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Hippocampal output suppresses  
orbitofrontal cortex schema cell formation
 

Wenhui Zong    1  , Jingfeng Zhou2, Matthew P. H. Gardner    3, Zhewei Zhang    1, 
Kauê Machado Costa4 & Geoffrey Schoenbaum    1 

Both the orbitofrontal cortex (OFC) and the hippocampus (HC) are 
implicated in the formation of cognitive maps and their generalization into 
schemas. However, how these areas interact in supporting this function 
remains unclear, with some proposals supporting a serial model in which 
the OFC draws on task representations created by the HC to extract key 
behavioral features and others suggesting a parallel model in which 
both regions construct representations that highlight different types of 
information. In the present study, we tested between these two models by 
asking how schema correlates in rat OFC would be affected by inactivating 
the output of the HC, after learning and during transfer across problems. We 
found that the prevalence and content of schema correlates were unaffected 
by inactivating one major HC output area, the ventral subiculum, after 
learning, whereas inactivation during transfer accelerated their formation. 
These results favor the proposal that the OFC and HC operate in parallel to 
extract different features defining cognitive maps and schemas.

The orbitofrontal cortex (OFC) and hippocampus (HC) are both associ-
ated with the process of forming mental constructs—cognitive maps1,2—
that permit adaptive behavior in situations where novelty or incomplete 
information prevents reliance on past experience3–5. Although first 
applied to explain the role of the HC in mapping space and other infor-
mational dimensions in relational memory, the same term accurately 
describes the involvement of the OFC in sussing out the components 
and relationships that define the world around us, particularly as rel-
evant to our behavioral goals or purpose in a particular setting. Accurate 
knowledge of such task spaces—composed of the internally specified 
states and state transitions that comprise the task at hand6,7—can be 
enormously useful, whether navigating a maze to obtain pellets, a metro 
system to reach the airport or social structures to get ahead. Having an 
accurate task map allows us to rapidly recognize new or incomplete 
information and then respond in a manner consistent with our needs and 
desires. This principle extends to the formation of schemas, which we 
would define as generalized cognitive maps, and facilitates the transfer 
of knowledge to new problems of a similar type, as when knowledge 
of one metro system makes it easier to learn to use another. Although 

schemas can cause difficulties when applied inappropriately, they nor-
mally facilitate ongoing behavior, because they provide shortcuts for 
responding in new situations. Notably, neural activity reflecting schema 
formation has been demonstrated in both the OFC and the HC8–11.

This convergence in function puts renewed emphasis on under-
standing how the two areas interact. Historically, addressing this has 
been hampered by the very different tasks used to study the HC, which 
typically focus on spatial information and navigation, versus those 
applied to the OFC, which normally use nonspatial sensory modalities, 
especially chemosensory, in simpler Pavlovian or instrumental tasks. 
Notable exceptions to this dichotomy have shown that the OFC maps 
spatial relationships in settings normally used to assess HC function12–15 
and that the HC reflects information and contributes to adaptive behav-
iors more normally associated with the OFC16–22. When neural activity 
in the two areas is directly compared in the same task, similarities and 
differences are evident10,11,23–28. Both areas construct a model of the task 
space, but the OFC appears to give precedence to biologically signifi-
cant information, whereas the HC represents externally defined states 
with greater fidelity, even when incidental to task performance10,27,28.
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Fig. 1 | Task design, histology and behavior. a, Schematic illustrating the events of 
a trial in the odor-sequence task. The illumination of two overhead house lights 
indicated the start of each trial. After poking into the central odor port and 
sampling the presented odor, rats could respond with a ‘go’ to obtain a sucrose 
reward or a ‘no-go’ to avoid a prolonged intertrial interval. b, Odor-sequence task 
illustrated as two virtual figure-of-eight mazes. Ten odors were organized into two 
sequence pairs (S1 and S2), each comprising two subsequences (a and b). Each 
subsequence consists of four trials or positions (P1–P4) indicated by odor 
numbers. Red +, rewarded; black −, nonrewarded; 0–9, odor identities; arrows 
indicate sequence transitions. c, Reconstruction of recording locations in the 
lateral OFC. The approximate extent of recording locations in each rat is 
represented by red squares. d, Virus expression. An adeno-associated virus (AAV) 
carrying the soma-targeted GtACR2-FusionRed construct under the CaMKIIa 
promoter was injected into the ventral subiculum (vSub) bilaterally. GtACR2-
expressing neurons were identified using immunohistochemistry (red, GtACR2; 
blue, DAPI). GtACR2-expressing neurons were found in the vSUB and dentate gyrus 
(DG). This experiment was independently repeated across all eight animals, 

yielding consistent results. Individual neurons expressing GtACR2 are magnified in 
the dashed white box. Scale bars, 1 mm (left) and 10 µm (right). e, Reconstruction of 
GtACR2 expression and optical fiber placements in the vSUB. The maximal and 
minimal extents of GtACR2 expression are indicated by purple and green colors, 
respectively, and red dots indicate optical fiber placement. f,g, Percentage correct 
(f) and latency to poke into the odor port to initiate a trial after light onset (g) on 
each trial type in S1a, S2a (above y axis), S1b, S2b (below y axis) for control (left) and 
GtACR2 (right) sessions (gray, maze 1; green, maze 2). The error bars represent the 
s.e.m. Four-way ANOVAs confirmed the significant main effects of position on both 
measures (percentage correct: F(3,1405) = 145.5, P = 4.2 × 10−82, η2

p = 0.24; poke latency: 
F(3,1405) = 889.1, P = 1.0 × 10−323, η2

p = 0.66; n = 45 sessions for control; n = 44 sessions 
for GtACR2), with reward driving more accurate and faster performance. Further 
regression analyses on the latency to initiate trials showed that this measure was 
affected by whether the reward was to be delivered on both the current and the next 
trials (g, right for control and GtACR2). Notably, in these analyses, there were no 
effects of inactivation (F < 0.82; P > 0.36; η2

p < 0.0006; n = 45 sessions for control; 
n = 44 sessions for GtACR2). The error bars are the s.e.m. (see Extended Data Fig. 1).
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Yet, although such comparative studies provide glimpses into 
how the two areas may interact in the formation of cognitive maps and 
schemas, they are usually conducted at steady state rather than during 
learning, rarely address transfer to new problems and generally do not 
test for effects of manipulations of one area on correlates in the other. 
As a result, current evidence can be used to support either serial or par-
allel processing models10,27–33. For instance, the HC may build a task map 
or schema based on external stimuli, which is then accessed by areas 
such as the OFC for extraction of behaviorally relevant features, both 
within and across problems. In this scenario, task representations in 
the OFC would be heavily dependent on HC processing. Alternatively, 
the OFC and HC may function in parallel, extracting different informa-
tion relevant to task mapping and schema formation according to each 
area’s unique functions. Under this arrangement, many features of the 
representations in the OFC would be independent of the HC.

In the present study, we tested between the predictions of these 
two models, asking specifically how generalized representations—
schemas—encoded in single-unit activity in the OFC, are affected by 
inactivation of the ventral subiculum, a major outflow pathway of the 
HC that projects strongly to the OFC, both during performance on 
well-learned problems and during transfer to new problems. Our results 
distinguish between the two alternative models, strongly favoring the 
proposal that the OFC and HC operate in parallel to extract different 
features defining cognitive maps and schemas during the integration 
of new information.

Results
Single-unit activity was recorded in the OFC in rats (n = 4 females,  
4 males) performing an odor-sequence task built on top of a standard 
go or no-go odor discrimination (Fig. 1a). In each trial, the rats sampled 
an odor presented at a centrally located port and then had to decide 
whether to respond at a nearby fluid well for a sucrose reward. Rather 
than being randomized, however, the odor cues presented on succes-
sive trials were arranged in a predictable, fixed sequence to define 
trajectories through a virtual ‘figure-of-eight’ maze. In initial training, 
10 different odor cues were arranged to form two unique figure-of-eight 
mazes, with similar reward structures (Fig. 1b) and rats performed two 
alternating 80-trial blocks of each maze in each session. Critically, 
the rats could use the odor cues on each trial to correctly respond for 
reward, but they could also use the sequence to anticipate reward many 
trials into the future, like a rat traveling through a sequence of positions 
on an actual figure-of-eight maze.

Once rats were trained to perform the task, electrodes were  
implanted in the OFC to allow single-unit recording and fibers  
were implanted over the ventral subiculum after infusion of 
pAAV-CKIIa-stGtACR2-FusionRed34 (Addgene viral prep, cat. no. 
105669-AAV1) to allow inactivation of hippocampal outflow (Fig. 1c–e). 
Axons originating from ventral subiculum neurons expressing GtACR2 
were consistently observed within the lateral OFC across all the rats 
in our study (Extended Data Fig. 1). Recording began 5–6 weeks after 
recovery from surgery and retraining on the task while tethered. Dur-
ing recording, each rat completed sessions in which 465-nm light was 
delivered to activate GtACR2, thereby inactivating the ventral subicu-
lum, during each trial. Each inactivation session was accompanied 
by a reminder session and a second recording session at the same 
location, during which light of an ineffective wavelength (630 nm) 
was delivered to serve as a control35. The order of these three sessions 
was counterbalanced such that control and inactivation sessions at 
each location were equally likely to be preceded by either a control 
or a retraining session, avoiding a situation in which control sessions 
directly followed inactivation (see Supplementary Fig. 1 for illustration 
of design). In both inactivation and control sessions, rats maintained 
highly accurate discrimination performance at all positions in both 
mazes (Fig. 1f) and showed differences in their latencies to initiate 
trials, indicating the use of the sequences to predict, at the start of 

each trial, whether reward would be delivered on that trial and the 
next trial (Fig. 1g). There were no effects of maze or inactivation (see 
figure captions for statistics).

