocyte pathogenic activities in CNS inflammation. Cell 176, 581–596 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hasel, P., Rose, I. V. L., Sadick, J. S., Kim, R. D. & Liddelow, S. A. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 24, 1475–1487 (2021).

    Article  PubMed  Google Scholar 

  56. Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155–160 (2015).

    Article  PubMed  Google Scholar 

  57. Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Crow, M., Paul, A., Ballouz, S., Huang, Z. J. & Gillis, J. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor. Nat. Commun. 9, 884 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Brunner, G., Lang, K., Wolfe, R. A., McClure, D. B. & Sato, G. H. Selective cell culture of brain cells by serum-free, hormone-supplemented media: a comparative morphological study. Brain Res. 254, 563–575 (1981).

    Article  PubMed  Google Scholar 

  60. Foo, L. C. et al. Development of a method for the purification and culture of rodent astrocytes. Neuron 71, 799–811 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bohlen, C. J., Bennett, F. C. & Bennett, M. L. Isolation and culture of microglia. Curr. Protoc. Immunol. 125, e70 (2019).

    Article  PubMed  Google Scholar 

  62. Guttenplan, K. A. & Liddelow, S. A. Astrocytes and microglia: models and tools. J. Exp. Med. 216, 71–83 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hall, C. E. et al. Progressive motor neuron pathology and the role of astrocytes in a human stem cell model of VCP-related ALS. Cell Rep. 19, 1739–1749 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. de Majo, M. et al. Granulin loss of function in human mature brain organoids implicates astrocytes in TDP-43 pathology. Stem Cell Rep. 18, 706–719 (2023).

    Article  Google Scholar 

  65. Cuomo, A. S. E. et al. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nat. Commun. 11, 810 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Virdi, G. S. et al. Protein aggregation and calcium dysregulation are hallmarks of familial Parkinson’s disease in midbrain dopaminergic neurons. NPJ Parkinsons Dis. 8, 162 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Szebenyi, K. et al. Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nat. Neurosci. 24, 1542–1554 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017). One of the first studies to develop an in vitro functional testing platform to interrogate and validate a transcriptomically defined reactive astrocyte substate.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Barbar, L. et al. CD49f is a novel marker of functional and reactive human iPSC-derived astrocytes. Neuron 107, 436–453 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, abf1230 (2021).

    Article  Google Scholar 

  71. Pasqual, G. et al. Monitoring T cell-dendritic cell interactions in vivo by intercellular enzymatic labelling. Nature 553, 496–500 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gerfen, C. R., Paletzki, R. & Heintz, N. GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 80, 1368–1383 (2013).

    Article  PubMed  Google Scholar 

  73. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  PubMed  Google Scholar 

  74. Gertler, T. S., Chan, C. S. & Surmeier, D. J. Dichotomous anatomical properties of adult striatal medium spiny neurons. J. Neurosci. 28, 10814–10824 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fenno, L. E. et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nat. Methods 11, 763–772 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kramer, D. J. et al. Generation of a DAT-P2A-Flpo mouse line for intersectional genetic targeting of dopamine neuron subpopulations. Cell Rep. 35, 109123 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Poulin, J. F. et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat. Neurosci. 21, 1260–1271 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ren, J. et al. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. Elife 8, e49424 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Okaty, B. W. et al. A single-cell transcriptomic and anatomic atlas of mouse dorsal raphe Pet1 neurons. Elife 9, e55523 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. BRAIN Initiative Cell Census Network. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

    Article  Google Scholar 

  81. Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34, 199–203 (2016). A technical improvement is provided with the advent of PATCH-seq—enabling the electrophysiological recording and transcriptomic measurement in individual neurons.

    Article  PubMed  Google Scholar 

  82. Fuzik, J. et al. Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat. Biotechnol. 34, 175–183 (2016).

    Article  PubMed  Google Scholar 

  83. Sloan, S. A. et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 95, 779–790 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xu, S. et al. Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles. Science 370, eabb2494 (2020).

