Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Study-phase reinstatement predicts subsequent recall

Abstract

Can the brain improve the retrievability of an experience after it has occurred? Systems consolidation theory proposes that item-specific cortical reactivation during post-encoding rest periods facilitates the formation of stable memory representations, a prediction supported by neural evidence in humans and animals. Such reactivation may also occur on shorter timescales, offering a potential account of classic list memory phenomena but lacking in support from neural data. Leveraging the high temporal specificity of intracranial electroencephalography (EEG), we investigate spontaneous reactivation of previously experienced items during brief intervals between individual encoding events. Across two large-scale free-recall experiments, we show that reactivation during these periods, measured by spectral intracranial EEG similarity, predicts subsequent recall. In a third experiment, we show that the same methodology can identify post-encoding reactivation that correlates with subsequent memory, consistent with previous results. Thus, spontaneous study-phase reinstatement reliably predicts memory behavior, linking psychological accounts to neural mechanisms and providing evidence for rapid consolidation processes during encoding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental tasks and methods for experiments 1 and 2.
Fig. 2: Similarity of spectral representations of neural signals during two word presentations on the same list.
Fig. 3: Similarity of neural signals at time points during encoding presentations and inter-item intervals as a function of subsequent recall.
Fig. 4: Experiment 3 task design and analysis of post-encoding reinstatement.

Similar content being viewed by others

Data availability

De-identified data from the three experiments in this study are available on OpenNeuro (experiment 1, https://openneuro.org/datasets/ds004809/; experiment 2, https://openneuro.org/datasets/ds004789/; experiment 3, https://openneuro.org/datasets/ds005411/).

Code availability

The software used to perform analyses and generate figures for the paper is available on GitHub at https://github.com/pennmem/study_phase_reinstatement.

References

  1. Zhang, H., Fell, J. & Axmacher, N. Electrophysiological mechanisms of human memory consolidation. Nat. Commun. 9, 4103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Staresina, B. P., Alink, A., Kriegeskorte, N. & Henson, R. N. Awake reactivation predicts memory in humans. Proc. Natl Acad. Sci. USA 110, 21159–21164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deuker, L. et al. Memory consolidation by replay of stimulus-specific neural activity. J. Neurosci. 33, 19373–19383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schapiro, A. C., McDevitt, E. A., Rogers, T. T., Mednick, S. C. & Norman, K. A. Human hippocampal replay during rest prioritizes weakly learned information and predicts memory performance. Nat. Commun. 9, 3920 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Marr, D. Simple memory: a theory for archicortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 262, 23–81 (1971).

    Article  CAS  PubMed  Google Scholar 

  6. Buzsáki, G. Two-stage model of memory trace formation: a role for ‘noisy’ brain states. Neuroscience 31, 551–570 (1989).

    Article  PubMed  Google Scholar 

  7. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    Article  PubMed  Google Scholar 

  8. Wilson, M. & McNaughton, B. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Carr, M. F., Jadhav, S. P. & Frank, L. M. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat. Neurosci. 14, 147–153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Benjamin, A. S. & Tullis, J. What makes distributed practice effective? Cogn. Psychol. 61, 228–247 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ward, G. & Tan, L. The role of rehearsal and reminding in the recall of categorized word lists. Cogn. Psychol. 143, 101563 (2023).

    Article  PubMed  Google Scholar 

  12. Thios, S. J. & D’Agostino, P. R. Effects of repetition as a function of study-phase retrieval. J. Verbal Learning Verbal Behav. 15, 529–536 (1976).

    Article  Google Scholar 

  13. Siegel, L. L. & Kahana, M. J. A retrieved context account of spacing and repetition effects in free recall. J. Exp. Psychol. Learn. Mem. Cogn. 40, 755–764 (2014).

    Article  PubMed  Google Scholar 

  14. Hintzman, D. L., Summers, J. J. & Block, R. A. Spacing judgments as an index of study-phase retrieval. J. Exp. Psychol. Hum. Learn. Mem. 1, 31–40 (1975).

    Article  Google Scholar 

  15. Rundus, D. Analysis of rehearsal processes in free recall. J. Exp. Psychol. 89, 63–77 (1971).

    Article  Google Scholar 

  16. Rundus, D. & Atkinson, R. C. Rehearsal processes in free recall: a procedure for direct observation. J. Verbal Learning Verbal Behav. 9, 99–105 (1970).

    Google Scholar 

  17. Modigliani, V. & Hedges, D. G. Distributed rehearsals and the primacy effect in single-trial free recall. J. Exp. Psychol. Learn. Mem. Cogn. 13, 426–436 (1987).

    Article  Google Scholar 

  18. Bird, C. M., Keidel, J. L., Ing, L. P., Horner, A. J. & Burgess, N. Consolidation of complex events via reinstatement in posterior cingulate cortex. J. Neurosci. 35, 14426–14434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fellner, M.-C., Waldhauser, G. T. & Axmacher, N. Tracking selective rehearsal and active inhibition of memory traces in directed forgetting. Curr. Biol. 30, 2638–2644 (2020).

