Extended Data Fig. 5: Inhibition of VPS4B-D135C by ASPIR-2. | Nature Structural & Molecular Biology

Extended Data Fig. 5: Inhibition of VPS4B-D135C by ASPIR-2.

From: A chemical genetics approach to examine the functions of AAA proteins

Extended Data Fig. 5

a, SDS–PAGE analysis of purified recombinant human wild type (WT) and mutant (D135C) VPS4B (tagless), and VTA1 constructs (Coomassie blue staining). b, ATP-concentration dependence of the steady-state activity of VPS4B-WT and VPS4B-D135C in the presence of 2-fold excess VTA1, analyzed using an NADH-coupled assay. Rates were fit to the Michaelis–Menten equation for cooperative enzymes (mean±range, n = 2 independent experiments). c, Chemical structure of ASPIR-2, the analog used for x-ray crystallography studies. d, Time-dependent inhibition of the ATPase activity of VPS4B-D135C by ASPIR-2. Graph shows percentage residual ATPase activity (mean ± range, n = 2 independent experiments). e, Concentration-dependent inhibition of the VTA1-stimulated, steady-state ATPase activity of WT and D135C VPS4B after 30 min incubation with ASPIR-2 (1 mM ATP; data represent mean ± range, n = 2 independent experiments). f, 2Fo-Fc electron density map of the crystal structure of VPS4B-D135C bound to ASPIR-2, contoured at 2.0 σ. g, Overlay of the structure of VPS4B-D135C in complex with ASPIR-2 with the RADD model for compound 1 bound to katanin, at the nucleotide-binding site (ASPIR-2: purple and blue, compound 1: pink and blue, stick representation; VPS4B-D135C: gray, katanin: white, ribbon representation; VPS4B residue Cys-135 is also shown). The unmodified gel image for (a) and data for the graphs in (b) and (d-e) are available as source data.

Source data

Back to article page