    Article  PubMed  Google Scholar 

  85. Condylis, C. et al. Dense functional and molecular readout of a circuit hub in sensory cortex. Science 375, eabl5981 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bugeon, S. et al. A transcriptomic axis predicts state modulation of cortical interneurons. Nature 607, 330–338 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Guttenplan, K. A. et al. Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat. Commun. 11, 3753 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Guttenplan, K. A. et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature https://doi.org/10.1038/s41586-021-03960-y (2021).

    Article  PubMed  Google Scholar 

  89. Zeng, H. What is a cell type and how to define it? Cell 185, 2739–2755 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yuste, R. et al. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23, 1456–1468 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Arendt, D., Bertucci, P. Y., Achim, K. & Musser, J. M. Evolution of neuronal types and families. Curr. Opin. Neurobiol. 56, 144–152 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wagner, D. E. & Klein, A. M. Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet. 21, 410–427 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bandler, R. C. et al. Single-cell delineation of lineage and genetic identity in the mouse brain. Nature 601, 404–409 (2022).

    Article  PubMed  Google Scholar 

  95. Cadwell, C. R. et al. Cell type composition and circuit organization of clonally related excitatory neurons in the juvenile mouse neocortex. Elife 9, e52951 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457–462 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Schmitz, M. T. et al. The development and evolution of inhibitory neurons in primate cerebrum. Nature 603, 871–877 (2022). This paper uses comparative single-cell genomics in mammalian brains over developmental stages, identifying the evolutionary changes in developmental specification of a class of primate-specific interneurons.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Woych, J. et al. Cell-type profiling in salamanders identifies innovations in vertebrate forebrain evolution. Science 377, eabp9186 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hahn, J. et al. Evolution of neuronal cell classes and types in the vertebrate retina. Nature 624, 415–424 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature 586, 262–269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Tosches, M. A. et al. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360, 881–888 (2018).

    Article  PubMed  Google Scholar 

  103. Peng, Y. R. et al. Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell 176, 1222–1237 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Jorstad, N. L. et al. Comparative transcriptomics reveals human-specific cortical features. Science 382, eade9516 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hain, D. et al. Molecular diversity and evolution of neuron types in the amniote brain. Science 377, eabp8202 (2022). This paper shows that generating single-cell genomics brain atlases from non-model organisms (that is, an exemplar lizard) and comparing to mammals can identify conserved neuronal cell types throughout the brains of both species across hundreds of million years of evolution while also showing how evolution has modified this conservation based on connectivity needs.

    Article  PubMed  Google Scholar 

  106. Lust, K. et al. Single-cell analyses of axolotl telencephalon organization, neurogenesis, and regeneration. Science 377, eabp9262 (2022).

    Article  PubMed  Google Scholar 

  107. Tarashansky, A. J. et al. Mapping single-cell atlases throughout metazoa unravels cell type evolution. Elife 10, e66747 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chen, J. et al. A quantitative framework for characterizing the evolutionary history of mammalian gene expression. Genome Res. 29, 53–63 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021). This paper used multimodal single-cell approaches (snRNA-seq, snATAC-seq, single-cell methylation, morphology and Patch-seq) across mammalian species to determine the species-specific adaptiations of cell types in one brain region and focuses on differences in Betz cells.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Caglayan, E. et al. Molecular features driving cellular complexity of human brain evolution. Nature 620, 145–153 (2023). This paper demonstrates the power of comparing proportions of nonneuronal cell types (that is, the oligodendrocyte lineage) across closely related primate species and the integration of ancient human genomes to identify modern human-specific variants associated with human-specific chromatin accessibility.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Jeon, H. et al. Statistical power analysis for designing bulk, single-cell, and spatial transcriptomics experiments: review, tutorial, and perspectives. Biomolecules 13, 221 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Svensson, V. et al. Power analysis of single-cell RNA-sequencing experiments. Nat. Methods 14, 381–387 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Su, K., Wu, Z. & Wu, H. Simulation, power evaluation and sample size recommendation for single-cell RNA-seq. Bioinformatics 36, 4860–4868 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744–757 (2016).

    Article  PubMed  Google Scholar 

  115. Colquitt, B. M., Merullo, D. P., Konopka, G., Roberts, T. F. & Brainard, M. S. Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits. Science 371, eabd9704 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kebschull, J. M. et al. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science 370, abd5059 (2020).

    Article  Google Scholar 

  117. Lamanna, F. et al. A lamprey neural cell type atlas illuminates the origins of the vertebrate brain. Nat. Ecol. Evol. 7, 1714–1728 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Shafer, M. E. R., Sawh, A. N. & Schier, A. F. Gene family evolution underlies cell-type diversification in the hypothalamus of teleosts. Nat. Ecol. Evol. 6, 63–76 (2022).

    Article  PubMed  Google Scholar 

  119. Tarashansky, A. J., Xue, Y., Li, P., Quake, S. R. & Wang, B. Self-assembling manifolds in single-cell RNA sequencing data. Elife 8, e48994 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Agboola, O. S., Hu, X., Shan, Z., Wu, Y. & Lei, L. Brain organoid: a 3D technology for investigating cellular composition and interactions in human neurological development and disease models in vitro. Stem Cell Res. Ther. 12, 430 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  PubMed  Google Scholar 

  122. Amiri, A. et al. Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science 362, eaat6720 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 578, 142–148 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Camp, J. G. et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl Acad. Sci. USA 112, 15672–15677 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gordon, A. et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat. Neurosci. 24, 331–342 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Pollen, A. A. et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell 176, 743–756 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570, 523–527 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Qian, X. et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 26, 766–781 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Xiang, Y. et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21, 383–398 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Pinson, A. et al. Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals. Science 377, eabl6422 (2022).

    Article  PubMed  Google Scholar 

  131. Trujillo, C. A. et al. Reintroduction of the archaic variant of NOVA1 in cortical organoids alters neurodevelopment. Science 371, eaax2537 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).

    Article  PubMed  Google Scholar 

  133. Uzquiano, A. et al. Proper acquisition of cell class identity in organoids allows definition of fate specification programs of the human cerebral cortex. Cell 185, 3770–3788 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Fleck, J. S. et al. Inferring and perturbing cell fate regulomes in human brain organoids. Nature https://doi.org/10.1038/s41586-022-05279-8 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bershteyn, M. et al. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 20, 435–449 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Trevino, A. E. et al. Chromatin accessibility dynamics in a model of human forebrain development. Science 367, eaay1645 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Li, C. et al. Single-cell brain organoid screening identifies developmental defects in autism. Nature 621, 373–380 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Mora-Bermudez, F. et al. Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. Elife 5, e18683 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Tanaka, Y., Cakir, B., Xiang, Y., Sullivan, G. J. & Park, I. H. Synthetic analyses of single-cell transcriptomes from multiple brain organoids and fetal brain. Cell Rep. 30, 1682–1689 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Werner, J. M. & Gillis, J. Preservation of co-expression defines the primary tissue fidelity of human neural organoids. Preprint at bioRxiv https://doi.org/10.1101/2023.03.31.535112 (2023).

  141. Czerminski, J. T., King, O. D. & Lawrence, J. B. Large-scale organoid study suggests effects of trisomy 21 on early fetal neurodevelopment are more subtle than variability between isogenic lines and experiments. Front. Neurosci. 16, 972201 (2022).

    Article  PubMed  Google Scholar 

  142. Lee, J. H. et al. Cell-line dependency in cerebral organoid induction: cautionary observations in Alzheimer’s disease patient-derived induced pluripotent stem cells. Mol. Brain 15, 46 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Johansen, N. & Quon, G. scAlign: a tool for alignment, integration, and rare cell identification from scRNA-seq data. Genome Biol. 20, 166 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Polanski, K. et al. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 36, 964–965 (2020).

    Article  PubMed  Google Scholar 

  147. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Mostajo-Radji, M. A., Schmitz, M. T., Montoya, S. T. & Pollen, A. A. Reverse engineering human brain evolution using organoid models. Brain Res. 1729, 146582 (2020).

    Article  PubMed  Google Scholar 

  150. Krienen, F. M. et al. A marmoset brain cell census reveals regional specialization of cellular identities. Sci Adv. 9, eadk3986 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Caglayan, E., Liu, Y. & Konopka, G. Neuronal ambient RNA contamination causes misinterpreted and masked cell types in brain single-nuclei datasets. Neuron 110, 4043–4056 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Soreq, L. et al. Major shifts in glial regional identity are a transcriptional hallmark of human brain aging. Cell Rep. 18, 557–570 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Norimoto, H. et al. A claustrum in reptiles and its role in slow-wave sleep. Nature 578, 413–418 (2020).