    Article  Google Scholar 

  20. Honey, C. J., Newman, E. L. & Schapiro, A. C. Switching between internal and external modes: a multiscale learning principle. Netw. Neurosci. 1, 339–356 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mednick, S. C., Cai, D. J., Shuman, T., Anagnostaras, S. & Wixted, J. T. An opportunistic theory of cellular and systems consolidation. Trends Neurosci. 34, 504–514 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Norman, K. A., Newman, E. L. & Perotte, A. J. Methods for reducing interference in the complementary learning systems model: oscillating inhibition and autonomous memory rehearsal. Neural Netw. 18, 1212–1228 (2005).

    Article  PubMed  Google Scholar 

  23. Wamsley, E. J., Arora, M., Gibson, H., Powell, P. & Collins, M. Memory consolidation during ultra-short offline states. J. Cogn. Neurosci. 35, 1617–1634 (2023).

    Article  PubMed  Google Scholar 

  24. Wamsley, E. J. & Summer, T. Spontaneous entry into an ‘offline’ state during wakefulness: a mechanism of memory consolidation? J. Cogn. Neurosci. 32, 1714–1734 (2020).

    Article  PubMed  Google Scholar 

  25. Xue, G. et al. Greater neural pattern similarity across repetitions is associated with better memory. Science 330, 97–101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, Y., Wang, C., Chen, C. & Xue, G. Spatiotemporal neural pattern similarity supports episodic memory. Curr. Biol. 25, 780–785 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Ebbinghaus, H. Memory: A Contribution to Experimental Psychology (Teachers College Press, 1913).

    Book  Google Scholar 

  28. Madigan, S. A. Intraserial repetition and coding processes in free recall. J. Verbal Learning Verbal Behav. 8, 828–835 (1969).

    Article  Google Scholar 

  29. Melton, A. W. The situation with respect to the spacing of repetitions and memory. J. Verbal Learning Verbal Behav. 9, 596–606 (1970).

    Article  Google Scholar 

  30. Greene, R. L. Spacing effects in memory: evidence for a two-process account. J. Exp. Psychol. Learn. Mem. Cogn. 15, 371–377 (1989).

    Article  Google Scholar 

  31. Feng, K. et al. Spaced learning enhances episodic memory by increasing neural pattern similarity across repetitions. J. Neurosci. 39, 5351–5360 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, X. & Fuentemilla, L. Distinct encoding and post-encoding representational formats contribute to episodic sequence memory formation. Cereb. Cortex 33, 8534–8545 (2023).

    Article  PubMed  Google Scholar 

  33. Wu, X., Viñals, X., Ben-Yakov, A., Staresina, B. P. & Fuentemilla, L. Post-encoding reactivation is related to learning of episodes in humans. J. Cogn. Neurosci. 35, 74–89 (2022).

    Article  PubMed  Google Scholar 

  34. Edelman, S., Grill-Spector, K., Kushnir, T. & Malach, R. Toward direct visualization of the internal shape representation space by fMRI. Psychobiology 26, 309–321 (1998).

    Article  Google Scholar 

  35. Sommer, V. R., Mount, L., Weigelt, S., Werkle-Bergner, M. & Sander, M. C. Spectral pattern similarity analysis: tutorial and application in developmental cognitive neuroscience. Dev. Cogn. Neurosci. 54, 101071 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Manning, J. R., Polyn, S. M., Baltuch, G. H., Litt, B. & Kahana, M. J. Oscillatory patterns in temporal lobe reveal context reinstatement during memory search. Proc. Natl Acad. Sci. USA 108, 12893–12897 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Manning, J. R., Sperling, M. R., Sharan, A., Rosenberg, E. A. & Kahana, M. J. Spontaneously reactivated patterns in frontal and temporal lobe predict semantic clustering during memory search. J. Neurosci. 32, 8871–8878 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fisher, R. A. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10, 507–521 (1915).

    Google Scholar 

  39. Kragel, J. E. et al. Distinct cortical systems reinstate the content and context of episodic memories. Nat. Commun. 12, 4444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haxby, J. V. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Howard, M. W. & Kahana, M. J. When does semantic similarity help episodic retrieval? J. Mem. Lang. 46, 85–98 (2002).

    Article  Google Scholar 

  42. Sanquist, T. F., Rohrbaugh, J. W., Syndulko, K. & Lindsley, D. B. Electrocortical signs of levels of processing: perceptual analysis and recognition memory. Psychophysiology 17, 568–576 (1980).

    Article  CAS  PubMed  Google Scholar 

  43. Fernández, G. et al. Real-time tracking of memory formation in the human rhinal cortex and hippocampus. Science 285, 1582–1585 (1999).