We recorded a total of 1,856 units in the OFC during the control 
sessions and 1,834 units during the inactivation sessions. To visualize 
the patterns of firing during task performance, we calculated the activ-
ity of each single unit during each of nine epochs tied to the specific 
events spanning each trial (intertrial interval a (ITIa), light, poke, odor, 
unpoke, choice, outcome, postoutcome, intertrial interval b (ITIb)) 
for each of the eight positions in each maze. This analysis revealed a 
great variety of patterns; however, the activity of individual units was 
generally influenced by some combination of trial epoch, reward and 
maze position (Fig. 2a–c). Overall, single-unit activity in the OFC was 
significantly influenced by each of these variables, with no apparent 
effect of inactivation (Fig. 2d–f).

Importantly, although the activity of some units differed between 
the two mazes (Extended Data Fig. 2), many showed very similar dis-
crete firing patterns across them, consistent with representation of 
a generalized cognitive map or schema of the virtual figure-of-eight 
task. The generalization of the representations across the two mazes 
typically reflected the influence of the same variables noted above to 
impact unit firing, specifically trial epoch (Fig. 3a), reward (Fig. 3b), 
position (Fig. 3c) or some combination of these factors (Fig. 3d and 
Extended Data Figs. 3 and 4). Although the generalization of variables 
such as epoch or reward would not necessarily require recognition of 
the common structure between the two mazes (for example, see exam-
ples in Fig. 3a,b), in other cases generalization required recognition of 
this arbitrary structure. For example, in some units, activity was driven 
by the meaning of specific positions within the sequence (for example, 
the cell in Fig. 3c, which fired most at P2 during choice → ITIb epochs) 
and, in others, it appeared to reflect still more idiosyncratic information 
characterizing particular epochs and positions (for example, the cell 
in Fig. 3d, which fired at rewarded positions and unpoke at P1 and P2).

Ventral subiculum inactivation does not affect prevalence or 
content of schema cells in the OFC on an established problem
To quantify the various patterns observed in the single-unit correlates, 
we designed an algorithmic set of correlational analyses to categorize 
each unit as representing trial structure, reward or position and to 
assess the generalization of that information across mazes. For each 
unit, we calculated the actual mean firing across all trials in each of the 
nine epochs at each of the eight positions in the two mazes, yielding 
a pair of 72 × 1 data arrays (that is, nine epochs at each of eight posi-
tions). We then used correlation coefficients on the resultant pair of 
72 × 1 data arrays to determine the generalizability of activity across 
the two mazes, defining as a schema cell any unit that exhibited a very 
strong significant correlation (r > 0.8 and P < 0.01)36. This approach was 
modeled on recent work by Baraduc et al.9 to identify schema cells in the 
HC of monkeys performing a similar virtual maze task. We also defined 
each unit as influenced by epoch, reward or position if the correlation 
across mazes was significant and survived shuffling of information in 
the other two dimensions (see Methods for description). This approach 
allowed us to classify the activity of each single unit as influenced by 
each type of information independently, so that we could assess the 
interrelationship of the units, their generalization and any effects of 
time and inactivation.

The analysis identified generalized representations of the two 
mazes in nearly half of the units recorded in control sessions (Fig. 4a 
left, orange shading). Inspection of heat plots showing the activity of 
each unit confirmed that these neurons generally had very similar fir-
ing patterns in each maze (similar to examples in Fig. 3 and Extended 
Data Figs. 3 and 4). Units that failed to meet these stringent criteria 
and had correlations <0.4 tended to have little phasic firing in the 
task (Fig. 4a, left, light-gray shading), so they were categorized as 
noncoding, whereas units with correlations between 0.4 and 0.8 were 
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categorized as nonschema cells (Fig. 4a, left, dark-gray shading, and 
Extended Data Fig. 2). Notably, the proportions in each category were 
nearly identical to the proportions recorded at the same locations in 
these rats when the ventral subiculum was inactivated in other sessions 
(Fig. 4a, right). Importantly, although the correlation used to categorize 
a unit as a schema cell was based on a somewhat arbitrary criterion, 
the lack of any effect of inactivation was true regardless of the precise 
threshold (Fig. 4b); similarly, nonschema and noncoding neurons 
exhibited comparable results (Supplementary Fig. 2) and the propor-
tion of cells that fell in each category was remarkably stable across 
sessions and repeated inactivation (Fig. 4c). An analysis to determine 
the average explained variance related to epoch, reward and position 
indicated that this information was more prevalent in schema than 

in nonschema cells, and there was no impact of inactivation on any 
category (Fig. 4d–f and Supplementary Fig. 3).

Schema cells identified in this manner exhibited relatively high 
and similar classification performance within versus across the two 
mazes. To show this for the individual cells, we used activity across 
epochs at each position in one maze as the training set for classification 
of trials drawn at random from either that maze or the other maze on 
which that neuron was characterized in a particular session. Using this 
approach, activity from individual OFC neurons correctly classified the 
position of test trials ~12.5% of the time, on average. This performance 
did not depend on whether the test trial came from the same or the 
opposite maze as the training set data and again there was no effect of 
inactivation (Fig. 4g). Significant distinctions in single-cell decoding 
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and quantification across the population. a–c, Heatmaps of the OFC neurons 
showing epoch-specific (a), reward-specific (b) and position-specific (c) firing 
in the figure-of-eight task. In each panel, the heatmap shows average activity in 
each epoch at each position in one maze. Individual squares corresponding to 
each epoch are magnified in the black dashed box at the top. Arrows represent 
sequence directions. A red asterisk marks the reward epoch on rewarded 

trial types (P3 and P4), whereas a black asterisk marks the reward epoch for 
nonrewarded trial types (P1 and P2). d–f, Plots show the percentage of the OFC 
neurons with firing that was significantly modulated by epoch (d), reward (e) 
and position (f) (ANOVA, P < 0.01), with each neuron assigned to the condition of 
maximal firing. There were no effects of inactivation (χ2 < 1.42; P > 0.23; degree of 
freedom (d.f.) = 1; χ2 test). Red denotes the chance level.
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Fig. 3 | Exemplar units illustrating the generalization of epoch, reward and 
positional information across mazes. a–d, Heatmaps (left) and mean firing 
rate at each position and epoch (right) for OFC neurons showing generalization 
of activity related to epoch (a), reward (b) and position (c) or a combination 
of factors (d). Heatmaps plot activity as described in Fig. 2. Line plots show 
the average firing rate in each epoch at each position in each maze, ordered 

according to the reward on the current and next trials. The gray line represents 
maze 1 and the green line maze 2. The firing rates were not significantly different 
between maze 1 and maze 2 at all epochs in each example (P > 0.10; two-sided 
Wilcoxon’s rank-sum test; n = 8 positions for each maze of each neuron). The 
error bars are the s.e.m. (Extended Data Figs. 2–4).
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were observed among schema, nonschema and noncoding neurons 
(Supplementary Fig. 4). We also repeated this analysis using activity 
from ensembles of schema cells within each epoch; ensemble activity 
correctly classified the position of test trials ~45% of the time. Again, 
this performance was similar within and across mazes and was not 
affected by inactivation (Fig. 4h). Moreover, significant differences 
were observed in cell ensembles across schema, nonschema and non-
coding categories as well (Supplementary Fig. 5).

Inactivation of the ventral subiculum also had very little effect 
on the content of the generalized representations in the OFC. The 
fractions of units with correlated activity that reflected trial epoch 

(Fig. 5a), reward (Fig. 5b) or position (Fig. 5c) were entirely unaffected 
by inactivation, as were the proportion of neurons in each of these 
categories that met criteria for being schema cells (orange fraction 
in Fig. 4a and Fig. 5d). This lack of effect was also evident when we 
restricted this analysis to the early periods of the trial (ITIa → odor), 
which were uncontaminated by external stimuli and actions related to 
the go or no-go responses or the presence of reward (Supplementary 
Fig. 6). Thus, inactivation of hippocampal outflow did not dramatically 
impact established correlates, generalized or not, in the OFC.

Importantly, these negative effects were obtained despite good 
viral expression and fiber placement (Fig. 1d,e). In addition, we paused 
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Fig. 4 | Ventral subiculum inactivation does not affect the prevalence or 
positional decoding of schema cells in the OFC during performance on an 
established problem. a, Correlation in firing across mazes for all OFC neurons 
recorded in control and GtACR2 sessions. The plots show the distribution of r 
scores with the neurons that met the arbitrary cutoff for classification as schema 
cells (r > 0.8, P < 0.01, correlation coefficients) shown in orange, nonschema cells 
(r ≥ 0.4 and r ≤ 0.8, correlation coefficients) in dark gray and noncoding cells 
(r < 0.4, correlation coefficients) in light gray. b, Percentage of schema neurons at 
different thresholds for categorization. There was no difference between the two 
groups in the proportion of neurons at any threshold value (χ2 = 0.67; P = 0.41; 
d.f. = 1; χ2 test). c, Percentage of schema (Sch.), nonschema (Nonsch.) and 
noncoding (Noncod.) neurons from control and GtACR2 sessions on each day of 
training (using thresholds in a). There was no difference between the two groups 
in the proportion of neurons at any day (χ2 < 2.1; P > 0.15; d.f. = 1; χ2 test).  
d–f, Explained variance, averaged across neurons, for each factor (epoch, reward, 
position) within maze in the schema (d; n = 877 units for control; n = 910 units for 

GtACR2), nonschema (e; n = 771 units for control; n = 722 units for GtACR2) and 
noncoding (f; n = 208 units for control; n = 202 units for GtACR2) populations. 
There were no effects of inactivation (P > 0.09; two-tailed Student’s t-test).  
g, Accuracy of decoding position across all epochs by individual schema cells, 
where → denotes chance decoding of 12.5%. One-way ANOVA showed that 
accuracy was similar for decoding within and across mazes for neurons in control 
(F(1,3710) = 0.068; P = 0.79; η2

p = 1.8 × 10−5) and GtACR2 sessions (F(1,366) = 0.016; 
P = 0.90; η2

p = 4.4 × 10−6) and there was no significant effect of inactivation (within: 
F(1,368) = 0.45; P = 0.50; η2

p = 1.2 × 10−4; across: F(1,3688) = 0.35; P = 0.55; η2
p = 9.5 × 10−5). 

h, Accuracy of decoding position within each epoch by ensembles of schema 
cells, where the dotted line denotes chance decoding of 12.5%. A one-way ANOVA 
showed that accuracy was similar for decoding within and across mazes for 
neurons in control (F(1,16) = 0.02; P = 0.88; η2

p = 1.5 × 10−3) and GtACR2 sessions  
(F(1, 16) = 0.31; P = 0.58; η2

p = 0.02) and there was no significant effect of inactivation 
(within: F(1,16) = 0.37; P = 0.55; η2

p = 0.023; across: F(1, 16) = 0; P = 0.96; η2
p = 1.6 × 10−4; 

Supplementary Figs. 2–5 and 10).
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the experiment at this point to behaviorally validate the efficacy of 
inactivation. Rats were trained in a food neophobia task known to 
depend on hippocampal memory systems37–40. Each day they were 
given a choice between a new food pellet and pellets made of their 
normal chow, and consumption was measured over a 10-min period, 
during which the rats received either light effective in inactivating the 
ventral subiculum (n = 3) or ineffective light serving as a control (n = 3). 
We reasoned that, if the appropriate wavelength light was disrupting 
hippocampal outflow, then the rats receiving it would have difficulty 
remembering prior exposures to the new pellet and would show pro-
longed neophobia relative to their counterparts. Consistent with this 
prediction, we found that controls increased their consumption of the 
new food relative to the familiar one, whereas the inactivated group 
did not (Fig. 5e). These results provide independent confirmation 
that light delivery in these rats was acting as expected to disrupt hip-
pocampal output.

Ventral subiculum inactivation facilitates formation of schema 
cells in the OFC during learning of new problems
Next, we recorded from the OFC during learning of two new problems. 
The new problems were identical in structure to the first problem 
(Fig. 1b), except that ten new odors were used for each. Single units 
were recorded for 10–12 d of training on each problem (9 d of acquisi-
tion and then a final day). For this phase, the rats that completed prior 
training and remained healthy (n = 4) were divided equally into two 
groups, along with two additional rats that were trained extensively on 
the initial problem. These rats had similar performance and neural activ-
ity during prior training and the main effects reported below were the 
same without their inclusion (Extended Data Fig. 5). One group (n = 3) 
received light to inactivate the ventral subiculum during learning of 
both new problems, whereas the other (n = 3) received ineffective light 
to serve as controls. Learning and changes in neural correlates on the 
two problems were similar, thus we collapsed them for our analysis.

The performance of rats in both groups initially declined when new 
odors were presented, with rats in both groups often responding to 
nonrewarded odors (Fig. 6a) and showing a loss of latency effects that 
required attention to the sequences (Fig. 6b). This decline is consistent 
with the proposal that they were using the odor sequences (rather than 

a pattern of motor behaviors or something else that had not changed) 
to guide their behavior. However, after this initial decline, both groups 
quickly learned to discriminate rewarded positions accurately (Fig. 6a) 
and to show differences in their trial initiation latencies reflective of the 
odor sequences (Fig. 6b). These behaviors developed within the first 
few sessions, which was quicker than the weeks of training required 
on the initial problem (before recording). This is consistent with the 
development of a schema for learning the basic odor discriminations 
and the sequences in which the odors were embedded. However, there 
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Fig. 5 | Ventral subiculum inactivation does not affect the content of schema 
cells in the OFC during performance on an established problem. a–c, Scatter 
plots showing the correlation coefficients of each neuron from the control (left) 
and GtACR2 (right) sessions. The y axes plot the correlation coefficients from 
unshuffled data and the x axes the mean correlation coefficients obtained after 
shuffling data (1,000×) to disrupt contributions of information related to the 
epoch (a), reward (b) or position (c). Orange, gray or black cells had actual 
correlation coefficients >99% of the shuffled results, indicating a significant 
contribution of the shuffled type of information to the correlated firing patterns. 
These populations, the percentage of the total of that category noted on the 
panels, were not affected by inactivation (χ2 < 3.4; P > 0.066; d.f. = 1; χ2 test). 
Orange denotes schema cells and gray nonschema cells. d, Venn diagrams 
summarizing data from a to c, showing the fraction of schema neurons recorded 
in control and GtACR2 sessions that were affected by the shuffling of information 
related to epoch (light gray), reward (light green) and position (dark gray). The 
sizes of circles are normalized to the total number of neurons recorded in each 
group and proportions in each category that overlap between categories were 
not affected by inactivation (χ2 < 0.40; P > 0.54; d.f. = 1; χ2 test). e, Food 
consumption across trials in the neophobia task. Lines show new food consumed 
per trial as a percentage of familiar food. Light green, control and deep green, 
GtACR2. A three-way ANOVA revealed a significant main effect of novelty 
(F(1,104) = 9.11; P = 0.0032; η2

p = 0.081; n = 5 trials for both groups) and a significant 
interaction between the novelty and group (F(1,104) = 4.05; P = 0.047; η2

p = 0.038; 
n = 5 trials for both groups). Further testing showed a significant difference 
between groups on the last three (F(1,34) = 7.21; P = 0.01; η2

p = 5.6 × 10−3; n = 3 trials 
for both groups) but not the initial two trials (F(1,22) = 0.95; P = 0.34; η2

p = 0.042; 
n = 3 trials for both groups). The error bars are the s.e.m.
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were modest differences between the two groups during acquisition 
of these new problems, which were not evident on the established 
problem. Inactivated rats were faster to stop responding at norewarded 
positions (Fig. 6a; scatters, nonrewarded (−)) and failed to distinguish 
between these positions in their trial initiation speeds (Fig. 6b; scat-
ters, P1 versus P2).

Against this backdrop, we recorded single units from each group 
on each day of training (n = 79–209 per group per d). Neurons gener-
ally exhibited a similar pattern of modulation by epoch as they had on 
the established problem, although there were some small differences 
between the two groups (Supplementary Fig. 7).

Using the approach applied above, we again tracked the develop-
ment of neural correlates related to trial epoch, reward and position 
and their generalization across the two mazes during learning. This 
analysis showed that, in both groups, generalized coding across mazes 
declined significantly on the new problems in day 1 of training from 
what had been observed on the established problem, whereas the 
prevalence of nonschema (but not noncoding) cells increased some-
what in both groups (Fig. 7a–c; day 1). From this low, the prevalence of 

schema cells increased (and that of nonschema cells decreased) with 
training; however, these changes were significantly greater in rats in 
which the ventral subiculum was inactivated during each trial, such 
that, by day 3, the prevalence of schema cells in the inactivated group 
became significantly higher than that in controls (Fig. 7a). This increase 
in the prevalence of generalized representations came at the expense of 
the nonschema cells, which declined more in the inactivated group than 
in controls (Fig. 7b and Supplementary Fig. 8) and occurred while the 
information available about epoch, reward and position—measured as 
explained variance—was higher on average in the inactivated group for 
neurons in both categories (Fig. 7d–f and Supplementary Fig. 9). Thus, 
the effect of inactivation on generalized activity across mazes was not 
dependent on a decline or population-specific change in information 
represented within each maze.

Inactivation also increased the strength of generalized activity 
within the schema population. To show this, we again used activity at 
each position in one maze as the training set for classification of trials 
drawn at random from either that maze or the other maze on which 
that neuron was characterized in a particular session. Classification 
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Fig. 6 | Ventral subiculum inactivation affects behavior during learning of a 
new problem. a,b, Percentage correct (a) and trial initiation latencies (b) across 
days of learning for rats in the control and GtACR2 groups. The ANOVAs revealed 
significant effects of session, trial type, group, an interaction between session 
and trial type, and an interaction between trial type and group (F > 5.4; P < 0.021; 
η2
p > 0.03; n = 10 d for both control and GtACR2) in the percentage correct, 

reflecting quicker development of the no-go response on nonrewarded positions 
in the inactivated group at the early stages of learning (days 2–6) (− in scatter 

plots: t53 = 2.7; P = 9.4 × 10−3; two-tailed Student’s t-test; n = 28 for control; n = 27 
for GtACR2) and a significant main effect of trial type and an interaction between 
group and trial type (F > 5.8, P < 0.0007, η2

p > 0.043; n = 10 d for both control and 
GtACR2) in the trial initiation latencies, reflecting a failure of rats in the 
inactivated group to distinguish the two nonrewarded positions (P1 versus P2 in 
the scatter plots) (control: t104 = 5.2, P = 1.2 × 10−6; n = 53 sessions; GtACR2: 
t104 = 0.29, P = 0.77; two-tailed Student’s t-test; n = 53 sessions). −, nonrewarded 
trials; +, rewarded trials. The error bars are the s.e.m. (***P < 0.001; **P < 0.01).
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performance was higher across mazes for both individual schema cells 
(Fig. 8a), as well as for ensembles composed of schema cells (Fig. 8b) 
when the ventral subiculum was inactivated. Moreover, the classifica-
tion performance of schema cells surpassed that of both nonschema 
and noncoding cells. This superiority was observed not only for indi-
vidual cells (Supplementary Fig. 10) but also for ensembles (Supple-
mentary Fig. 11).

Finally, although inactivation greatly facilitated the apparent 
transition from nongeneralized to generalized representations in the 
OFC (Fig. 7a,b), it had this effect without dramatically disrupting the 
influence of epoch, reward or positional information on this correlated 
firing, as revealed by shuffling information within each of these dimen-
sions. The influence of the trial epoch remained high throughout train-
ing and was not impacted by inactivation (Fig. 8c,f). The influence of 
reward and positional information declined in both groups when new 
problems were introduced (Fig. 8d–f) and then increased with training, 
with a significant effect of inactivation evident only on the influence of 
reward (Fig. 8d,f and Extended Data Fig. 6). These changes were again 
similar when the analysis was restricted to the early periods of the trial 
(ITIa → odor), which were uncontaminated by external differences 
related to the go or no-go responses or the presence of reward (Sup-
plementary Fig. 12), and there was no impact of inactivation on the influ-
ence of these variables on the degree of correlated activity across mazes 
in the neurons not classified as schema cells (Extended Data Fig. 7).

Finally, we performed several population-level analyses to confirm 
the significance of the effects observed at the level of single units. 
For this, we reduced the dimensionality of the population activity 
and assessed the geometric similarity of task representations across 
mazes. Both principal component analysis (PCA) and Isomap tech-
niques uncovered a notable discrepancy in the degree of dissimilar-
ity between the control and GtACR2 groups during transfer to new 
problems (Extended Data Fig. 9 and Supplementary Fig. 14) but not 

during performance on the established problem (Extended Data Fig. 8 
and Supplementary Fig. 13). Similarly, although a linear discriminant 
analysis (LDA) clustering analysis effectively differentiated among 
the four positions, distinguishing between maze 1 and maze 2 for cor-
responding positions posed challenges for the GtACR2 group across 
multiple days and aggregated sessions during learning (Extended 
Data Fig. 10 and Supplementary Fig. 16), but not during performance 
on the established problem (Extended Data Fig. 10 and Supplemen-
tary Fig. 15). The addition, analysis of across-trial learning dynamics 
using both a six-component and an eight-component, non-negative 
tensor composition analysis (TCA)41 revealed distinct patterns during 
learning in the control group, which displayed prominent trial types 
and generally flat early components. By contrast, the GtACR2 group 
exhibited components linked to learned rewards or reward-related 
aspects, akin to those seen in both groups during performance on the 
established problem (Supplementary Figs. 17 and 18). Thus, in each 
population-level analysis, we recapitulated the results of the single-unit 
approaches, showing significant effects of inactivation on representa-
tions in the OFC during learning of new problems, consistent with the 
accelerated formation of generalized representations, which were not 
evident during the performance of an established problem.

Discussion
With the convergence in hypothesized functions of the OFC and HC, 
it has become increasingly important to test whether and how they 
coordinate these functions. Nowhere is this of more interest than in 
the formation and use of generalized cognitive maps or schemas. In 
the present study, we show that, at least for a single class of problem, 
‘schema cells’ are normally hindered or impeded from developing in 
the OFC by HC output. Notably, this was not evident in the expres-
sion of an existing schema in a known situation; it was apparent only 
when an existing schema had to be applied or transferred to a new 
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Fig. 7 | Ventral subiculum inactivation facilitates the formation of schema 
 cells in the OFC during learning of a new problem. a–c, Percentage of cells 
recorded on each day that met criteria as schema (a), nonschema (b) and 
noncoding (c) neurons in each group. The prevalence of schema and nonschema 
neurons in the two groups were similar initially and then diverged thereafter, 
with schema neurons increasing more rapidly (overall: χ2 = 78.9, P = 6.6 × 10−19; 
days 1–2: χ2 = 1.6; P = 0.21; days 3–10: χ2 = 83.0, P = 8.0 × 10−20; d.f. = 1; χ2 test) and 
nonschema neurons declining more rapidly (overall: χ2 = 59.2, P = 1.4 × 10−14;  
days 1–2: χ2 = 0.87; P = 0.35; days 3–10: χ2 = 66.3, P = 3.9 × 10−16; d.f. = 1; χ2 test) 
in the inactivated group, with no effects of learning or inactivation on the 

noncoding neurons (χ2 < 1.8; P > 0.18; d.f. = 1; χ2 test). d–f, Average explained 
variance for each factor (epoch, reward, position) within the maze in the schema 
(d; n = 260 for control; n = 863 for GtACR2), nonschema (e; n = 516 for control; 
n = 758 for GtACR2) and noncoding (f; n = 181 for control; n = 330 for GtACR2) 
populations. Inactivation resulted in modest but significant increases in all three 
kinds of information in the schema and nonschema neurons (schema: P = 0.036; 
1.5 × 10−4; 2.6 × 10−7; two-tailed Student’s t-test; nonschema: P = 5.8 × 10−8; 
2.1 × 10−5; 3.6 × 10−9; two-tailed Student’s t-test; noncoding: P = 0.87, 0.40, 0.76, 
two-tailed Student’s t-test). No adjustments were made for multiple comparisons 
(***P < 0.001; *P < 0.05; Supplementary Figs. 8 and 9).
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situation—a new problem pair. Under those conditions, OFC neurons 
recorded in rats with the ventral subiculum inactivated to impair hip-
pocampal output exhibited generalized neural correlates much more 
quickly and at a much higher prevalence than did neurons recorded 
in controls, as if hippocampal output were suppressing or interfering 
with the ability of the OFC to carry the schema to the new problem. 
Although surprising, this effect accords well with evidence of normal 
learning set formation and even facilitated reversal learning in rats 
after lesions affecting hippocampal output in rats42. Indeed, even in 
relatively complex OFC-dependent tasks, such as occasion setting or 
delayed nonmatching, the HC contribution is often limited or nonexist-
ent after a problem has been acquired16,43.

