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Excitatory neurotransmission is principally mediated by a-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-subtype ionotropic
glutamate receptors (AMPARs). Negative allosteric modulators are
therapeutic candidates thatinhibit AMPAR activation and can compete
with positive modulators to control AMPAR function through unresolved
mechanisms. Here we show that allosteric inhibition pushes AMPARs

into adistinct state that prevents both activation and positive allosteric
modulation. We used cryo-electron microscopy to capture AMPARs bound
to glutamate, while a negative allosteric modulator, GYKI-52466, and
positive allosteric modulator, cyclothiazide, compete for control of the
AMPARs. GYKI-52466 binds in the ion channel collar and inhibits AMPARs
by decoupling the ligand-binding domains from the ion channel. The
rearrangement of the ligand-binding domains ruptures the cyclothiazide
site, preventing positive modulation. Our data provide a framework for
understanding allostery of AMPARs and for rational design of therapeutics
targeting AMPARs in neurological diseases.

Glutamate (Glu) is the principal neurotransmitter in the brain. Neu-
rons in the brain use Glu at excitatory synapses, where Glu is released
by a presynaptic neuron and received by a postsynaptic neuron’.
lonotropic Glu receptors (iGluRs) in the membrane of the postsyn-
aptic neuron bind Glu and allow cations to enter, depolarizing the
postsynaptic membrane’. Specialized iGIuRs, a-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptors (AMPARs), initiate the
depolarization of the postsynaptic neuronand contribute to the acti-
vation of other iGIuR subtypes®.

Dysregulation of AMPARs contributes to neurological disorders
including schizophrenia, anxiety, chronic pain, epilepsy, learning
impairment, Alzheimer disease and Parkinson disease’. AMPAR allos-
teric modulators are a promising avenue for therapeutics as they

allow AMPAR function to be positively or negatively tuned independ-
ent of Glu binding. However, despite the central role of AMPARs in
synaptic signaling and their roles in human diseases, only a single
molecule, perampanel (Fycompa), is approved by the US Food and
Drug Administration (FDA) for targeting AMPARs for therapeutic
benefit>*. Perampanel is approved for treatment of epilepsy’® and
perampanel-like molecules (PPLMs) show promise in treating broad
neurological disorders.

PPLMs are noncompetitive AMPAR inhibitors typified by
the prototype compound 4-(8-methyl-9H-1,3-dioxolo[4,5-h][2,3]
benzodiazepin-5-yl)-benzenamine dihydrochloride (GYKI-52466)*%7,
which binds to the AMPAR transmembrane domain (TMD)®. PPLMs
bind to the same site in the TMD and inhibit AMPAR channel function
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Fig.1|Structure of the AMPAR allosterically inhibited state. a, Schematic
representation of the AMPAR gating cycle. Only two of four subunits are shown
forillustration purposes. b, Concentration-dependent inhibition by GYKI-52466
of GluA2-y2;, residual currentsin the presence of 1 mM Glu and 100 pM CTZ
using nonlinear curve fitapproach with the Levenberg-Marquardtiteration
algorithm. For each concentration, data were obtained from at least three
differentcells. ICs, =43.20 + 6.61 uM; P=0.00022. ¢, Ribbonillustration detailing
the structure of the AMPAR inhibited state, GluA2-y2,s,. GluA2 subunits are
purple (Aand C) or orange (B and D) depending on their positions. GYKI-52466
(pink) is bound at all four TMD collar regions and each LBD clamshellis closed
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around Glu (green). TARPY2 subunits (light blue) occupy all four auxiliary sites
around the receptor. d, High-resolution details of the focused GluA2 TMD from
cryo-EM reconstruction. Left: side view of the GluA2 TMD showing the M3 bundle
crossingin a closed conformation. Right: top view showing the bundle crossing
constricting access to the ion channel (red, dashed) and the relative location

of the channel collar (yellow, dashed) with GYKI-52466 bound to all four GluA2
subunits. Lipids (blue) adorn the AMPAR TMD. e, Plot of the ion channel radius
along the pore axis showing a constriction at the M3 bundle crossing gate. The
dashed line represents the radius of awater molecule.

irrespective of channel state or membrane voltage*’'°. PPLMs are
effective at reducing epileptic behavior in mice and in vitro''?, as well
as in human patients, and perampanel was recently used to reduce
seizureburdenin patients with rare mutationsin synaptic genesinclud-
ing GRIA2 (ref. 13) and SYNGAPI (refs. 11,14,15). However, treatment
can produce side effects such as dizziness, somnolence and ataxia',
underscoring the need for refined AMPAR inhibitors for treating neuro-
logical disorders. While the binding sites of PPLMs have been generally
described?, the precise mechanism by which PPLMs inhibit AMPAR
function is unresolved. This is a major roadblock in therapeutically
targeting AMPARs with improved inhibitors.

AMPARs are tetrameric ligand-gated ion channels, made up
of GluA1-GluA4 subunits*”. AMPARs couple extracellular binding
of Glu to ion flux across the postsynaptic membrane through their
ligand-binding domains (LBDs) that are directly coupled to trans-
membrane (TM) helices that form the cation channel®". Glu binding
to the AMPAR LBDs initiates the gating cycle in which the receptors

transition through their main functional states: resting, activated and
desensitized*?° (Fig. 1a). Linkers between the LBD and TMD enable
the LBDs to control the state of the ion channel. The gating cycle is
generallyaccommodated by a ‘preactive’ transition state thatis short
lived?** (Fig. 1a). In this transition state, LBD clamshells are interme-
diately closed around Glu and the gating rearrangements associated
with activation or desensitization are yet to occur. Thus, the transi-
tion state is a bifurcation point. Activation follows with full clamshell
closure around Glu, where the lower half of the LBD clamshell (D2)
moves closer to the upper half (D1) of the LBD'®" (Fig. 1a). Because
AMPAR LBDs locally dimerize within the tetrameric receptor, coordi-
nated clamshell closure maximizes the interface between the upper
D1lobes of LBD dimer pairs and increases separation of the D2 LBD
lobes. Separation of the D2 lobes pulls apart the M3 helices that form
the top of the channel gate, enabling cation influx through the upper
vestibule, constituting the M3 helices, the M2 helices and a selectivity
filter between M2 and M3 (Fig. 1a).
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Table 1] Individual cell mean residual current, s.d. and number of sweeps for each GYKI-54266 concentration, along with

the initial response in the absence of GYKI-52466

[GYKI-52466] Mean residual current from s.d. (pA) Number of Initial mean residual current s.d. (pA) Number of
(uM) Glu+CTZ+GYKI-52466 (pA) sweeps from Glu+CTZ (pA) sweeps
-3,133.63 39.85 3 -3,209.37 21.95 2
-169.22 5.39 4 -185.05 4.09 6
1 -1,561.56 19.94 3 -1,619.52 17.08 4
-240.30 791 6 -261.97 512 4
-31.87 1.47 4 -37.72 1.31 6
-8,108.75 104.25 3 -9,685.67 49.35 2
8 -229.67 510 4 -247.38 5.30 5
-152.64 6.44 B -169.66 5.52 4
-2,778.95 65.47 2 -3,209.37 21.95 2
-143.85 6.19 3 -185.05 4.09 6
° -1,790.07 60.42 3 -2,371.98 40.00 5
-230.18 6.20 4 -265.72 7.21 3
-18.86 2.09 5 -37.72 1.31 6
-5,705.77 158.82 3 -9,685.67 49.35 2
%0 -174.54 778 3 -247.38 5.30 5
-100.41 4.54 4 -169.66 5.52 4
-798.20 39.99 3 -3,209.37 21.95 2
-66.33 417 3 -185.05 4.09 6
100 -390.00 25.57 3 -2,371.98 40.00 5
-34.70 3.65 4 -265.72 721 3
-1.41 0.60 4 -37.72 131 6
-385.81 14.45 4 -9,585.67 49.35 2
300 -41.93 3.72 2 -247.38 5.30 5
-7.56 131 5| -169.66 5.52 4
-16.67 1.97 10 -131.32 2.01 6

Peak amplitudes were obtained in the presence of 1mM Glu and 100 uM CTZ before the application of GYKI-52466 at different concentrations.

Desensitization occurs when LBD clamshells are maximally closed
around Glu; however, instead of using this energy to pull apart the M3
ion channel gate, LBD dimer pairs roll away from each other, which
minimizes the separation between D2 interfaces and reduces the ten-
sionapplied to the M3 helices by the LBD-TMD linkers*-****-° (Fig. 1a).
This keeps the channel in a closed state and protects the cell from
excitotoxic influx. While there is an amino terminal domain (ATD), the
major role of the ATD is in trafficking and assembly®%; thus, we focus
onthe AMPARLBD and TMD in this paper.

Allosteric modulators bind to AMPARs at sites distinct from the
Glu-binding site and bias AMPAR function. Positive allosteric modula-
torssuchas cyclothiazide (CTZ) bind betweenthe D1lobes of local LBD
dimers and enhance D1-D1 contact during activation, thus favoring
activation and preventing AMPAR desensitization”-*"*°, How nega-
tive allosteric modulators such as PPLMs prevent AMPAR activation is
less clear. Mutagenesis and electrophysiology studies predicted that
PPLMs act at an intersubunit interface between the LBD and TMD and
prevent active-state transitions*’. Subsequent studies of resting-state
AMPARs bound to PPLMs identified a binding pocket within the TMDs
ofindividual receptor subunits that make intersubunit contacts within
the TMD®*. Taken together, these studies suggest that PPLMs bind to
the region of the TMD that is extracellular facing and prevent AMPARs
fromtransitioning to the active state>**°. Several mechanisms have been
proposed, including a wedge-like mechanism in which PPLMs prevent
channel opening® or a mechanism that involves cross-linking adjacent
GluA subunits within the TMD', preventing pore widening observedin

the active state’®. These mechanisms share the common feature of dis-
rupted transduction between Glubindinginthe LBD and channel open-
ing in the TMD but how this occurs is unknown because AMPARs have
notbeenstudied structurally in the presence of both Glu and PPLMs®*.,

Pioneering studies on the mechanisms of PPLMs pointed toward
an inhibition mechanism that competes with the positive allosteric
effect of CTZ51021404246 However, because CTZ modulates AMPARs by
binding in the LBD and PPLMs bind in the TMD, how this competition
occursisunclear. We, therefore, hypothesized that, to compete against
CTZ, which prevents desensitization, PPLMs must achieve inhibition
by destabilizing the D1-D1 dimer interface between agonist-bound
LBDs and promoting a conformational state that decouples Glu bind-
ing from channel opening. In this conformation, the D1 interfaces
between LBD dimers would be separated, rupturing the CTZ-binding
site and, thus, outcompeting CTZ for allosteric control of the AMPAR,
aswas originally proposed*’. This mechanism would explain how posi-
tive modulators such as CTZ and negative modulators such as PPLMs
compete to control AMPAR function despite binding at disparate sites.
Such amechanism has not yet beendirectly observedin AMPARs or any
family of ligand-gated ion channels.

To test these ideas, we activated AMPARs in the presence of both
GYKI-52466 and CTZ. Through cryo-electron microscopy (cryo-EM),
single-molecule fluorescence resonance energy transfer (sSmFRET),
electrophysiology and molecular dynamics (MD) simulations, we dem-
onstrate that GYKI-52466 binding in the TMD decouples Glu binding
fromtheion channel by allosterically rearranging the AMPAR LBD into
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Table 2| Cryo-EM data collection, refinement and validation
statistics

GluA2-y2,,
(EMD-43275),(PDB 8VJ6)

GluA2-y2,,
(EMD-43276),(PDB 8VJ7)

Data collection and processing

Magnification x130,000 x130,000
Voltage (kV) 300 300
Electrop exposure 40 40

(e per A?)

Defocus range (um) -1.0t026 -1.0t02.6
Pixel size (A) 0.93 0.93
Symmetry imposed C2 Cc2

Initial particle 1,258,087 1,031,751
images (no.)

Final particle images 123,729 130,474
(no.)

Map resolution (A) 3.50 4.85
FSC=0.143

Map resolution 2-13 2.5-13
range (A)

Refinement

Initial model used PDB 5WEO GluA2-y2,
Model resolution (A) 42 3.50
FSC=0.143

Model resolutionrange  3.4-4.1 3.2-41
(A)

Map sharpening B -65 -120
factor (A?%)

Model composition

Non-hydrogen atoms 25,180 25179
Protein residues 3186 3,186
Ligands 4 4

B factors (A2

Protein 0.00/98.47/54.29 0.00/39117/141.52
Ligand 0.00/23.22/7.37 0.01/9.83/4.80
R.m.s.d.

Bond lengths (A) 0.006 0.004
Bond angles (°) 0.631 0.650
Validation

MolProbity score 1.61 1.64
Clashscore 6.38 6.96
Poor rotamers (%) (0] 0.48
Ramachandran plot

Favored (%) 96.18 96.21
Allowed (%) 3.63 3.54
Disallowed (%) 0.19 0.25

anallosterically inhibited state. LBD rearrangements during inhibition
prevent positive allosteric modulationby CTZ inthe LBD by disrupting
the CTZ-bindingsite. Our findings provide insights into how allosteric
modulation is coordinated across AMPARs, demonstrate the mecha-
nistic basis of allosteric competition between modulators and will
invigorate structure-based drug design targeting AMPARs.

Results

Cryo-EM of allosterically inhibited AMPAR complexes
Previously, a fusion construct between the AMPAR subunit GluA2y;,
(editedto GInatthe GIn/Argsite) and the TM AMPAR regulatory protein

(TARP)Y2, which enhances AMPAR activation, was used to solve the
structures of AMPAR complexes and elucidate AMPAR gating mech-
anisms with cryo-EM'$?**7*°_ We used the same fusion construct,
GluA2-y2.y, in this study (Methods). The gating function of this exact
constructand its modulation by positive and negative allosteric modu-
lators were extensively validated previously®'82%26474,

To confirminhibition by PPLMs and competition between PPLMs
and CTZ in GluA2-y2.,, we used patch-clamp electrophysiology in
HEK293T cells expressing GluA2-y2.,, (Extended Data Fig. 1a,b and
Methods). We observed that GluA2-y2.,, currents rapidly desensitize
when treated with 1 mM Glu and desensitization was ablated with
100 uM CTZ (Extended DataFig. 1a), as expected”®**, In the presence
of both100 pM GYKI-52466 and100 uM CTZ, the GluA2-y2,,, peak cur-
rent following 1 mM Glu application was strongly reduced compared
to CTZ alone (Extended Data Fig. 1a). This agrees well with previous
electrophysiology studies on PPLM and CTZ competition in AMPARs
in the absence of TARPs”!*4042#65% Thys, GYKI-52466 and CTZ both
allosterically modulate GluA2-y2.,, and compete for influence over
GluA2-y2. gating.

Wegenerated concentration-response curvesto fully characterize
the competition between GYKI-52466 and CTZ in the GluA2-y2,, con-
struct (Fig.1b, Extended DataFig.1b, Table1and Methods). GYKI-52466
inhibits GluA2-y2,,,-mediated currents evenin the presence of excess
CTZ (Fig. 1b). We determined the half-maximal inhibitory concentra-
tion (IC,) of GYKI-52466 in the presence of CTZ to be 43.20 + 6.61 uM
(P=0.00022). This is a ~10-fold reduction in the IC,, compared to
GYKI-52466 alone on AMPAR-TARP complexes®’, which aligns well
with the observed 10-fold reductionin GYKI-52466 IC5,on AMPARs in
the presence of CTZ***%°,

We probed the precise mechanisms of allosteric competition
with GluA2-y2;,.. To achieve this, we purified GluA2-y2;,, from Expi293
Gnti cells (Extended Data Fig. 1c,d and Methods) and preincubated
the receptors with CTZ. We activated these AMPAR complexes in the
presence of GYKI-52466 to capture inhibited states through two differ-
ent schemes (Extended Data Fig. 1e and Methods). In the first scheme
(inhibited state1, GluA2-y2;,), we mixed the CTZ-bound receptors with
Gluand GYKI-52466 immediately before freezing. In the second scheme
(GluA2-y2,,), the receptors were preincubated with GYKI-52466 in
additionto CTZ and Gluwas added immediately before freezing. Each
approachresulted in similar inhibited states, with each domainin the
structures only varying by a root-mean-square deviation (r.m.s.d.) of
0.3-0.4 A (Extended Data Fig. 2a).

We focus our analysis on GluA2-y2,¢, because of the higher data
quality (Extended DataFigs.3 and 4 and Table 2). The overall structures
of the AMPAR complexes reveal key details of an inhibited AMPAR
(Fig. 1c). There is an overall 'Y’ arrangement of the receptor, with the
two-layered extracellular domain comprising the ATD and LBD. The
overall structure of the receptor shares similar topologies to previ-
ously determined structures from the GluA2-y2.,, construct, as well
as purified AMPAR complexes from a native source'2¢474852754 A[|
four GluA2 LBDs are Glu bound and immediately below the LBDs is
the GluA2 TMD, whichiis fully occupied with four TARPy2 auxiliary
subunits. Four GYKI-52466 molecules are bound to the TMD along its
extracellular-facing surface.

Cryo-EM reconstruction of the AMPAR TMD to 2.6 A enables elu-
cidation of key features of the AMPAR TMD during inhibition. The
four GYKI-52466 molecules are wedged between helices at the top
of the TMD (Fig. 1d). Importantly, the GYKI-52466-binding sites are
adjacenttotheion channelin the channelcollar region, similar to other
PPLMs®. The collar channel forms aring of solvent-accessible pockets
for PPLMs that surrounds the M3 gate at the top of the ion channel
(Fig.1d). Lipidsadornthe AMPAR TMD on both the extracellular-facing
and the cytosolic-facing portions of the TMD (Fig. 1d) and are critical
to plug cavities within the bilayer that would otherwise perturb the
solvent accessibility of the ion channel (Extended Data Fig. 5). These
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lipid sites are like those occupied in other cryo-EM studies of AMPARs,
which suggests that these sites are critical for the structural integrity
of the AMPAR TMD?***>"%’, Next, we measured the ion channel radius,
which indicates a closed channel; the upper channel gate, defined by
Met629 at the M3 helix crossing, completely restricts channel access
(<1.0 Aradius) to both water molecules and sodiumions (Fig. 1e). Both
inhibited states captured in this study are markedly different from the
resting-state AMPARs bound to PPLMs (Extended Data Fig. 2b).

While both the activator (Glu) and the negative allosteric modu-
lator (GYKI-52466) are bound to the AMPAR (Extended Data Fig. 6),
the positive allosteric modulator (CTZ) is absent from both cryo-EM
reconstructions. This indicates that the states we captured are mark-
edly different from previously captured states of AMPARs bound to
PPLMs, as CTZ binds toboth therestingand the activated states of the
receptor*®***® Thus, GYKI-52466, at abinding site completely distinct
fromthat of CTZinthe AMPARLBD, allosterically outcompetes CTZ to
control GluA2-y2y,,.

A structural comparison of GluA2-y2,s,, GluA2-y2,s, and PPLMs
bound to resting-state AMPARs reveals that we captured a distinct,
allosterically inhibited AMPAR conformation. While there are no nota-
ble differences between the GluA2 ATDs (r.m.s.d. = 0.7-1.0 A; Extended
DataFig.2b), there are major overall differences between the structures
(r.m.s.d.=6.1-7.0 A), where the key differences among GluA2-y2,.,,
GluA2-y2,s, and resting-state AMPARs bound to PPLMs occur within
the GluA2 LBD (Extended DataFig.2b). Thus, we posited that the major
impact of allostericinhibition by GYKI-52466 in the TMD is rearrange-
ment of the LBD and we focused onthe AMPAR LBD and TMD to discern
theinhibition and competition mechanisms.

The GYKI-52466-binding site

Reconstruction of the AMPAR TMD enabled precise building of the
AMPAR TMD (Extended Data Fig. 6a). While previous studies solved
thestructure of other PPLMs in complex with resting-state AMPARs®*,
GYKI-52466 binding in AMPARs remained structurally unresolved.
To resolve GYKI-52466 binding, we used symmetry expansion on the
AMPAR TMD from GluA2-y2,, to reconstruct the binding site to 2.2 A
resolution (Extended DataFig. 6b-e). This enabled us to characterize
the complete binding pocket (Fig.2a,b). GYKI-52466 is partially stabi-
lized in the collar through a m-bond stack where GYKI-52466 is sand-
wiched between Phe623 at the top of the M3 helix and Pro520 on the
pre-M1 helix (Fig. 2a). This differs only slightly from the binding pocket
previously published for the structurally related compound GYKI-
53655, GYKI-Br, and the structurally unrelated CP-465022, in which
Phe623 is rotated away from the binding pocket® (r.m.s.d.=1.5-1.6 A;
Extended Data Fig. 6f). Notably, Phe623 has adirect role coordinating
perampanel in the channel collar in resting-state AMPARs®**! (Extended
Data Fig. 6f), with an overall similar binding pocket (r.m.s.d. =1.8 A;
Extended Data Fig. 6f).

The arrangement of Phe623 around GYKI-52466 that we observe
may be attributable to the binding of Glu in the LBD driving a subtle
conformational change that locks GYKI-52466 into the binding pocket
during allosteric inhibition*°. Van der Waals forces from five nearby
residues, Ser516, Asn619, Ser615, Tyr616 and Asn791, also contribute to
the binding site (Fig. 2b). Asn3 of GYKI-52466 is sandwiched between
Tyr616 onM3 and Ser615 on M3 of anadjacent subunit. Therefore, GYKI-
54266 is wedged between two AMPAR subunits in the TMD, similarly
to the PPLMs® (Fig. 2b). While the GYKI-52466 pocket shares the same
overall conformationas thatreported for other PPLMs (r.m.s.d. =1.5-
1.8 A), GYKI-52466 makes fewer contacts with pocket residues because
of its smaller size and simpler structure. This may explainits relatively
weaker affinity for AMPARs compared to other PPLMs®™°,

During AMPAR activation, subunits in the B and D positions
undergo the most dramatic conformational changes in the TMD to
drive opening'®***¢, Kinking in the B and D M3 helices during activa-
tion directly impacts the PPLM-binding pocket'®** and we expected

the binding pocket around GYKI-52466 to be more compact in the
B and D positions during inhibition. To assess this, we measured the
distances between Pro520, Asn791, Ser615 and Phe623 (Fig. 2c). Toour
surprise, the binding pocketsin each subunit were remarkably similar
(Fig. 2d). Onaverage, there was a~12 A distance between pairs Pro520-
Asn791 and Ser615-Phe625, -9 A distance between Asn791-Ser615
and -8 A distance between Phe623-Pro520. Thus, the shape around
the GYKI-52466-binding site is roughly the same at each subunit posi-
tion, with an average solvent-accessible surface area of -493 A2around
GYKI-52466.Thus, there are nodiscernible differences between subunit
positionsinthe TMD in the inhibited state.

GYKI-52466 decouples ligand binding fromion channel
opening

To elucidate the inhibition mechanism, we compared our structure
inthe inhibited state to an activated AMPAR (Fig. 3a). The majority of
the TMD was similar between the two states (r.m.s.d. = 1.0 A; Extended
DataFig.2c), except at the channel gate, whichis formed by the top of
the M3 helices (Fig. 3a). Duringactivation, the M3 helices kink outward
from the pore axis to open the channel®*****°, This key movement is
blocked by the presence of GYKI-52466 in the Band D AMPAR subunit
positions because of the presence of GYKI-52466 in the channel collar
(Fig. 3a, inset)'°. However, there are no key differences between the
GYKI-52466 B and D subunitand A and C subunit positions of the chan-
nelcollarintheinhibited state (Fig. 2d). In addition, eachindividual LBD
intheinhibited state is Glu bound, with a similar overall conformation
to individual LBDs in the activated state (r.m.s.d. = 0.87 A; Fig. 3b).

The inhibited LBD layer is markedly different from that in the
activated state (Fig. 3a). Whileindividual LBDs in each protomer share
the same Glu-bound conformation (Fig. 3b), LBD dimers undergo a
substantial conformational change to accommodate AMPAR inhibi-
tion. To assess these changes, we measured the distancesbetween the
D1-Dland D2-D2lobesin LBD local dimers, which are major indicators
of the functional state of the AMPAR?". For example, during activation,
the distances between D1 lobes in LBD local dimers are decreased as
the D2 lobes separate to pull open the ion channel (Fig. 1a). During
desensitization, the opposite occurs, where the D1lobes separate and
the D2 interface is minimized, which decouples Glu binding from the
channel, allowing it to close (Fig. 1a).

In GluA2-y2,,,, we measured the distances between the Caatoms
of Ser741 (D1 separation) and Ser635 (D2 separation) (Fig. 3c). The D1
interface is markedly separated (27 A) compared to the D2 interface
(16 A). We then assessed how these separations fit with the conforma-
tional landscape of existing AMPARs (Fig. 3d). Generally, structures
with a =26 A distance between Ser741 residues in D1 lobes represent
adesensitized state, while structures with a >27 A distance between
Ser635residuesinD2lobesrepresent anactive state, with resting-state
structures representing a medium between the two separations. The
activated state of AMPAR is exemplified by Protein Data Bank (PDB)
SWEO, whiletheresting state is exemplified by PDB 3KG2 and the desen-
sitized state is exemplified by PDB 5VHZ (all PDB structures are mapped
inExtended DataFig. 7). The substantial rupturing of the D1interfaces
inboth GluA2-y2;s, and GluA2-y2,s, places these LBD dimers squarely
into the desensitized classification of LBD dimers. Critically, existing
PPLM-bound structures in the PDB represent the resting state of the
receptor because they are not Glu bound (Fig. 3d). This is marked by
notable differences across the receptors between the PPLM-bound apo
states and the inhibited states from this study (Extended Data Fig. 2b).

While the LBDs in local dimers arein a desensitized-like state, the
total motion of the LBD layer reveals that allostericinhibitionis unique
from desensitization. During desensitization, the A and C subunits roll
away fromtheir Band D partners to separate local dimers and decouple
Glubinding from the ion channel®** (Fig. 3e). Ininhibition, we observe
the opposite, with the Band D LBDs rotating 21° counterclockwise away
fromtheir Aand C counterparts, which appear to maintain the position
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Fig.2|High-resolution details of GYKI-52466 binding. a, GYKI-52466 (pink,
carbon; blue, nitrogen; red, oxygen) makes extensive contacts with residues
within the TMD collar region (orange ribbons), including Ser615 on the
neighboring M4 helix counterclockwise from the ‘bound’ subunit (purple).

b, Schematic representation of the interactions between GYKI-52466 and TMD
collar residues. The TM helix that each residue comes from is labeled below each
residue. The mbonds are represented by curved lines; van der Waals interactions
arerepresented by dashes. Carbon, nitrogen and oxygen atoms are colored
accordingtoa. ¢, Top-down view of the inhibited TMD, showing landmark
residues based on the GYKI-52466-binding site. d, Plot detailing the inter-residue
distances between landmark GYKI-52466-binding pocket residues and the
solvent-accessible surface surrounding GYKI-52466.

that they assume in the active state (Fig. 3e). Therefore, like their role
in activation, the B and D subunits drive inhibition. We expect that,
because the M3 helix kink is prevented by GYKI-52466 in the B and D
subunits (Fig. 3a), this drives rearrangement in the LBD by the same
subunits to accommodate inhibition. In contrast to the LBD layer,
the GluA2-y2,;, TMD is markedly like the desensitized AMPAR TMD
(r.m.s.d.=0.7 A; Extended Data Fig. 2c).

Allosteric competition to control the AMPARLBD

The presence of GYKI-52466 in the channel collar region prevents the
active-state transition during Glu binding, which prevents CTZ binding
in the LBD*. Our structural data provide a direct mechanism of how
PPLMs outcompete CTZ to allosterically control AMPAR function, which
hasbeen along-standing mystery in the field****>*, Despite binding at
disparate sites, we surmised thatinhibition by GYKI-52466 likely hasa
greater effect on AMPARs because the inhibition mechanism directly
ruptures the CTZ-binding pocket, while positive allosteric modulation
by CTZ does not preclude GYKI-52466 binding'®. We refer to this as
allosteric competition.

Indeed, LBD dimers in AMPARSs that are undergoing allosteric
inhibition by GYKI-52466 (Fig. 4a; GluA2-y2.,) and positive allos-
teric modulation by CTZ (Fig. 4b; PDB SWEO) are dramatically dif-
ferent. Two CTZ molecules act as a molecular glue between LBDs
during positive allosteric modulation, maintaining a close distance
between Ser741 pairs (Fig. 4b). However, during negative allosteric
modulation, the 27 A distance between Ser741 pairs ruptures the
CTZ-binding site (Fig. 4a) and the D2-D2 separation is reduced to
15 A from 31 A (Fig. 4a,b).

To test the effects of allosteric modulation independently of the
GluA2-y2g, construct, we directly assayed the separation of the D1-D1

interface with smFRET using a full-length GluA2(GIn)g;, construct.
Tointroduce specificlabeling for the smFRET measurements, we sub-
stituted the free Cys residues to Ser and introduced the Leu467Cys
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Fig. 3| Mechanism of allosteric inhibition. a, Overlay of the allosterically
inhibited state (orange/purple) and the activated state (white, PDB SWEO;
activated with1mM Glu + 100 pM CTZ). Inset: Close-up view of the GYKI-52466-
binding site, revealing a steric clash with the kinked M3 helix found in the open
state. b, Overlay of isolated LBD clamshells from the allosterically inhibited
state (pink) and the open state (white). ¢, Local clamshell dimers within the

LBD layer viewed from behind, showing the relative distances of the D1 and
D2lobes of the LBD dimer, asillustrated by the landmark residues Ser741(D1)
and Ser635 (D2).d, Plot of the D1distance (Ca of Ser741) versus D2 distance

(Ca of Ser635) measured for representative AMPAR structures captured in the
resting, activated or desensitized state. On the basis of these measurements, the
allosterically inhibited states (pink) cluster most closely with the desensitized
state structures. e, Overlay of the overall LBD layer of the inhibited state (pink),
activated state (white, PDB SWEO) and desensitized state (blue, PDB 5VHZ)
viewed from the top or extracellular side. Movements are measured within LBD
dimersand mapped into the tetramer. The black oval marks the symmetry axis.
Desensitization causes a 14° clockwise rotation of the A and C subunits within the
LBD layer relative to the activated state’®. In contrast, allosteric inhibition drives
acounterclockwise rotation of the B and D subunits within the LBD layer relative
to theactive state.
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Fig.4 | Allosteric competitionin AMPARs. a, Local LBD clamshell from the
allosterically inhibited state (GluA2-y2,s,) with landmark residues to show D1

and D2 separation within the dimer. This represents the dimer during negative
allosteric modulation. b, Local LBD clamshell dimer activated in the presence

of CTZ (PDB 5WEO), showing decreased D1separation and increased D2
separation. This isindicative of positive allosteric modulation. CTZ is shown in
blue. Distances were measured as in Fig. 3. ¢, Top-down view of the LBD layer in
GluA2-y2,,, with Leu467, where the Leu467Cys substitution is used for maleimide
dyelabeling, marked with a blue sphere, and intersubunit Leu467-Leu467 Ca

distances are labeled. d, Plot of FRET efficiency between LBD clamshells within
alocal dimer when GluA2-y2,,.; was treated with1 mM Glu + 100 puM CTZ alone
versus1 mM Glu +100 puM GYKI-52466. e, Same as ind but with GluA2;. Data
arerepresented as the mean values + s.e.m. across multiple days. The number of
moleculesincluded in the analysis for each condition is as follows: GIUA2-y2per
(CTZ,n=76;GYKI-52466, n =77) and GluA2;; (CTZ, n = 62*; GYKI-52466, n = 96).
*In this case, 30 molecules with 1 mM Glu and 100 pM CTZ were obtained from
Carrilloetal.®.

substitution at the top of the GluA2 LBD D1 (GluA2:;) (Methods).
In the GluA2-y2.¢r construct, full-length TARPy2 was fused to the
C terminus of GIuA2 from GluA2; using a GGS linker (Methods). The
Leu467Cys substitution enables attachment of a dye by maleimide
chemistry and establishes FRET pairs at the top of the GluA2 D1 in
the LBD (Fig. 4c) within local LBD dimers. Other possible FRET pair
distances in the tetramer occur at longer distances and do not con-
tribute notable FRET®’. The FRET efficiency when GluA2 is in the acti-
vated state (Glu + CTZ) isexpected to be ~92% withinan LBD dimer and
~19% across dimer pairs when Alexa-555 and Alexa-647 are used as the
donor-acceptor pair.

We tested coupling of the D1 interface in GIuA2-y2r during
positive allosteric modulation in the presence of both 1 mM Glu and
100 puM CTZ (Fig. 4d), where the D1 lobes between LBD dimer pairs
are at their closest®*** (Fig. 4b). The Glu and CTZ smFRET efficiency
histogram showed higher efficiency than allosterically inhibited recep-
tors (1mM Glu and 100 uM GYKI-52466; Fig. 4d). This indicates that
the distance across the D1 interface is shorter in the presence of the
positive modulator CTZ thanin the presence of the negative modula-
tor GYKI-52466. To confirm that the decrease in smFRET efficiency in
inhibitory conditions is not TARP dependent, we also tested sSmFRET
efficiency in GluA2 homotetramers in the absence of TARPy2 with
the GluA2e; construct (Fig. 4e). Comparison of the GluA2r and
GluA2-y2.er responses revealed similar effects of positive allosteric
modulation (1 mM Glu + 100 puM CTZ) and allosteric inhibition (1 mM
Glu +100 pM GYKI-52466), which points to the decrease in smFRET
efficiency not being TARP dependent but GYKI-52466 dependent or
CTZ dependent.

The individual smFRET traces showed that the protein occupies
2-3FRET efficiency states (Extended Data Fig. 8 and Methods). Using
the highest-occurring state in GluA2-y2.y, we obtained a FRET effi-
ciencyof 0.93inthe presence of CTZand 0.82inthe presence of GYKI-
52466 (Extended Data Fig. 8). These FRET efficiencies correspond to
distances of 33 A and 39 A, respectively. The distance change of 6 A
agrees withour GluA2-y2;s;and GluA2-y2,, cryo-EM structures, which
show a D1-D1 (Leu467) distance change of 6 A when compared to the
CTZ-bound, activated-state AMPAR structure'®. Thus, separation of
the D1lobesin AMPAR LBD dimers appears to be because of negative
allosteric modulation by GYKI-52466. The lower FRET efficiency sug-
gestsadditional conformations that are more decoupled at the D1-D1
interfacethan reconstructed with cryo-EM. These decoupled states are
expected tobe more dynamic and may not be homogeneous enoughto
classify into distinct cryo-EM classes (Extended Data Fig. 3a).

Collectively, our data suggest that negative allosteric modulation
and positive allosteric modulation occupy different conformational
states in the presence of Glu. The differences between the conforma-
tional spaces are a potential mechanism for allosteric competition
between the two modulators (Fig.4a,b). These data agree with our elec-
trophysiological findings that the allosteric inhibition of GYKI-52466
outcompetes the positive allosteric modulation by CTZ of GluA2-y2;,,
(Fig.1b and Extended DataFig.1a,b).

Free energy landscape of the LBD dimer interface

We hypothesized that the desensitization and allosterically inhibited
states occupy different conformations in the LBD layer because of
distinct free energy minima accompanying each state. To test this, we
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J, colored green, labeled in accordance with their contribution to the two-
dimensional order parameter. b, Free energy landscape governing LBD dimer
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with the measured distances of the activated (green), desensitized (orange) and
maximally desensitized distances (blue) plotted on the diagram. Corresponding
measurements from the allosterically inhibited state are shown in pink, which
corresponds to where we would expect the allosterically inhibited state to sit
within the free energy landscape. The dashed line suggests the most probable
transition pathway between the active and desensitized conformations. The free
energy landscape is contoured inincrements of 1 kcal per mol.

computed atwo-dimensional free energy landscape or potential of mean
force (PMF) governingtherupture of aGlu-bound GluA2 LBD dimer inter-
face using umbrella sampling free energy MD simulations (Methods).

Our PMFis afunction of atwo-dimensional order parameter (x; and
X,) thatreports global changes within an LBD dimer. y; and x, describe
the distances between the center of mass (COM) of helixJ in D1 and
the COM of helix Din D1 on a partner LBD in the dimer (Fig. 5a). (x;, x»)
differs from the one-dimensional collective variable previously used
to examine LBD dimer stabilities in AMPARs and kainate receptors
through steered MD simulations®’. While the LBDs are generally sym-
metric, the order parameter is not (Fig. 5a); x, describes the distance
between helix pair ] and D that is exterior facing, while x, describes
the helix pair that faces the interior of the AMPAR in the context of a
tetramer. Thus, this enables a two-dimensional approachto character-
izing global changes in the LBD dimers.

Through sampling x; and y, in the context of Glu-bound LBDs,
we can understand the energetics associated with rupturing the D1-
Dlinterface. Conformers for the umbrella sampling windows were
generated using targeted MD simulations initiated with an activated
GluA2 LBD and using a desensitized GluA2 LBD as a guide (Fig. 5a and
Methods)®*%°, Sampling windows were 1A increments along x, and x,.
Theactivated-state LBD dimer occupies asmall free energy basin within
the PMF, whereas the fully desensitized LBD occupies a substantially
larger basin (Fig. 5b). The crystallized desensitized LBD, stabilized by a
disulfidebond, lies near the most probable transition pathway between
theactive and desensitized conformations. This pathway suggests that,
during rupture of the dimer interface, one J-D helix pair breaks before
the other rather than both pairs breaking simultaneously, thereby
circumventing a free energy barrier separating the two basins. The
broader free energy basin associated with desensitization compared to
activationmay account for how shortlived the active stateis compared
to the longer-lived desensitized state.

A point substitution, Leu483Tyr in helix D, was identified to
strongly stabilize the nondesensitized (active) state”. To test whether
our umbrella sampling strategy could recapitulate the effect of this
substitution, we performed an analogous free energy calculation
using the GluA2-Leu483Tyr LBD dimer. Umbrella sampling window
conformers were generated from the crystal structure of the Leu483Tyr

LBD dimer?. The PMF of this nondesensitizing mutant revealed a sub-
stantially reduced free energy basin for the desensitized state, trans-
forming the active-state basin into the global free energy minimum
(Extended DataFig.9).

Ininhibition, we observed separation of x; and y, compared to the
activated LBD dimer (Fig. 5a). Interestingly, this state likely occupies a
PMF basin thatis distinct from the pathway of desensitization (Fig. 5b).
This supports the observation that inhibition is similar but distinct
from desensitization. The two-dimensional order parameter that we
sampledinthis experiment accounts for how the LBDs within adimer
pivot away from each other to accommodate D1separation. We hypoth-
esize thatthe distinct free energy basins of inhibited and desensitized
LBDs account for the differences between allosteric inhibition and
desensitization (Fig. 3e).

Discussion

PPLMs bind to the AMPAR TMD and inhibit AMPARs by shunting the
receptorintoadistinctallosterically inhibited state following Glu bind-
ing (Fig. 6a), thereby decoupling Glu binding from channel opening.
Theinhibited states (GluA2-y2,, and GluA2-y2,s,) show marked differ-
ences compared to AMPAR structures bound to PPLMs in the resting
state (Extended Data Fig. 2b). Previous studies suggested a two-step
mechanism of inhibition, where an initial binding event by PPLMs is
insufficient to produce complete inhibition®®®’. Our results indicate
atwo-step mechanisminvolving GYKI-52466 binding followed by Glu
binding in the LBDs and rupturing of the D1 interface between LBD
dimers. This demonstrates how binding of PPLMs in the ion channel
collar allosterically controls the AMPAR LBDs (Fig. 6a).

Our proposed mechanism bridges the electrophysiological
studies of the competition between PPLM and CTZ with binding-site
identification’"****"* The GYKI-52466-binding site is consistent
with mutagenesis studies conducted in the PPLM-binding pocket®
and points to the likely involvement of Asné619 in stabilizing GYKI-
52466 specifically. While the residues that coordinate GYKI-52466 are
largely conserved across AMPAR subunits (Extended Data Fig. 10), the
high-resolution details outlined here and identification of the negative
allosteric modulation mechanism willimprove small-molecule design
in future studies.
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state of the receptor; however, after Glu binding, GYKI-52466 outcompetes

CTZ to control the AMPAR LBD, resulting in CTZ being displaced and inhibition of
thereceptor.

Inhibition being a similar but distinct mechanism to desensitiza-
tion also helps conceptualize future therapeutics targeting AMPARs.
The motion of the domains in the B and D subunits that accompanies
inhibition (Fig. 3e) may provide aroute for specificity in small-molecule
targeting considering that these positions are enriched for specific
GluA subunits in native AMPARs™ ™,

The competition between positive (for example, CTZ) and nega-
tive (for example, PPLMs) allosteric modulators accounts for how
GYKI-52466 and CTZ produce opposing effects on channel conduct-
ance®'*_ Early studies postulated a shared binding site for GYKI-
52466 and CTZ because of their countervailing effects on AMPAR
channel conductance***®, However, CTZ and PPLMs act at distinct
sites®>** thereby rendering their mechanistic competition unclear.
Our data agree with previous findings that PPLMs can outcompete
positive allosteric modulators that bind to disparate sites such as
CTZ.However, our data expand on this idea by providinginsightinto
how this competition is achieved. Both PPLMs and CTZ can bind to
resting-state AMPARs®184149¢6970 Qur data reveal that the competi-
tion mechanismis, therefore, dependent onthe presence of Gluand
negative allosteric modulation by GYKI-52466 prevents CTZ from
positively modulating AMPARs through rupturing the CTZ-binding
site (Fig. 6b).

Inhibition by PPLMs appears to be independent of TARPs. How-
ever, noncompetitive inhibition of AMPARs may function similarly
across different drug types. AMPARs are tightly regulated by TARPs
and other auxiliary subunits??**475% and recently identified com-
pounds (for example, JNJ-55511118,JNJ-118,JNJ-059 and LY-481) dem-
onstrate selectivity for particular AMPAR-TARP complexes®™7””7¢,
The binding sites are distinct from those of PPLMs, located
within the interface between TARPs and AMPARs. It is possible that
these TARP-dependent noncompetitive inhibitors act similarly to
PPLMs. Resolving this question will require additional studies with

AMPARs activated in the presence of TARP-dependent noncompeti-
tive inhibitors.

Insum, werevealhow AMPARs are allosterically inhibited by PPLMs
and how allosteric competition occurs within AMPARSs. Our data pro-
videafoundation for structure-based drug design against AMPARs, as
well as aframework to study allostery across iGluRs.

Online content
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Methods

Construct design

The fusion construct GluA2-y2, was published previously and
extensively validated for functional assays and structure determina-
tion'®?*** The GluA2 subunit in the construct is adapted from the
GluA2* construct, where the ATD-LBD linker is truncated and glycosyla-
tion sites are substituted. More specifically, rat GluA2y;, (NP_058957)
had 36 residues truncated at the C terminus after TM4, 6 residues
truncated from the ATD-LBD linker (Leu378, Thr379, Leu381, Pro382,
Ser383 and Gly384), and N-linked glycosylation sites substituted and
knocked out (Asn235Glu, Asn385Asp and Asn392GIn). GIn was intro-
duced atthe GIn/Arg site (Arg586GIn) to stabilize the tetrameric form
of thereceptor”. More details on GluA2* can be found in Yelshanskaya
etal.”?, where it was functionally validated and used for structure deter-
mination. GluA2*was directly fused to the N terminus of mouse TARPy2
(NP_031609), which had its C terminus removed immediately after TM4
(truncated at Leu207). TARPY2 residues Thr-Gly-Gly were introduced
as spacers within a thrombin cleavage site (Leu-Val-Pro-Arg-Gly-Ser),
which was followed by a C-terminal enhanced green fluorescent pro-
tein (eGFP) for monitoring expression, Strep Tag Il and a stop codon.
GluA2-y2;,, was inserted after the cytomegalovirus (CMV) promoter
into the pEG BacMam vector for baculovirus-driven protein expres-
sion in mammalian cells”’. GluA2-y2;,, was originally established and
validated in Twomey et al.”” and extensively used for later structural
Studie518,26,47*49'

For smFRET, the GluA2 construct was designed in a pRK5 vector
containing the CMV promoter as previously described®. Briefly, free
Cysresidues 89,196 and 436 in full-length, wild-type rat GIuA2(GIn)g,
were substituted to Ser and Cys was introduced at position 467
(Leu467Cys) for maleimide dye attachment to measure the intradi-
mer interface of the LBD.

To generate the GluA2-y2zer construct for smFRET, TARPYS from
the GluA2-TARPYS8 fusion construct containing a Leu467Cys site in
GluA2 (ref. 60; GluA2; above) was replaced with full-length mouse
TARPy2 from the GluA2-TARPy2 construct® using restriction enzyme
cloning with restriction enzymes BamHIland EcoRV to generate GluA2-
TARPY2 with Cys467 in GluA2.

Protein expression and purification

The GluA2-y2;, bacmid was prepared as previously described®***.
P1 baculovirus was generated by transfecting ExpiSf9 cells (Gibco,
A35243) cultured at 27 °C with polyethyleneimine (molecular weight,
40,000; PolyScience, 24765). After 5 days, P1 virus was harvested and
expressionin mammalian cells was induced by the addition of P1 bac-
ulovirus to Expi293F GnTI  cells (Gibco, A39240) grown in Expi293
medium (Gibco, A14135101) in a1:10 ratio of P1virus to culture volume.
Cellsweregrownat37°Cin 5% CO,. Then, 12-24 h after induction, the
cell culture mediumwas brought up to 10 mM sodium butyrate (Sigma,
303410) and 2 pM ZK 20075 (Tocris, 2345) and moved into a 30 °C,
5% CO, incubator. The cells were harvested 72 h after transduction
by centrifugation (5,000g, 20 min at 4 °C), washed with PBS (pH 7.4)
with protease inhibitors added (0.8 pM aprotinin, 2 pug ml™ leupeptin,
2 uM pepstatin A and 1 mM phenylmethylsulfonyl fluoride) and then
pelleted again (4,800g,10 min at4 °C). The supernatant was discarded
and pellets were stored at —80 °C until purification. Pellets were thawed
rotating in lysis buffer (150 mM NaCland 20 mM Tris pH 8.0) with pro-
teaseinhibitorsadded. Cellswerelysedinanice bath with ablunt probe
sonicator (three cycles, 1son, 1s for 1 min, 20 W power). Lysed cells
were centrifuged to pelletlarge cellular debris (4,800g,20 minat 4 °C).
The supernatant was ultracentrifuged to pellet membranes (125,000g,
45 min), which were solubilized in solubilization buffer (150 mM NaCl,
20 mM Tris pH 8.0,1% n-dodecyl-B-b-maltopyranoside (DDM; Anatrace,
D310)) and 0.2% cholesteryl hemisuccinate Tris salt (Anatrace, CH210)
for2 hat4 °Cunder constant stirring. Insoluble material was pelleted
inanultracentrifuge (125,000g, 45 minat 4 °C) and solubilized protein

was incubated with 0.75 ml of Strep-Tactin XT 4Flow resin (IBA, 2-5010)
per 11 of cells overnight, rotating at 4 °C. The following day, the resin
was collected by gravity flow and washed with 20 column volumes of
glyco-diosgenin (GDN) buffer (150 mM NaCl, 20 mM Tris pH 8.0 and
0.01% GDN (Anatrace, GDN101)), before elutionin GDN buffer made up
to 50 mM D-biotin. Eluate was collected in a centrifugal concentrator
and concentrated into a 500-pl volume at 4 °C. To remove eGFP and
Strep Tag Il, the concentrated protein was incubated with thrombin
(1:200 w/w) for1 hat22°C. The cleavage reaction was separated over a
Superose 6 increase10/300 column (Cytiva, 29091596) using an AKTA
fast protein liquid chromatographin GDN buffer. Peak fractions were
collected and concentrated to 4.5 mg ml™.

Sample preparation and data collection

UltrAuFoil 300 mesh R1.2/1.3 grids (Electron Microscopy Services,
Q350AR13A) were plasma-treated in a Pelco Easiglow (25mA, 120 s
glow time and 10 s hold time; Ted Pella, 91000). Purified sample was
splitinto two conditions. TheIS-1sample was made up to100 uM CTZ
(Tocris, 07-131-0) and spun in an ultracentrifuge to pellet insoluble
material before the preparation of grids (75,000g, 45 min), whereas the
IS-2sample was made up to 100 uM CTZ and 100 pM GYKI-52466 (Toc-
ris, 1454) before centrifugation (75,000g, 45 min). IS-1 samples were
spiked with 100 pM GYKI-52466 and 1 mM Glu (pH 7.4) immediately
before application to grids. IS-2 samples were only spiked with 1 mM
Glubefore application togrids. Inboth cases, 3 pl of sample was applied
to glow-discharged grids in an FEI Vitrobot Mark IV (Thermo Fisher
Scientific; wait time, 10 s; blot force, 5; blot time, 4 s) at 8 °C and 100%
humidity and plunge-frozenin liquid ethane. Grids were imaged with
a300-kV TitanKrios 3i microscope equipped with fringe-free imaging,
aFalcon4icameraandaSelectris energy filter set toa10-eV slit width.
Micrographs were collected with a dose rate of 8.15 e™ per pixel per s
and atotal dose of 40.00 e” per A2 We collected 8,800 micrographs of
the GYKI-1 condition (0.93 A per pixel) and 7,900 micrographs of the
GYKI-2 condition (0.93 A per pixel). Automated collection was achieved
with EPU software from Thermo Fisher Scientific.

Image processing
Cryosparc’® was used for all aspects of image processing (refer to
Extended Data Figs. 3 and 4 for details). The reconstruction quality
was tested for anisotropic contribution to the Fourier shell correlation
(FSC) with 3DFSC”°.

Model building, refinement and structural analysis

Molecular modeling, refinement and analysis were performed with a
combination of ChimeraX®’, ISOLDE®, Coot®? and PHENIX®**** made
accessible through the SBgrid consortium®. As a starting model, the
activated state of GluA2-y2;,, (refs. 18,48) (PDB SWEO) was used. Each
domain (ATD, LBD and TMD) was isolated and underwent rigid-body
fitting into the GluA2-y2¢, full-length cryo-EM reconstruction using
ChimeraX. The rigid-body position of each protomer was refined by
isolatingit within the domainandrigid-body fitting. Then, each domain
wasjoined intoasingle model. The exact positioning of each aminoacid
was fine-tuned on the basis of the locally refined map of each domain
using Coot. Then, ISOLDE was used to refine the model and GYKI-
52466 was placed in the map with Coot and merged into the model.
PHENIX was used to refine the final model. To model GluA2-y2,s,, the
GluA2-y2,s; model underwent rigid-body fitting into the GluA2-y2,
reconstruction and refined with ISOLDE and PHENIX. Model quality
was assessed with MolProbity®. Visualizations and domain measure-
ments were performed in ChimeraX. Pore measurements were made
with MOLE Online®.

Labeling, acquisition and analysis for smFRET
HEK293T cells (American Type Culture Collection (ATCC), CRL-3216)
overexpressing GluA2 g or GluA2-y2.x.r receptors were labeled with
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1:4 ratio of maleimide derivatives of Alexa-555 (donor) and Alexa-647
(acceptor) fluorophores (Invitrogen) in extracellular buffer (135 mM
NaCl,3 mMKCI,2 mM CaCl,, 20 mMglucoseand20 mM HEPES pH 7.4)
atroomtemperature for 30 min. After labeling, the cells were washed
and solubilized for 1 h at4 °C with buffer containing 1% lauryl maltose
neopentyl glycol (Anatrace), 2 mM cholesteryl hydrogen succinate
(CHS; MP Biomedicals) and V4 protease inhibitor tablet (Pierce) in PBS.
Solubilized cells werefiltered frominsoluble debris by ultracentrifuga-
tionat100,000gfor1hat4 °CusingaTLA100.3 rotor.

For the slide preparation, we followed established experimental
methods as previously described®* . The coverslips were initially
cleaned by bath sonication in Liquinox phosphate-free detergent
(Fisher Scientific) and acetone treatment. Further cleaning involved
incubatingtheslidesina4.3% NH,OH and 4.3% H,0, solutionat 70 °C,
followed by plasma cleaning using a Harrick Plasma PDC-32G Plasma
Cleaner. The cleaned glass was aminosilanated using Vectabond rea-
gent (Vector Laboratories), followed by polyethylene glycol (PEG)
treatment with 0.25% w/w 5 kDa biotin-terminated PEG (NOF Cor-
poration) and 25% w/w 5 kDa mPEG succinimidyl carbonate (Laysan
Bio), followed by a secondary PEG treatment with 25 mM short-chain
333 DaMS(PEG)4 methyl-PEG-NHS-ester reagent (Thermo Scientific).
A microfluidics chamber was constructed on the slide, comprising an
input port, a sample chamber and an output port. To coat the bioti-
nylated surface with streptavidin molecules, 0.2 mg ml™ streptavidinin
1xsmFRET imagingbuffer (1 mMDDM, 0.2 mM CHSand 1x PBS) wasintro-
duced into the chamber and incubated for 10 min before washing with
1xPBS. Next, 60 pl of biotinylated goat anti-mouse IgG (H + L) second-
ary antibody at 2.7 ng pl™ (Jackson Immunoresearch Laboratories,
cat. no.115-065-003) in 1x PBS was flowed through the chamber and
incubated for 20 min, before washing with 1x PBS.

Following this, either 60 pl of anti-GluR2 at 3 ng pl™ for GIuA2per
purification (clone L21/32; BioLegend) or 60 pl of anti-TARPy2 at
2.4 ng pl™ for GluA2-y2r purification (clone N245/36; Millipore) in 1x
PBS was applied twice through the chamber and incubated for 20 min,
followed by washing with 1x PBS. BSA (0.1 mg ml™) was introduced into
the chamber and incubated for 15 min, before washing with 1x PBS.
Detergent-solubilized purified proteins were attached to the glass
slide using an in situ immunoprecipitation method by applying 50 pl
of sample three times through the chamber and incubating for 20 min.
Then, 90 pl of oxygen-scavenging solution buffer system (ROXS) was
applied inside the chamber containing 1 mM methyl viologen, 1 mM
ascorbicacid, 0.01% w/w pyranose oxidase, 0.001% w/v catalase, 3.3%
w/w glucose (all from Sigma-Aldrich), 1 mM DDM (Chem-Impex) and
0.2 mM CHS (MP Biomedicals) in PBS pH 7.4. For the CTZ condition,
1mMGluand 100 pM CTZ were introduced into the ROXS. In the GYKI-
52466-treated condition,1 mM Gluand 100 pM GYKI-52466 (Millipore-
Sigma) were introduced into the ROXS.

The smFRET data were collected usingaMicroTime 200 Fluores-
cence Lifetime Microscope from PicoQuant. A donor excitation laser
(532 nm; LDH-D-TA-530; Picoquant) and an acceptor excitation laser
(637 nm; LDH-D-C-640; Picoquant) were used with a pulsed interleaved
excitation scheme to excite the fluorophores. Emitted photons were
collected through the objective lens (x100, 1.4 numerical aperture;
Olympus). Emission filters for the donor (550 nm; FF01-582/64; AHF or
Semrock) and acceptor (650 nm; 2XH690/70; AHF) were used to select
photons for each detection channel. These photons were directed to
two single-photon avalanche diodes (SPCM CD3516H; Excelitas Tech-
nologies) to measure the fluorescence intensity for each fluorophore.
The donor and acceptor fluorescence intensities were recorded for
oneproteinatatime.

In our data analysis, we selected only those molecules that exhib-
ited asingle photobleaching stepin both the donor and the acceptor
channels. This stringent criterion ensured that only one donor and one
acceptor fluorophore were attached to each GluA2 protein. Further-
more, we retained only those molecules that displayed anticorrelation

between the donor and acceptor fluorescence, confirming that the
fluorophores were engaged in FRET before photobleaching. Mol-
ecules not exhibiting these characteristics were excluded from the
final analysis. The number of molecules included in the analysis for
each condition was as follows: GIuA2-y2.r (CTZ, n = 76; GYKI-52466,
n=77)and GluA2 (CTZ, n= 62*; GYKI-52466, n = 96). *In this case,
30 molecules with1 mM Glu and 100 pM CTZ were obtained from
Carrillo etal.®°.

Thecorrected donor and acceptor intensities over time were then
used to calculate aFRET efficiency trace for each molecule. These traces
were pooled for each condition and used to create FRET efficiency
distribution histograms for each condition. We conducted step transi-
tionand stateidentification (STaSI) analysis to determine the number
of conformational states in each condition®>. The smallest number of
states that accurately described the data as determined by the STaSI
analysis was adopted as the final number of states for each condition.
Using theresults of the STaSI analysis and Origin software (OriginLab),
the FRET efficiency histograms for each condition were fitted with
Gaussian curves to represent the conformational states within the
overall distributions.

To test for the statistical difference between conditions CTZ and
GYKI-52466, the FRET efficiency mode was obtained for each day, as
this more accurately represents the histogram peak. The mean and
s.d. were calculated across these days. A two-sample ¢-test, assuming
a one-tail distribution with known variances, was used to assess the
statistical differences between the conditions using Origin software
(OriginLab).

Electrophysiology

For electrophysiological measurements of GluA2-y2;,, which contained
eGFPfor cell detection, 1 pg of DNA was transfected into HEK293T cells
(ATCC, CRL-3216) in 3-cm culture dishes using Lipofectamine 2000.
Patch-clamp recordings were performed 24-48 h after transfection
using fire-polished borosilicate glass (Sutter Instrument). Pipettes
with1-4 MQresistance were filled with internal solution: 110 mM CsF,
30 mM CsCl, 4 mMNacl, 0.5 mM CaCl,, 10 mM HEPES and 5 mM EGTA
(adjusted to pH 7.4 with CsOH). The extracellular solution consisted of
150 mM NacCl, 3 mMKCI, 2 mM CaCl, and 10 mM HEPES adjusted to pH
7.4 with NaOH. External solutions were locally applied to lifted cells or
patches using an SF-77B perfusion fast-step (Warner Instruments). For
inhibition concentration-response determination, 100 pM CTZ was
preincubated in extracellular buffer for at least 30-60 s, along with
the corresponding GYKI-52466 concentration. For channel activa-
tion, 1 mM Glu with 100 puM CTZ and the corresponding GYKI-52466
concentration was applied for 500 ms and recordings were allowed
to reach equilibrium before obtaining 2-10 sweeps per condition for
averaging. The mean of theresidual current was obtained using arange
between200 and 500 ms after Glu application and used for inhibition
concentration-response analysis. Recordings were performed using an
Axopatch200B amplifier (Molecular Devices) at—60 mV hold potential,
acquired at 2 kHz using pCLAMP10 software (Axon 200B and Digidata
1550A; Molecular Devices). Individual patch-clamp traces and the aver-
ageresidual current for IC,, were analyzed using Clampfit 11 software
(Molecular Devices). The inhibition concentration-response results
were analyzed using the Levenberg-Marquardt iteration algorithm
foranonlinear curve fit using OriginPro 2023b. The experimental data
were fit with the following equation:

y = Al + &
1+ 10((og-)p)

The dataset was analyzed using the concatenate fit mode, ensur-
ing a robust assessment of the concentration-response behavior.
Representative traces were graphed, normalized and calculated using
Origin software (OriginLab).
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Free energy MD simulations

The conformational free energy landscape or PMF of the LBD dimer was
computed using umbrella sampling simulations. A two-dimensional
order parameter (x;, X,) described the large-scale conformational transi-
tions between each LBD of the dimer. x; and x, each indicated the dis-
tance betweenthe COMofatomsN, CA,CB, Cand Oinresidues482-488,
helix D, and the COM of the same atoms in residues 748-757, helix J.
Helices D and ) formed the dimerinterface. Coordinates for the umbrella
sampling windows were generated by targeted (biased-potential) MD
simulations using CHARMMA®*in1Aincrements alongx, and x,. These
coordinates were initiated from the crystal structure of a Glu-bound
GluA2 LBD dimer (PDB 1FTJ)**. For GluA2-L483Y, these coordinates
wereinitiated fromthe crystal structure of the mutant LBD dimer (PDB
1LB8)?. Missing residues were built using the ModLoop server® and
missing residue side chains were built using SCWRL4 (ref. 96).

All simulations were performed using CHARMM36 with explicit
solvent at 300 K. The all-atom potential-energy function PARAM27
for proteins®’® and the TIP3P potential-energy function for water®
were used. Each simulation system contained ~56,000 atoms and 39
Na*"and 47 Cl" ions were added to the bulk solution to give ~150 mM
NaCland an electrically neutral system. Periodic boundary conditions
were used with an orthorhombic cell with approximate dimensions of
96 A x 78 A x 78 A. Equilibration was carried out in the NVT ensemble
with restraints applied to the backbone and sidechain atoms, which
were slowly released over the course of the equilibration. Production
simulations were carried out in the NPT ensemble at 1 atm and 300 K
(ref.100). Long-range electrostaticinteractions were computed using
the particle mesh Ewald algorithm'®,

The PMF comprised 140 umbrella sampling windows totaling
364 ns of simulation time and 398 ns for GluA2-1L483Y. Harmonic bias-
ing potentials with a force constant of 2 kcal per mol per A centered
on (x;, x,) were used. Each PMF was computed using the weighted
histogram analysis method'*>'** to unbias and recombine the sampled
distribution functions from all windows.

Multiple sequence alignment

Rat Grial-Gria4 protein sequences were accessed from UniProt
(P19490, Grial; P19491, Gria2; P19492, Gria3; P19493, Gria4) and aligned
using the server-based Expresso implementation of T-Coffee'**', The

alignment was visualized using Jalview'®.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Theaccession codes for GluA2-y2,s,and GluA2-y2,s, are EMD-43275 and
EMD-43276, respectively. The full maps (before local refinement and
signal subtraction) are the primary cryo-EM maps in each deposition
and eachlocalmapissupplied as asupplementalfile in each deposition.
The GluA2-y2,s; and GluA2-y2,, structures are deposited to the PDB
(8VJ6 and 8V)7, respectively). Source data are provided with this paper.

Code availability

Allconformers from the MD simulationtrajectories, datafromumbrella
sampling and analysis code are publicly available from Zenodo (https://
doi.org/10.5281/zen0d0.10967297)'%".
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Extended Data Fig. 1| Electrophysiology, purification, and preparation
of GluA2-y2y,,. (a) Representative whole-cell patch clamp traces from
HEK293T cells expressing GluA2-y2y,, in the presence of either 1 mM Glu,1 mM
Glu+100 pM CTZ, or1 mM Glu +100 pM CTZ +100 uM GYKI-52466. Traces
representative of at least three individual cells. (b) Representative normalized
whole-cell patch clamp traces of HEK293T cells expressing GluA2-y2y,, treated
with1mM Glu +100 pM CTZ either alone or with increasing concentrations of
GYKI-52466. For each concentration, data were obtained from at least three

different cells. (c) Coomassie-stained SDS-PAGE gel of purified GluA2-y2;,,
sample showing a single band at the predicted molecular weight (arrow).

(d) Size exclusion chromatogram of purified GluA2-y2g,, sample showing asingle
monodispersed peak at the predicted retention time for a GluA2-y2,,.

(e) (i) Treatment regimens for producing the different inhibited states
GluA2-y2,s,and GluA2-y2,,,, (i) cartoon demonstrating the targeted outcome of
activating GluA2-y2;, in the presence of the inhibitor GYKI-52466.
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Extended Data Fig. 2| Comparison between inhibited statesand AMPAR
structuresinresting state bound to PPLMs. (a) overlay of GluA2-y2,s, and
GluA2-y2,, from this study demonstrating very minor deviation in the two states
from each other. (b) overlay of GluA2-y2,s, against crystal structures of GluA2in
complexwith PPLMs: CP465022 (PDB: 5L1E), Perampanel (PDB: 5L1F), GYKI-Br
(PDB:5L1G), and GYKI-53655 (PDB: 5L1H). RMSD is greatest within the LBD layer,
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inagreement with the conformational shifts observed following GluA2-y2y,,
activationin the presence of GYKI-52466. (c) Overall comparison of TMDs,
A/Csubunition channel helices, and B/D subunition channel helices between
activated (PDB SWEO, white), inhibited (GluA2-y2,,, pink) and desensitized (PDB
7RYY, blue). Compared to the entire GluA2-y2,;, TMD, the activated state TMD
has 1.0 ARMSD, and desensitized state TMD 0.7 ARMSD.
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Extended DataFig. 3 | Cryo-EM processing workflow for GluA2-y2,4 ;. (a) Image processing workflow and approachin Cryosparc. (b) Three-dimensional Fourier shell
correlation analysis for local LBD and TMD maps.
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Extended Data Fig. 5| Structured lipids stabilize the AMPAR TMD. Coulomb up of lipids bound to the B/D TMD subunits of the receptor showing at least seven
potential maps of the AMPAR TMD from signal subtraction and focused distinct densities. (ii) close-up of the A/C subunits of the receptor demonstrating
refinement highlighting the presence of lipids (blue) bound to the TMD. (i) close-  similar, but distinct lipid arrangements around the TMD.
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Extended Data Fig. 6 | GluA2-y2,,, map examples and workflow for
elucidating GYKI-52466 binding pocket. (a) Examples of Cryo-EM map for the
AMPAR TMD and Glu-bound LBD. (b) Symmetry expansion was applied through
to theisolated GluA2-y2,;, TMD toincrease the effective particle count of the
GYKI-52466 binding pocket. (c) Following expansion one of the four GYKI-52466
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binding pockets was masked and then the mask inverted to subtract away the
remaining TMD structure. (d) Local refinement of the isolated GYKI-52466
binding pocket resolved the pocket to 2.21 A resolution. (e) Cryo-EM map of the
GYKI-52466 pocket shown from left to right at thresholds of 0.8, 0.6, and 0.4.

(f) Comparisons between PPLM binding pockets and GYKI-52466 from this study.
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generated from the compilation of all analyzed single-molecule traces with
FRET efficiency traces obtained using MDL from STaSI”®. Data are represented
as mean values +/- SEM across multiple days. (b) Same as panel a, but GIuA2g.
(c) Statistical analysis of the smFRET data. Mean of the mode for each day with
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standard error demonstrates a significant decrease in FRET efficiency from CTZ
condition to GYKI-52466 condition using two-sample t-test assuming a one-tail
distribution with known variances. For GIuA2-y2r t = 6.931, df =4, p = 0.00114,
for GluA2;per £ = 3.625, df = 6, p = 0.00552. The number of molecules included
inthe analysis for each condition is as follows: GIuA2-y2¢; (CTZ = 76, GYKI-
52466 =77), GluA2; (CTZ = 62*, GYKI-52466 = 96). *30 molecules with 1 mM of
glutamate and 100 uM CTZ were obtained from Carrillo and Shaikh et al.*°.
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Extended Data Fig. 9 | Free energy landscape governing desensitization in the GluA2-L483Y LBD dimer. The PMF is computed as a function of (c,, ¢,), the two
distances between helices D and] at the dimer interface. The PMF is contoured in 1 kcal/mol increments.
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Extended Data Fig. 10 | Alignment of GluA subunits. Multiple sequence alignment of Rat GluA1-4 protein sequences. Conservation isindicated by the intensity of
purple coloring. Secondary structure is displayed above the alignment. GYKI-52466 interacting residues are highlighted in pink.
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