    Article  PubMed  Google Scholar 

  154. Marsh, S. E. et al. Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nat. Neurosci. 25, 306–316 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I. Adameyko, T. Bakken, A. Bhaduri, B. Bonev, G. Castelo-Branco, F. Chen, C. Chhatbar, S. Codeluppi, R. Corces, J. Fan, M. G. Filbin, D. Gate, G. Green, M. Heiman, K. Harris, H. Hochgerner, F. Inoue, M. Kellis, C. N. Kim, J. Krull, G. L. Manno, A. Levine, Q. Li, S. Linnarsson, M. Lotfollahi, C. Luo, Q. Ma, E. Macosko, C. Mayer, K. R. Maynard, V. Menon, P. Nano, M. Nitzan, M. Prinz, S. Quake, V. Ramani, R. Satijia, L. Schirmer, Y. Shen, N. Sun, F. Theis, C. Walsh, X. Wang, J. D. Welch and J. Yang for the insightful feedback on this work. M.C. thanks A. U. Antonova for helpful additional discussions. G.K. is a Jon Heighten Scholar in Autism Research and Townsend Distinguished Chair in Research on Autism Spectrum Disorders at UT Southwestern, and was partially supported by the James S. McDonnell Foundation 21st Century Science Initiative in Understanding Human Cognition Scholar Award (220020467), Simons Foundation for Autism Research Award (947591) and National Institutes of Health (NIH) grants (NS126143, HG011641, MH126481, NS115821). S.A.L. is supported by the Carol and Gene Ludwig Family Foundation, The Cure Alzheimer’s Fund, the National Multiple Sclerosis Society and NIH grants (R01EY033353, R03NS127079). C.R.C. is supported by the Weill Neurohub, the Shurl and Kay Curci Foundation, the CURE Epilepsy Taking Flight Award and grants from the NIH (K08NS126573, U01NS132353). E.C. is a Neural Scientist Training Program Fellow in the Peter O’Donnell Brain Institute at UT Southwestern. J.L.C. is supported by NIH grant U01MH10907. J.G. is supported by NIH grant R01MH113005. M.S. is supported by a HHMI Hanna H. Gray Fellowship, a SFARI Pilot Award and a NYSCF Druckenmiller Fellowship. J.W. is supported by NIH grant R01MH113005. M.E.U. is supported by the National Science Foundation Graduate Research Fellowship Program and a Hertz Foundation Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this Review.

Corresponding authors

Correspondence to Marco Colonna, Genevieve Konopka, Shane A. Liddelow, Tomasz Nowakowski, Omer A. Bayraktar, Ozgun Gokce or Naomi Habib.

Ethics declarations

Competing interests

M.C. is a member of the Scientific Advisory Board of Vigil, NGMBio, Cartesian and Halyardtx. M.C. receives research support from Ono Pharmaceutical, is a consultant for CST and has patents pending on LILRB4 and TREM2. S.A.L. maintains a financial interest in AstronauTx and Synapticure and is on the Scientific Advisory Board of the Global BioAccess Fund. S.A.L. is an inventor on US Patents WO2018081250A1 and WO2022187517A1. M.K. is a co-scientific founder of Montara Therapeutics and serves on the Scientific Advisory Boards of Engine Biosciences, Casma Therapeutics, Cajal Neuroscience, Alector and Montara Therapeutics, and is an advisor to Modulo Bio and Recursion Therapeutics. M.K. is an inventor on US Patent 11,254,933 related to CRISPRi and CRISPRa screening, and on a US Patent Application on in vivo screening methods. All other authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Renzo Mancuso and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colonna, M., Konopka, G., Liddelow, S.A. et al. Implementation and validation of single-cell genomics experiments in neuroscience. Nat Neurosci 27, 2310–2325 (2024). https://doi.org/10.1038/s41593-024-01814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41593-024-01814-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research