In considering this result, it is important to note that the rats were 
shaped on the task procedures and an initial problem pair before the 

start of inactivation. Thus, although the OFC did not require the HC 
to maintain or transfer schema representations to new problems, it is 
possible that schema formation in the OFC would depend transiently on 
the HC during this initial stage of learning, as has been shown in other 
settings44. We also disrupted hippocampal output transiently and at 
the source rather than lesioning or inactivating a particular subregion 
within the HC or targeting direct projections to or terminals within 
the OFC. We took this approach, effective in prior work45, because we 
wished to determine how hippocampal outflow affected OFC process-
ing on the fly, with minimum time for any compensation and regardless 
of the pathway or other areas involved. Thus, the impact of this sudden, 
transient disruption of the ventral subiculum output on intermedi-
ate areas probably shapes our results. One excellent candidate for 
this might be disruption of interactions with more medial prefrontal 
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Fig. 8 | Ventral subiculum inactivation increases the effect of reward on 
schema cell formation in the OFC during learning of a new problem.  
a, Accuracy of decoding position across all epochs by individual schema cells, 
where → denotes chance decoding of 12.5%. One-way ANOVA showed that 
accuracy was similar for decoding within and across mazes for neurons in control 
(F(1,518) = 0.12, P = 0.73, η2

p = 2.3 × 10−4) and GtACR2 rats (F(1,724) = 3.0, P = 0.083, 
η2
p = 0.0017), whereas inactivation increased accuracy of decoding (within: 

F(1,1121) = 12.48, P = 4.0 × 10−4, η2
p = 0.011; across: F(1,1121) = 36.9, P = 1.7 × 10−9, 

η2
p = 0.032). b, Accuracy of decoding position within each epoch by ensembles of 

schema cells, where dotted line denotes chance decoding of 12.5%. One-way 
ANOVA showed thta accuracy was greater within than across mazes for neurons 
in control (F(1,16) = 12.1, P = 3.1 × 10−4, η2

p = 0.43) but not GtACR2 rats (F(1,16) = 2.1, 
P = 0.17, η2

p = 0.11), and inactivation caused better decoding across (F(1,16) = 23.4, 
P = 2.0 × 10−4, η2

p = 0.59) but not within the maze (F(1,16) = 0.52, P = 0.48, η2
p = 0.032). 

c–e, Percentage of schema neurons with correlated activity across mazes 
affected by shuffling (as in Fig. 5a–c) to disrupt information related to epoch (c), 

reward (d) or position (e). No significant differences between the two groups 
were observed for either epoch or position (χ2 < 3.3, P > 0.067, d.f. = 1; χ2 test), 
whereas the influence of reward grew modestly but significantly faster with 
inactivation (overall schema: χ2 = 17.1, P = 3.6 × 10−5; days 1–2: χ2 = 2.2, P = 0.14;  
days 3–10: χ2 = 8.9, P = 0.0028; d.f. = 1; χ2 test). f, Venn diagrams summarizing data 
from c–e, showing the fraction of schema neurons recorded in control and 
GtACR2 sessions that were affected by shuffling of information related to epoch 
(light gray), reward (light green) and position (dark gray) as in Fig. 5d. Sizes of 
circles are normalized to the total number of neurons recorded in each group, 
averaged across days (see Extended Data Fig. 6 for the same illustration by day). 
The proportions in each category and overlap between categories were affected 
by inactivation, with an increase in those affected by epoch and reward (χ2 = 9.8; 
P = 0.0018; d.f. = 1; χ2 test) and a corresponding decrease in those affected by 
epoch only (χ2 = 18.4; P = 1.8 × 10−5; d.f. = 1; χ2 test). The error bars are the s.e.m. 
(***P < 0.001, **P < 0.01; Extended Data Figs. 6 and 7 and Supplementary  
Figs. 10–12).
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areas, which are implicated in switching between or maintaining more 
context-specific task maps32,46–48, failure of which could contribute to 
the facilitated generalization observed here.

We also did not attempt to distinguish the contribution of differ-
ent parts of the HC, nor did we argue that inactivation of the ventral 
subiculum completely silences this complex set of areas. We would 
speculate that processing in the dorsal HC is most likely responsible 
for the interference that we observed, because correlates in the dor-
sal HC are strongly related to external information49, whereas recent 
results have shown that ventral hippocampal activity is more strongly 
influenced by rewards50. Preserved output via pathways like the fornix 
may also be important in the shape of our effect, especially if these 
pathways are informationally or functionally biased. In this regard, 
our results are best viewed as showing one way—rather than the only 
way—in which the interaction can go awry.

Our approach also used the chemosensory modality, which may 
hold a special place for the OFC, particularly for rodents, and the goal 
in this setting—and the information defining the schema—concerns 
reward, also a feature of the world in which the OFC is often quite 
interested51,52. Although trivial changes, for instance using auditory 
cues or even spatial locations instead of odors or using food, secondary 
reinforcers or even punishment in the place of liquid sucrose reward, 
seem unlikely to be critical, the finding that the HC suppresses schema 
cell formation in the OFC during learning may depend on the type of 
information that must be generalized to create the schema cells. In our 
task, schema cells reflect the collapse of information about specific 
features of the positions in the two mazes (that is, the particular odors 
or sequences of odors) in favor of information about the rules that 
predict reward (that is, the positions in the sequence and/or the reward 
pattern). The OFC has long been implicated in tracking the conditions 
predictive of reward53–55 and several studies comparing the encoding 
in the HC and prefrontal areas, including the OFC, have shown that, 
although both represent similar information, representations in the 
OFC are skewed to reflect the biological significance of the information, 
whereas, in the HC, this influence is much less and instead representa-
tions seem to be more attuned to external sensory information10,11,23–27,56. 
One way to view this is that both the OFC and the HC contribute to lay-
ers of information relevant to cognitive mapping and schemas, with 
the HC focusing on external specifics that define task states and even 
episodes perhaps, whereas the OFC warps the map to reflect latent, 
hidden or internally defined relevance10,57,58. This predicts that we might 
see the opposite result if the external cues were the same between two 
problems, but the rules governing their relationship to reward differed. 
Under those conditions, inactivation of hippocampal outflow might be 
predicted to prevent the formation of schema cells in the OFC, assum-
ing that there were any, because generalization would then depend 
on the external sensory information. This would be consistent with 
evidence that hippocampal damage impairs performance in alterna-
tive settings and in disambiguating sequences like those used here59–61.

A final aspect of the experiment to consider is that, although the 
results suggest that the OFC is not subordinate to the HC, it does not 
comment on the reciprocal relationship. We know that hippocampal 
activity reflects the influence of many attributes related to reward, hid-
den states or goals, information that the OFC is typically tasked with 
identifying19,20,62–65. Furthermore, prefrontal areas such as the OFC act to 
shape neural activity in the HC66,67. In settings such as the one used in the 
present study, we would speculate that the OFC probably influences the 
HC to compress or generalize where external information differs but 
internal significance is the same, and to split or distinguish states where 
external information is the same but internal significance differs68.

Overall, our findings—that the HC outflow is not necessary to sup-
port established schema cells and may at least, under some conditions, 
inhibit their emergence during transfer to new problems—argue against 
the idea of a simple feedforward relationship between the HC and the 
OFC. Instead, these results strongly favor a model in which the OFC and 

the HC operate in parallel, and perhaps even somewhat in competition, 
to extract different features defining cognitive maps and schemas. 
Within this framework, the OFC is predisposed to form representations 
that more strongly reflect task relevance and motivational goals, which 
can be at crosspurposes with the function of hippocampal processing.
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Methods
Participants
The participants were four female and four male Long–Evans rats 
(Charles River Laboratories, 160–300 g) aged ~3 months at the start of 
the experiment. Analyses revealed no significant main effect nor any 
interactions with gender in any of the main findings reported in the 
text, thus rats of different genders were collapsed in all reported data. 
Rats were housed individually on a 12-h light:dark cycle at the National 
Institute on Drug Abuse Intramural Research Program (NIDA-IRP). They 
received free access to food and water, except during testing periods, 
when water was removed from their home cages ~23 h before test ses-
sion. When testing was conducted on consecutive days, they received 
at least 10 min of free access to water in their home cages after each test 
session. All test procedures followed the National Institutes of Health 
(NIH) guidelines and were approved by the Animal Care and Use Com-
mittee at the Intramural Research Program (IRP).

Surgical procedures
Rats were implanted with drivable bundles of 16 nickel–chromium wires 
(25-mm diameter; AM Systems) targeting the lateral OFC bilaterally 
(anteroposterior: 3 mm; mediolateral: 3.2 mm). Each wire bundle was 
housed in a stainless-steel hypodermic tubing (27-gauge, 0.01625-inch 
outer diameter, 0.01025-inch inner diameter) and cut with a pair of fine 
bone-cutting spring scissors (Fine Science Tools, cat. no. 16144-13) to 
extend 1.5–2.0 mm beyond the end of the cannula inside the brain. 
The tips of the wires were initially implanted 4.2 mm ventral to the 
brain surface and subsequently advanced during the retraining period 
to obtain high-quality stable recordings. During the same surgery, 
pAAV-CKIIa-stGtACR2-FusionRed34 was infused bilaterally in the ven-
tral subiculum (6.5 mm posterior and ±4.5 mm lateral to bregma) and 
optical fibers (Thorlabs) were positioned over each injection site. Rats 
were given cefalexin (15 mg kg−1) orally twice a day for 2 weeks to pre-
vent infection after surgery. Rats were allowed ~4–5 weeks to recover 
from surgery and to allow viral expression before they began reminder 
training as described below. Rb polyclonal against tRFP (Evrogen, cat. 
no. AB233) and Alexa Fluor-647 AffiniPure F(abʹ)2 fragment donkey 
anti-rabbit immunoglobulin G (H (heavy) + L (light)) were used for 
detection of FusionRed reporter.

Food neophobia test
Between recording of the initial and learning problems, the rats were 
food deprived for 48 h and then underwent testing in a HC-dependent 
neophobia task to confirm the functional efficacy of GtACR2 at inac-
tivating hippocampal outflow. Consumption was tested across five 
sessions in which rats were placed into a box individually and pre-
sented with similar amounts of a familiar (normal chow) and new 
food (bacon- or banana-flavored sucrose pellets) for 10 min, while 
receiving light effective at activating the GtACR2 molecule or inef-
fective light of a similar power as a control. Food ramekins were 
situated on either side in front of the rat and the orientation of the 
two foods was counterbalanced within and across days. Both the 
box and the ramekins were cleaned with wet hand towels and dried 
after each rat had been tested to reduce any influence of previous 
tests. Any food remaining after 10 min was collected and weighed to 
determine consumption.

Dual figure-of-eight odor-sequence task
Training and recording sessions were conducted in aluminum cham-
bers (~18 inches on a side) outfitted with panels containing an odor port 
flanked by two fluid-delivery wells, which were monitored by infrared 
beam sensors across each opening. The odor port was connected to 
a customized olfactometer, which allowed unique odor cues to be 
delivered with rapid onset and in a controlled fashion, and the right 
well allowed delivery of a sucrose reward, all of which was monitored 
and controlled by customized behavioral software written in C++. Each 

trial began with illumination of two house lights located above the 
odor port, which signaled the availability of an odor cue at the port. 
A stable nosepoke (500 ms) at the odor port initiated odor delivery 
(500 ms), after which the rats were free to withdraw from the odor port 
and make a ‘go’ response at the right fluid well. A response on positive 
trials was considered correct and led to the delivery of 90 μl of a 5% 
sucrose solution after a random delay (400–1,500 ms) and extinction 
of the house lights on well exit to start the ITI. A response on negative 
trials was considered an error and led to immediate extinction of the 
house lights. If no response was made, which generally occurred only on 
negative trials where it was correct, the house lights were extinguished 
after a 2-s period and the trial was considered a ‘no-go’. The ITI period 
was 4 s after correct trials and 6 s after errors, beginning when the 
house lights went off.

One of ten odors was delivered to the odor port on each trial and 
the ten odors were organized into two fixed sequences, the pattern 
of which constituted what we refer to as nonspatial figure-of-eight 
mazes (maze 1 and maze 2). Each maze can be broken down into two 
subsequences as illustrated below, with numbers indicating the unique 
odor cue and positive (+) and negative (−) symbols to indicate reward 
availability:

Maze 1:
S1a: 0−, 1−, 2+, 2+;
S1b: 0−, 1−, 3+, 4+;
Maze 2:
S2a: 5−, 6−, 7+, 7+;
S2b: 5−, 6−, 8+, 9+.
Each daily training session consisted of 320 trials, divided into 4 

blocks of 80 trials involving 1 of the 2 mazes. Blocks were presented 
randomly in one of the two orders: maze 1, maze 2, maze 1, maze 2 or 
maze 2, maze 1, maze 2, maze 1. Before recording, rats were shaped to 
nosepoke at the odor port and then respond at the well for a reward, 
after which they were immediately introduced to the odor sequences. 
All rats (n = 8) were trained until they were able to reliably complete the 
320 trials each day at a criterion of >75% correct performance on every 
position (35–45 sessions), after which electrode arrays were implanted 
in the OFC. Subsequently, all rats (n = 8) received additional reminder 
training after surgery, after which recording began.

Recording during accurate performance on the initial maze pair 
was divided into control and inactivation sessions. As described in the 
optogenetic methods, light with a wavelength effective at activating the 
GtACR2 molecule was delivered during inactivation sessions, whereas 
light of a similar power but ineffective wavelength was delivered during 
control sessions. All rats that participated in this part of the study (n = 6) 
underwent both conditions, with the session type alternating randomly 
except that the same condition could not occur on 3 d consecutively. 
This resulted in eight control and eight inactivation sessions from all 
rats but one, which fell ill after completing only three sessions of each 
type. Data from these sessions were included but the effects reported 
do not depend on them. An additional rat from the original six became 
ill in the weeks following the end of recording and had to be removed 
from the remainder of the study.

After recording on the initial maze pair, the four rats that remained, 
along with two new rats, were divided into control and inactivation 
groups (n = 3). The two new rats—one in each group—were required 
to replace the rats that were removed during previous training. These 
new rats received shaping, surgery, recovery and additional reminder 
training on the initial problem, as described above, to parallel the train-
ing of the original rats. Critically, the original rats placed in the two 
groups had exhibited similar proportions of schema cells during the 
previous training and the new rats that were added exhibited propor-
tions of schema cells during their reminder training like the original 
rats (Extended Data Fig. 5). Single-unit activity was recorded as the rats 
in these two groups learned two new maze pairs. Each new maze pair 
consisted of ten new odor cues, arranged in sequences with the same 
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structure as the initial maze pair. Recording continued for 10–12 d on 
each new pair and the resultant analyses focused on days 1–9 and the 
final day of recording.

Single-unit recording
Plexon OmniPlex systems were used to record electrophysiological 
signals. Neural signals were digitized, amplified and bandpass filtered 
(250–8,000 Hz) to isolate spike activity, and a threshold was set manu-
ally for each active channel to capture unsorted spikes. Timestamps for 
behavioral events were sent to the Plexon system, synchronized and 
recorded alongside the neural activity. Spikes were sorted to remove 
noise and identify single units offline using Offline Sorter (v.4.0; Plexon) 
with a built-in template-matching algorithm. Sorted files were sent to 
NeuroExplorer (Nex Technologies) to extract unit and behavioral event 
timestamps, which were then exported as MATLAB (2021b; MathWorks) 
formatted files for further analysis. Electrodes were not advanced 
within a given problem; however, we make no claims about whether 
single units recorded on different days within the same problem are the 
same or different neurons. The electrodes were advanced ~120 μm to 
change the neural population being sampled between odor problems.

Optogenetic stimulation
Light was delivered using a combined optogenetic–electrical com-
mutator interfaced with custom-made 1.25-mm FC ferrules (Thorlabs). 
To inactivate the ventral subiculum, 465-nm light (6–10 mW of power 
output) was delivered to activate GtACR2 and suppress neural activity. 
As a control, 630-nm light (6–10 mW of power output) was delivered. 
This wavelength falls outside the frequency sensitivity range of the 
GtACR2 molecule35. In the figure-of-eight task, light was delivered con-
tinuously (that is, not pulsed) during each trial, starting with house light 
illumination and terminating after outcome delivery. During recording 
on the initial maze, each rat received both control and inactivating 
wavelengths of light in different sessions, alternating pseudorandomly. 
During recording on subsequent mazes, each rat received either con-
trol or inactivating light. In the neophobia task, light was delivered 
continuously for the full 10-min test period and each rat received either 
control or inactivating light.

Peri-event time epochs
Each trial was divided into nine epochs associated with different events:

(1)	 ITIa = time from 500 ms before to light onset
(2)	 light = 0 ms before to 500 ms after light onset
(3)	 poke = 0 ms before to 500 ms after odor port nosepoke
(4)	 odor = 0 ms before to 500 ms after odor delivery
(5)	 unpoke = 0 ms before to 500 ms after odor port unpoke
(6)	 choice = 0 ms before to 500 ms after well entry (or trial 

termination)
(7)	 outcome = 0 ms before to 500 ms after reward delivery (or 

500 ms after trial termination)
(8)	 postout = 500 ms after end of outcome period
(9)	 ITIb = 500 ms after end of postout period.

The spike trains for every isolated unit were aligned with the onset 
of each event. Spike number was counted with a bin = 100 ms. A Gauss-
ian kernel (s = 50 ms) was used to smooth the spike train on each trial. 
The number of rats and neurons were not predetermined by any sta-
tistical methods, but are comparable to those reported in previous 
publications from our and other labs. All data were analyzed using 
MATLAB (R2021b). The error bars in figures denote the s.e.m.

Single-neuron selectivity and calculation of explained variance
The firing rate of each neuron was assessed by three-way analysis of vari-
ance (ANOVA) to determine whether it was selective to epoch, reward 
or position (P < 0.01). For each epoch-selective neuron, the maximal 
firing rate at all epochs was found, then the percentage of each epoch 

was calculated. For each position-selective neuron, the maximal firing 
rate across all positions (P1, P2, P3 and P4) was found and the respective 
percentage for each position calculated. For reward-selective neurons, 
the maximal firing rate at rewarded or nonrewarded trials was assessed 
and the percentage for each reward category calculated. The partial η2 
for each neuron was computed after a three-way ANOVA to determine 
the explained variance.

Calculation of cross-maze correlations and the effect of 
shuffling information about epoch, reward and position
We performed correlation analyses to compare the activity of each 
single unit across problems. Each maze comprises 8 positions and, 
for each position, there are 20 trials. When considering 9 epochs, this 
configuration results in a 160 × 9 matrix for each maze. The mean fir-
ing rate of 8 trial types and 9 epochs resulted in a 72 × 1 matrix for each 
maze. A unit was categorized as a schema cell if it exhibited a strong cor-
relation for the 72 × 1 matrix for both mazes (corrcoef, MATLAB > 0.8) 
at P < 0.01; it was categorized as a nonschema cell if r ≥ 0.4 and r ≤ 0.8, 
although a noncoding cell would be the unit with a correlation <0.4. 
Subsequently, the influence of epoch, reward and position on the 
correlation was determined by shuffling information for each maze 
separately using all trials with a dimension of 160 × 9 matrix 1,000× and 
comparing the distribution of shuffled correlations with the original 
correlation coefficient for a given unit (r1). If r1 > 99% of the shuffled 
correlation coefficients, we considered the shuffled dimension to have 
contributed significantly to that unit cross-maze correlation.

(1)	 To determine the influence of epoch, we shuffled activity 
between epochs within each trial in the 160 × 9 matrix from 
each maze. This manipulation altered any relationship be-
tween firing activity and epoch. while keeping any relation-
ship to reward or position the same.

(2)	 To determine the influence of reward, we shuffled activity 
between reward categories within each epoch and maze 
subsequence in the 160 × 9 matrix from each maze. This 
manipulation altered any relationship between firing activ-
ity and reward, while keeping any relationship to epoch or 
position within subsequence the same.

(3)	 To determine the influence of position (independent of 
reward), we shuffled activity between positions within each 
reward category and epoch in the 160 × 9 matrix from each 
maze. This manipulation altered any relationship between 
firing activity and position, while keeping any relationship 
to epoch or reward the same.

Single-cell and population decoding of position
All 20 trials for each trial type were included for 9 epochs, resulting 
in a 160 (no. of trials) × 9 (no. of epochs) matrix. Then, randomly one 
trial of each 8 trial types was left out to get an 8 × 9 test set from maze 1 
(within maze), whereas the remaining 152 × 9 matrix was used to train 
the model. The same size of matrix (8 × 9) from maze 2, with an identical 
trial index as the test set from maze 1, was used for cross-maze decoding 
of trial types. Based on the matrix of firing rate, a linear multiclass clas-
sification (LIBLINEAR69, https://www.csie.ntu.edu.tw/~cjlin/liblinear) 
was trained to classify eight trial types. This procedure was repeated 
1,000×, then the average decoding accuracies within the maze and 
across the maze were calculated for each cell. The chance level was 
one in eight for each cell.

For population decoding of position within and across maze 
for schema cells (n = 250), we employed a support vector machine 
using MATLAB toolboxes libsvm-3.22 and ndt.1.0.4 for binary 
classification70,71. Classification accuracy was evaluated through a 
leave-one-out crossvalidation procedure. On each repeat, 15 trials 
for each trial type were randomly selected and included for 9 epochs, 
resulting in a 120 (no. of trials) × 9 (no. of epochs) matrix for each 
maze. One trial from each trial type within maze 1 was left out for future 
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testing. Simultaneously, the trial from maze 2, with the corresponding 
index as the left-out trial in maze 1, was set aside for across maze test-
ing. The classifier was then constructed using the remaining trials from 
maze 1. The mean decoding accuracy for each trial type of each epoch 
was computed as the average across 200 repeats.

Similarity between neuronal responses
We averaged the neuronal responses for each epoch within a trial (nine 
epochs per trial), resulting in a matrix of size nNeuron-by-nTrials × nEp-
ochs, where nNeuron, nTrials and nEpochs represent the number of 
collected neurons, trials and epochs, respectively. Subsequently, we 
applied dimensionality reduction methods to reduce the first neuronal 
dimension to three components. The neuronal responses from each 
maze configuration were then projected on to this subspace. To com-
pare the neuronal patterns across different mazes, we performed the 
Procrustes analysis. This method aligned the neuronal response data 
by minimizing the Procrustes distance through translation, uniform 
scaling and rotation of the datasets. Finally, the Procrustes distance, 
defined as the sum of squared distances between corresponding points 
in each aligned shape, was computed to quantify dissimilarity between 
the neuronal responses from different mazes. A smaller Procrustes 
distance indicates greater similarity between the neuronal responses 
in two maze configurations.

To enhance the robustness of our findings, we employed a linear 
and a nonlinear dimension reduction method. PCA, a linear method, 
was used to reduce the dimensionality by identifying the PCs that 
capture the most variance in the data. The first three components 
capture percentage of variance. In addition, we applied Isomap, a 
nonlinear method that preserves the geodesic distances between 
points and maps the intrinsic geometric structure of the data on to a 
low-dimensional space. The number of neighbors for each point was 
set to 19 because each condition was repeated 20×.

Clustering
Data from each experimental group were initially organized into a 
three-dimensional K × N × T array, representing the firing rates of N neu-
rons across K experimental trials for T epochs. Subsequently, this array 
was reshaped into a two-dimensional K × (N × T) format to facilitate 
PCA on the combined dataset, yielding PC scores. Using the MATLAB 
function ‘manova1’, multivariate analysis of variance (MANOVA) was 
performed on the first 30 PC scores, utilizing the provided trial labels 
as grouping variables. Canonical variables were extracted from the 
MANOVA statistics. Furthermore, for each trial type, the mean canoni-
cal discriminant scores were calculated. The resultant scores were then 
utilized to create scatter plots representing the first two LDA dimen-
sions. To evaluate the effectiveness of clustering between the control 
and GtACR2 groups, mean silhouette value for each trial type in both 
groups was calculated. The silhouette value measures how closely an 
object is associated with its own cluster (cohesion) compared with its 
association with other clusters (separation).

TCA analysis
For conducting TCA, the firing rates for each group were organized 
into a three-dimensional array (N × T × K). This array format, often 
referred to as a third-order tensor (citation), encapsulates the firing 
activity across multiple trials. After exporting the data as a MATLAB.
mat file, we imported it into Spyder, leveraging the TensorTools pack-
age developed by Williams et al.41, for analysis.

Statistics and reproducibility
Statistical analyses are detailed in the main text, figure legends and 
supplementary figure legends. The error bars and shading represent 
95% confidence intervals (CIs) unless otherwise specified. For each 
experiment, the sample size (n) and its definition are explicitly pro-
vided in the corresponding figure and supplementary figure legends. 

Statistical significance is indicated as follows: *P < 0.05, **P < 0.01, 
***P < 0.001. Pearson’s correlation coefficient is denoted as ‘r’. For shuf-
fling analysis, we used a bootstrapping procedure to estimate CIs. This 
process was repeated 1,000×, with each iteration involving random 
subsampling of the data. The 1st and 99th percentiles of the resulting 
distributions were used as CIs. Sample sizes were not predetermined 
using statistical methods. For the analysis of selected sample sizes, 
12 different numbers of selected neurons were chosen to ensure con-
sistency and reproducibility, as shown in Supplementary Figs. 5 and 
11. We applied a variety of statistical tests, including nonparametric 
tests (Wilcoxon’s rank-sum test, Student’s t-test, χ2 test, correlation 
coefficient test, one-way ANOVA, two-way ANOVA, three-way ANOVA) 
in MATLAB (v.2021b), as well as one-way ANOVA, two-way ANOVA and 
unpaired Student’s t-tests in GraphPad Prism 10. To account for unequal 
sample sizes when comparing preferred versus nonpreferred signals, 
we drew equal-sized bootstrapped data samples and calculated a boot-
strap statistic for each trial type using MATLAB’s ‘bootstrp’ function. 
Statistical significance was assumed for P < 0.05. No data were excluded 
from the analyses and the experiments were randomized. Investigators 
were blinded to allocation during experiments and all analyses were 
performed with blinding of the experimental conditions.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in the present study are available at https://osf.
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Extended Data Fig. 1 | Histology. Reconstruction illustrating the recording sites 
within the lateral orbitofrontal cortex (OFC) containing axons from transfected 
VSub neurons, expressing GtACR2. The approximate extent of recording sites in 
each rat is depicted by red squares. This experiment was independently repeated 

with all six animals, producing consistent results. OFC axons from VSub neurons 
expressing GtACR2 are showing a higher magnification within the dashed white 
box and indicated by white arrows. Scale bars are provided at 100 µm and 10 µm.
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Extended Data Fig. 2 | Exemplar units illustrating maze-unique (that is 
non-generalized) firing patterns in OFC. A pair of heatmaps are shown for 
each neuron, plotting average activity in each epoch at each position in each 
maze. Arrows represent sequence directions. Red * marks the reward epoch on 

rewarded trial types (P3 and P4), while black * marks the reward epoch for non-
rewarded trial types (P1 and P2). The correlation coefficients before and after 
shuffling of epoch, reward, and position are presented in the lower panel of each 
figure; numbers shown in red were significantly affected by shuffling.
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Extended Data Fig. 3 | Exemplar units illustrating the generalization of epoch 
and reward information across mazes in OFC. A pair of heatmaps are shown 
for each neuron, plotting average activity in each epoch at each position in each 
maze. Arrows represent sequence directions. Red * marks the reward epoch on 

rewarded trial types (P3 and P4), while black * marks the reward epoch for non-
rewarded trial types (P1 and P2). The correlation coefficients before and after 
shuffling of epoch, reward, and position are presented in the lower panel of each 
figure; numbers shown in red were significantly affected by shuffling.
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Extended Data Fig. 4 | Exemplar units illustrating the generalization of 
positional information across mazes in OFC. A pair of heatmaps are shown for 
each neuron, plotting average activity in each epoch at each position in each 
maze. Arrows represent sequence directions. Red * marks the reward epoch on 

rewarded trial types (P3 and P4), while black * marks the reward epoch for non-
rewarded trial types (P1 and P2). The correlation coefficients before and after 
shuffling of epoch, reward, and position are presented in the lower panel of each 
figure; the numbers shown in red were significantly affected by shuffling.
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Extended Data Fig. 5 | Percentage of schema neurons during prior training 
from the rats comprising the control and GtACR2 groups in the learning 
experiment (Figs. 6–8) and the impact of removal of 2 replacement rats on 
effect of inactivation during learning. a-b, Percentage of schema neurons on 
each day of retraining after surgery from the rats comprising the control and 
GtACR2 groups in the learning experiment (a) and from control sessions on 
the well-learned task (b). There were no differences between the rats in the two 
groups on any prior day of training (retraining: χ2 < 6.0; P > 0.10; d.f. = 1;  
χ2 test; well-learned problem: χ2 < 3.94; P > 0.38; d.f. = 1; χ2 test). False discovery 

rate (FDR) and Benjamini-Hochberg (BH) corrections were applied to correct 
for multiple comparisons. c, Effect of inactivation of ventral subiculum 
on prevalence of schema cells during learning, excluding data from the 2 
replacement rats added during this phase; without data from these rats, the 
prevalence of schema cells in the two groups was similar initially and then 
diverged thereafter (Overall: χ2 = 84.4, P = 4.0 ×10−20; days 1-2: χ2 = 4.0; P = 0.05; 
d.f. = 1; χ2 test; days 3-10: χ2 = 83.5, P = 6.4 ×10−20; d.f. = 1; χ2 test). (***P < 0.0001; NS, 
not significant).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Ventral subiculum inactivation facilitates the formation 
of schema cells in OFC and increases the effect of reward during learning of a 
new problem. Venn diagrams show the percentage of schema neurons that were 
recorded during control and GtACR2 sessions and how they were influenced by 
information related to epoch (light gray), reward (light green), and position  

(dark gray) across days. Size of figures reflect overall proportion of neurons  
that categorized as schema cells, which increased more rapidly in the inactivated 
group, with an expansion of the reward group and its overlap with epoch  
and position.
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Extended Data Fig. 7 | Ventral subiculum inactivation does not affect the 
influence of epoch, reward, or position on correlated firing in the non- 
schema and non-coding populations during learning of a new problem.  
a-c, Percentage of non-schema neurons on each day of learning, whose correlated 
activity across mazes was affected by shuffling to disrupt information related 

to epoch (a), reward (b), or position (c). d-f, Percentage of non-coding neurons 
on each day of learning, whose correlated activity across mazes was affected by 
shuffling to disrupt information related to epoch (d), reward (e), or position (f). 
No significant differences between the two groups were observed (χ2< 4.8;  
P > 0.028; d.f. = 1; χ2 test). (NS, not significant).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Geometric similarity of task representations across 
mazes for well-learned task. The positions in principal component space for 
each maze are shown for both the Control (a) and GtACR2 (b) groups during each 
epoch of the well-learned task. For each epoch, gray lines represent Maze 1, while 
green lines correspond to Maze 2. The four dots on each line, which signify points 
P1, P2, P3, and P4, transition in color from light to dark in this order. Additionally, 
the marker size increases progressively from P1 to P4. P1 and P2 represent the 

common arms that share the same odor, while P3 and P4 correspond to the 
unique arms with distinct odors. c, Quantification of Procrustes analysis for the 
Control and GtACR2 groups in (a) and (b) was used to measure the geometric 
similarity between Maze 1 and Maze 2. No significant difference in geometric 
similarity between Maze 1 and Maze 2 was observed between the two groups 
across epochs (t35 = 1.1, P = 0.28; two-tailed Student’s t-test; n = 36 for Control and 
GtACR2). Error bars are SEM.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Geometric similarity of task representations across 
mazes for learning of new task. Geometric similarity of task representations 
across mazes during new task learning. The positions in principal component 
space for each maze are shown for the Control (a) and GtACR2 groups (b) at each 
learning epoch. Gray lines represent Maze 1, and green lines represent Maze 2.  
In each epoch, four dots on each line, corresponding to positions P1, P2, P3, and 
P4, transition from light to dark, with marker sizes increasing progressively 

from P1 to P4. P1 and P2 represent the common arms, both sharing the same 
odor, while P3 and P4 correspond to the unique arms, each with distinct odors. 
c, Procrustes analysis was performed for the Control and GtACR2 groups in (a) 
and (b) to evaluate the geometric similarity between Maze 1 and Maze 2. Across 
epochs, no significant differences in geometric similarity between the two mazes 
were observed between the groups (t35 = 4.4, P = 1.1 × 10−4; two-tailed Student’s 
t-test; n = 36 for Control and GtACR2). Error bars are SEM.
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Extended Data Fig. 10 | LDA Clustering Plots. Scatter plots of the first two 
averaged LDAs are shown for both the well-learned task (a-b) and the learning 
task (c-d), combining all sessions. The task includes 16 trial types, each 
represented by a colored dot. Ten odors were organized into two mazes (Maze 1 
and Maze 2), each consisting of two subsequences (a and b). Each subsequence 
contains four positions (P1–P4). For example, M1a1 refers to Maze 1, sequence 
a, position 1. Trials from each position clustered together. The positions are 
classified as P1, P2, P3, and P4, as indicated in the figure legend. b, Quantification 

of the mean silhouette value for each trial type was performed for both the 
Control and GtACR2 groups during the well-learned task. No significant 
difference between the two groups was observed (t30 = 0.24, P = 0.81; two-tailed 
Student’s t-test). d, Quantification of the mean silhouette value for each trial 
type in the learning task showed that the GtACR2 group had significantly higher 
silhouette values compared to the Control group (t30 = 3.5, P = 1.6 × 10−3; two-
tailed Student’s t-test). Error bars are SEM. (NS, not significant; **P < 0.01).
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Spikes and behavioral data were collected using Plexon OmniPlex system, spike sorting using Plexon Offline Sorter x64 v4.0.

Data analysis Data analysis was performed using custom MATLAB code(MATLAB R2021b), liblinear-master, and Spyder 6.  TensorTools package developed 

by Williams et al., 2018, for analysis. All scripts used in this study are available at https://osf.io/78gy4/.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The dataset used in this study are available at https://osf.io/78gy4/.
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The study did not involve human participants.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The number of rats and neurons was not predetermined using statistical methods but aligns with those reported in previous studies from our 

lab and others in the field. For each task, units were collected from at least three rats per group. Specifically, over 1,800 units were recorded 

for the well-learned task, while more than 800 units were collected and analyzed for the learning task.

Data exclusions No animals were excluded from analysis.

Replication Subsets of animals and neurons were randomly drawn from the whole dataset for cross-validation to avoid over-fitting. To account for 

unequal sample sizes when comparing preferred versus non-preferred signals, we drew equal-sized bootstrapped data samples and 

calculated a bootstrap statistic for each trial type using MATLAB’s ‘bootstrp’ function. Statistical significance was assumed for P < 0.05. All 

replicates were successful.

Randomization Rats were randomly divided into control and inactivation groups, both groups received same training.

Blinding The investigators were blinder to group allocation during data collection and/or analysis.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Antibodies

Antibodies used 1. Product: Anti-RFP antibody; supplier name: evrogen; CAT.#: AB233;    

2. Product: Alexa Fluor® 647 AffiniPure F(ab')₂ Fragment Donkey Anti-Rabbit IgG (H+L); supplier: Jackson ImmunoResearch; catalog 

number; 711-605-152. 

Validation The antibody has been selected to recognize both denatured and native TurboRFP, TurboFP602, TurboFP635, Katushka2S, 

TurboFP650, NirFP, TagBFP, TagRFP, FusionRed, TagFP635, mKate2, PA-TagRFP, mRuby and mCherry. - Superior performance in 

fusions 

- Low cytotoxicity 

- Fast maturation, high pH-stability and photostability 

- Proven suitability to generate stably transfected cell lines 

- Recommended for protein labeling and long-term experiments. Detailed information can be found here: https://evrogen.com/

products/FusionRed/FusionRed_Detailed_description.shtml.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals Subjects were four female and four male Long-Evans rats (Charles River Laboratories, 160-300 g) aged ~3 months at the start of the 

experiment.

Wild animals The study did not use any wild animals.

Reporting on sex Equal number of male and female rats were used. I do not expect to find significant sex differences, 

and thus plan to use an equal number of males and females in each group.

Field-collected samples The study did not involve field-collected samples.

Ethics oversight All behavioral testing was carried out at the NIDA-IRP. Animal care and experimental procedures complied with the U.S. National 

Institutes of Health (NIH) guidelines and were approved by the Animal Care and Use Committee (ACUC) at the NIDA-IRP.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Novel plant genotypes n/a

Seed stocks The study did not involve human participants.

Authentication n/a

Plants
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