    Article  PubMed  Google Scholar 

  44. Fell, J. et al. Human memory formation is accompanied by rhinal–hippocampal coupling and decoupling. Nat. Neurosci. 4, 1259–1264 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Dewar, M., Alber, J., Cowan, N. & Della Sala, S. Boosting long-term memory via wakeful rest: intentional rehearsal is not necessary, consolidation is sufficient. PLoS ONE 9, e109542 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tambini, A. & Davachi, L. Awake reactivation of prior experiences consolidates memories and biases cognition. Trends Cogn. Sci. 23, 876–890 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Howard, M. W., Viskontas, I. V., Shankar, K. H. & Fried, I. Ensembles of human MTL neurons ‘jump back in time’ in response to a repeated stimulus. Hippocampus 22, 1833–1847 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Estes, W. K. Statistical theory of spontaneous recovery and regression. Psychol. Rev. 62, 145–154 (1955).

    Article  CAS  PubMed  Google Scholar 

  49. Howard, M. W. & Kahana, M. J. A distributed representation of temporal context. J. Math. Psychol. 46, 269–299 (2002).

    Article  Google Scholar 

  50. Zola-Morgan, S. M. & Squire, L. R. The primate hippocampal formation: evidence for a time-limited role in memory storage. Science 250, 288–290 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Anagnostaras, S. G., Maren, S. & Fanselow, M. S. Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J. Neurosci. 19, 1106–1114 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tse, D. et al. Schemas and memory consolidation. Science 316, 76–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Craik, F. I. & Watkins, M. J. The role of rehearsal in short-term memory. J. Verbal Learning Verbal Behav. 12, 599–607 (1973).

    Article  Google Scholar 

  54. Cousineau, D. Confidence intervals in within-subject designs: a simpler solution to Loftus and Masson’s method. Tutor. Quant. Methods Psychol. 1, 42–45 (2005).

    Article  Google Scholar 

  55. Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means CRAN.R-project.org/package=emmeans (2019).

  56. Loftus, G. R. & Masson, M. E. J. Using confidence intervals in within-subject designs. Psychon. Bull. Rev. 1, 476–490 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Franz, V. H. & Loftus, G. R. Standard errors and confidence intervals in within-subjects designs: generalizing Loftus and Masson (1994) and avoiding the biases of alternative accounts. Psychon. Bull. Rev. 19, 395–404 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Weidemann, C. T. et al. Neural activity reveals interactions between episodic and semantic memory systems during retrieval. J. Exp. Psychol. Gen. 148, 1–12 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. & Harshman, R. Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41, 391–407 (1990).

    Article  Google Scholar 

  60. Landauer, T. K. & Dumais, S. T. A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104, 211–240 (1997).

    Article  Google Scholar 

  61. Geller, A. S., Schleifer, I. K., Sederberg, P. B., Jacobs, J. & Kahana, M. J. PyEPL: a cross-platform experiment-programming library. Behav. Res. Methods 39, 950–958 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Anderson, K. L., Rajagovindan, R., Ghacibeh, G. A., Meador, K. J. & Ding, M. Theta oscillations mediate interaction between prefrontal cortex and medial temporal lobe in human memory. Cereb. Cortex 20, 1604–1612 (2010).

    Article  PubMed  Google Scholar 

  63. SciPy 1.0 Contributors et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  Google Scholar 

  64. Hoyer, S. & Hamman, J. xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw. 5, 10 (2017).

    Article  Google Scholar 

  65. McKinney, W. Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 56–61 (Curvenote, 2010).

  66. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Waskom, M. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).

    Article  Google Scholar 

  68. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  69. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

  70. Satterthwaite, F. E. An approximate distribution of estimates of variance components. Biometrics 2, 110–114 (1946).

    PubMed  Google Scholar 

  71. Giesbrecht, F. G. & Burns, J. C. Two-stage analysis based on a mixed model: large-sample asymptotic theory and small-sample simulation results. Biometrics 41, 477–486 (1985).

    Article  Google Scholar 

  72. Hrong-Tai Fai, A. & Cornelius, P. L. Approximate F-tests of multiple degree of freedom hypotheses in generalized least squares analyses of unbalanced split-plot experiments. J. Stat. Comput. Simul. 54, 363–378 (1996).

    Article  Google Scholar 

  73. Bates, D., Kliegl, R., Vasishth, S. & Baayen, H. Parsimonious mixed models. Preprint at https://arxiv.org/abs/1506.04967 (2018).

  74. Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article  Google Scholar 

  75. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

    Google Scholar 

Download references

Acknowledgements

We are very grateful to all patients who participated in this study. We thank R. Colyer, A. Rao and R. DeHaan for help with data collection and quality control and A. Schapiro, A. Broitman and N. Greene for comments on the paper. We gratefully acknowledge support from NIH grant MH55687.

Author information

Authors and Affiliations

Authors

Contributions

D.J.H. and M.J.K. developed hypotheses and designed the study. M.J.K. acquired funding. B.C.L., R.E.G., C.W., M.R.S., J.P.A. and B.C.J. recruited study participants, implanted electrodes and collected data. D.J.H. analyzed data. D.J.H. and M.J.K. wrote the paper.

Corresponding author

Correspondence to Michael J. Kahana.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks John Wixted and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Discussion.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halpern, D.J., Lega, B.C., Gross, R.E. et al. Study-phase reinstatement predicts subsequent recall. Nat Neurosci 28, 883–890 (2025). https://doi.org/10.1038/s41593-025-01884-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41593-025-01884-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing