Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Guidelines for minimal reporting requirements, design and interpretation of experiments involving the use of eukaryotic dual gene expression reporters (MINDR)

Abstract

Dual reporters encoding two distinct proteins within the same mRNA have had a crucial role in identifying and characterizing unconventional mechanisms of eukaryotic translation. These mechanisms include initiation via internal ribosomal entry sites (IRESs), ribosomal frameshifting, stop codon readthrough and reinitiation. This design enables the expression of one reporter to be influenced by the specific mechanism under investigation, while the other reporter serves as an internal control. However, challenges arise when intervening test sequences are placed between these two reporters. Such sequences can inadvertently impact the expression or function of either reporter, independent of translation-related changes, potentially biasing the results. These effects may occur due to cryptic regulatory elements inducing or affecting transcription initiation, splicing, polyadenylation and antisense transcription as well as unpredictable effects of the translated test sequences on the stability and activity of the reporters. Unfortunately, these unintended effects may lead to misinterpretation of data and the publication of incorrect conclusions in the scientific literature. To address this issue and to assist the scientific community in accurately interpreting dual-reporter experiments, we have developed comprehensive guidelines. These guidelines cover experimental design, interpretation and the minimal requirements for reporting results. They are designed to aid researchers conducting these experiments as well as reviewers, editors and other investigators who seek to evaluate published data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of a dual-reporter strategy and the most common artifacts (shaded background) arising from unexamined assumptions.
Fig. 2: Assessment of dual-reporter transcriptional integrity.
Fig. 3: Fused versus unfused dual reporters.
Fig. 4: Challenges of dual-reporter assays in the study of IRES activity.

Similar content being viewed by others

Data availability

No original data have been generated or reanalyzed during the development of these guidelines.

References

  1. Pelletier, J. & Sonenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325 (1988). One of the first reports firmly establishing internal translation initiation as a mechanism used by viral RNAs.

    CAS  PubMed  Google Scholar 

  2. Jang, S. K. et al. A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62, 2636–2643 (1988).

    CAS  Google Scholar 

  3. Reil, H., Höxter, M., Moosmayer, D., Pauli, G. & Hauser, H. CD4 expressing human 293 cells as a tool for studies in HIV-1 replication: the efficiency of translational frameshifting is not altered by HIV-1 infection. Virology 205, 371–375 (1994).

    CAS  PubMed  Google Scholar 

  4. Stahl, G., Bidou, L., Rousset, J.-P. & Cassan, M. Versatile vectors to study recoding: conservation of rules between yeast and mammalian cells. Nucleic Acids Res. 23, 1557–1560 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bidou, L. et al. In vivo HIV-1 frameshifting efficiency is directly related to the stability of the stem-loop stimulatory signal. RNA 3, 1153–1158 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Grentzmann, G., Ingram, J. A., Kelly, P. J., Gesteland, R. F. & Atkins, J. F. A dual-luciferase reporter system for studying recoding signals. RNA 4, 479–486 (1998). First fused dual-luciferase system that helped to characterize many translation mechanisms.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chiba, S., Jamal, A. & Suzuki, N. First evidence for internal ribosomal entry sites in diverse fungal virus genomes. mBio 9, e02350-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. Rakauskaite, R., Liao, P.-Y., Rhodin, M. H. J., Lee, K. & Dinman, J. D. A rapid, inexpensive yeast-based dual-fluorescence assay of programmed −1 ribosomal frameshifting for high-throughput screening. Nucleic Acids Res. 39, e97 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cardno, T. S., Poole, E. S., Mathew, S. F., Graves, R. & Tate, W. P. A homogeneous cell-based bicistronic fluorescence assay for high-throughput identification of drugs that perturb viral gene recoding and read-through of nonsense stop codons. RNA 15, 1614–1621 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Harger, J. W. & Dinman, J. D. An in vivo dual-luciferase assay system for studying translational recoding in the yeast Saccharomyces cerevisiae. RNA 9, 1019–1024 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bert, A. G., Grépin, R., Vadas, M. A. & Goodall, G. J. Assessing IRES activity in the HIF-1α and other cellular 5′ UTRs. RNA 12, 1074–1083 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Loughran, G., Howard, M. T., Firth, A. E. & Atkins, J. F. Avoidance of reporter assay distortions from fused dual reporters. RNA 23, 1285–1289 (2017). Improved single-mRNA dual-luciferase reporter with protein product splitting StopGo motif to produce reporters with identical amino acid sequences irrespective of the tested inserts.

    PubMed  PubMed Central  Google Scholar 

  13. Jacobs, J. L., Belew, A. T., Rakauskaite, R. & Dinman, J. D. Identification of functional, endogenous programmed −1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae. Nucleic Acids Res. 35, 165–174 (2007).

    CAS  PubMed  Google Scholar 

  14. Baranov, P. V. et al. Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology 332, 498–510 (2005).

    CAS  PubMed  Google Scholar 

  15. Charbonneau, J., Gendron, K., Ferbeyre, G. & Brakier-Gingras, L. The 5′ UTR of HIV-1 full-length mRNA and the Tat viral protein modulate the programmed −1 ribosomal frameshift that generates HIV-1 enzymes. RNA 18, 519–529 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gendron, K. et al. The presence of the TAR RNA structure alters the programmed −1 ribosomal frameshift efficiency of the human immunodeficiency virus type 1 (HIV-1) by modifying the rate of translation initiation. Nucleic Acids Res. 36, 30–40 (2008).

    CAS  PubMed  Google Scholar 

  17. Howard, M. T. et al. Sequence specificity of aminoglycoside-induced stop codon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann. Neurol. 48, 164–169 (2000).

    CAS  PubMed  Google Scholar 

  18. Harrell, L., Melcher, U. & Atkins, J. F. Predominance of six different hexanucleotide recoding signals 3′ of read-through stop codons. Nucleic Acids Res. 30, 2011–2017 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yordanova, M. M. et al. AMD1 mRNA employs ribosome stalling as a mechanism for molecular memory formation. Nature 553, 356–360 (2018).

    CAS  PubMed  Google Scholar 

  20. Hennecke, M. et al. Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res. 29, 3327–3334 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bochkov, Y. A. & Palmenberg, A. C. Translational efficiency of EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene location. Biotechniques 41, 283–292 (2006).

    CAS  PubMed  Google Scholar 

  22. Vallejos, M. et al. The 5′-untranslated region of the mouse mammary tumor virus mRNA exhibits cap-independent translation initiation. Nucleic Acids Res. 38, 618–632 (2010).

    CAS  PubMed  Google Scholar 

  23. Baranov, P. V. et al. Programmed ribosomal frameshifting in the expression of the regulator of intestinal stem cell proliferation, adenomatous polyposis coli (APC). RNA Biol. 8, 637–647 (2011).

    CAS  Google Scholar 

  24. Beznosková, P., Wagner, S., Jansen, M. E., von der Haar, T. & Valášek, L. S. Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Res. 43, 5099–5111 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Müller, C. et al. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Res. 150, 123–129 (2018).

    PubMed  Google Scholar 

  26. Zinshteyn, B., Sinha, N. K., Enam, S. U., Koleske, B. & Green, R. Translational repression of NMD targets by GIGYF2 and EIF4E2. PLoS Genet. 17, e1009813 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kobayashi, Y., Zhuang, J., Peltz, S. & Dougherty, J. Identification of a cellular factor that modulates HIV-1 programmed ribosomal frameshifting. J. Biol. Chem. 285, 19776–19784 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Green, L., Houck-Loomis, B., Yueh, A. & Goff, S. P. Large ribosomal protein 4 increases efficiency of viral recoding sequences. J Virol. 86, 8949–8958 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Young, D. J. et al. Tma64/eIF2D, Tma20/MCT-1, and Tma22/DENR recycle post-termination 40S subunits in vivo. Mol. Cell 71, 761–774 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schult, P. et al. microRNA-122 amplifies hepatitis C virus translation by shaping the structure of the internal ribosomal entry site. Nat. Commun. 9, 2613 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. LaFontaine, E., Miller, C. M., Permaul, N., Martin, E. T. & Fuchs, G. Ribosomal protein RACK1 enhances translation of poliovirus and other viral IRESs. Virology 545, 53–62 (2020).

    CAS  PubMed  Google Scholar 

  32. Zhang, H., Song, L., Cong, H. & Tien, P. Nuclear protein Sam68 interacts with the enterovirus 71 internal ribosome entry site and positively regulates viral protein translation. J Virol. 89, 10031–10043 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bidou, L. et al. Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Ther. 11, 619–627 (2004).

    CAS  PubMed  Google Scholar 

  34. Mikl, M., Pilpel, Y. & Segal, E. High-throughput interrogation of programmed ribosomal frameshifting in human cells. Nat. Commun. 11, 3061 (2020). This study describes a powerful MPRA based on fused dual reporters that enable screening of a diverse pool of sequences for specific regulatory properties driving ribosomal frameshifting.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cencic, R., Robert, F. & Pelletier, J. Identifying small molecule inhibitors of eukaryotic translation initiation. Methods Enzymol. 431, 269–302 (2007).

    CAS  PubMed  Google Scholar 

  36. Novac, O., Guenier, A.-S. & Pelletier, J. Inhibitors of protein synthesis identified by a high throughput multiplexed translation screen. Nucleic Acids Res. 32, 902–915 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ahn, D.-G. et al. Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication. Antiviral Res. 91, 1–10 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun, Y. et al. Restriction of SARS-CoV-2 replication by targeting programmed −1 ribosomal frameshifting. Proc. Natl Acad. Sci. USA 118, e2023051118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng, Y. et al. SBI-0640756 attenuates the growth of clinically unresponsive melanomas by disrupting the eIF4F translation initiation complex. Cancer Res. 75, 5211–5218 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hekman, K. E. et al. A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult. Hum. Mol. Genet. 21, 5472–5483 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, C.-K. et al. Structured elements drive extensive circular RNA translation. Mol. Cell 81, 4300–4318 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Weingarten-Gabbay, S. et al. Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science 351, aad4939 (2016).

    PubMed  Google Scholar 

  43. Lidsky, P. V., Dmitriev, S. E. & Andino, R. Robust expression of transgenes in Drosophila melanogaster. Preprint at bioRxiv https://doi.org/10.1101/2022.10.30.514414 (2022).

  44. Mäkeläinen, K. J. & Mäkinen, K. Testing of internal translation initiation via dicistronic constructs in yeast is complicated by production of extraneous transcripts. Gene 391, 275–284 (2007).

    PubMed  Google Scholar 

  45. Han, B. & Zhang, J.-T. Regulation of gene expression by internal ribosome entry sites or cryptic promoters: the eIF4G story. Mol. Cell. Biol. 22, 7372–7384 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Van Eden, M. E., Byrd, M. P., Sherrill, K. W. & Lloyd, R. E. Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. RNA 10, 720–730 (2004). One of the first studies revealing artifacts produced by DNA bicistronic constructs, proposing the use of siRNA-based and RT–qPCR assays for their critical evaluation.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Holcik, M. et al. Spurious splicing within the XIAP 5′ UTR occurs in the Rluc/Fluc but not the βgal/CAT bicistronic reporter system. RNA 11, 1605–1609 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kozak, M. A second look at cellular mRNA sequences said to function as internal ribosome entry sites. Nucleic Acids Res. 33, 6593–6602 (2005). A thorough review of all criteria that need to be met for a prospective cellular IRES element to qualify as a bona fide IRES.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Baranick, B. T. et al. Splicing mediates the activity of four putative cellular internal ribosome entry sites. Proc. Natl Acad. Sci. USA 105, 4733–4738 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Young, R. M. et al. Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism. J. Biol. Chem. 283, 16309–16319 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Andreev, D. E. et al. Differential contribution of the m7G-cap to the 5′ end-dependent translation initiation of mammalian mRNAs. Nucleic Acids Res. 37, 6135–6147 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lemp, N. A., Hiraoka, K., Kasahara, N. & Logg, C. R. Cryptic transcripts from a ubiquitous plasmid origin of replication confound tests for cis-regulatory function. Nucleic Acids Res. 40, 7280–7290 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Khan, Y. A. et al. Evaluating ribosomal frameshifting in CCR5 mRNA decoding. Nature 604, E16–E23 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Akirtava, C., May, G. E. & McManus, C. J. False-positive IRESes from Hoxa9 and other genes resulting from errors in mammalian 5′ UTR annotations. Proc. Natl Acad. Sci. USA 119, e2122170119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nejepinska, J., Malik, R., Moravec, M. & Svoboda, P. Deep sequencing reveals complex spurious transcription from transiently transfected plasmids. PLoS ONE 7, e43283 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Loughran, G., Fedorova, A. D., Khan, Y. A., Atkins, J. F. & Baranov, P. V. Lack of evidence for ribosomal frameshifting in ATP7B mRNA decoding. Mol. Cell 82, 3745–3749 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Terenin, I. M., Andreev, D. E., Dmitriev, S. E. & Shatsky, I. N. A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent. Nucleic Acids Res. 41, 1807–1816 (2013).

    CAS  PubMed  Google Scholar 

  58. Payne, A. J., Gerdes, B. C., Kaja, S. & Koulen, P. Insert sequence length determines transfection efficiency and gene expression levels in bicistronic mammalian expression vectors. Int. J. Biochem. Mol. Biol. 4, 201–208 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. Shikama, Y. et al. Transcripts expressed using a bicistronic vector pIREShyg2 are sensitized to nonsense-mediated mRNA decay. BMC Mol. Biol. 11, 42 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. Jünemann, C. et al. Picornavirus internal ribosome entry site elements can stimulate translation of upstream genes. J. Biol. Chem. 282, 132–141 (2007).

    PubMed  Google Scholar 

  61. Yordanova, M. M., Loughran, G., Atkins, J. F. & Baranov, P. V. Stop codon readthrough contexts influence reporter expression differentially depending on the presence of an IRES. Wellcome Open Res. 5, 221 (2020).

    PubMed  Google Scholar 

  62. Terenin, I. M., Smirnova, V. V., Andreev, D. E., Dmitriev, S. E. & Shatsky, I. N. A researcher’s guide to the galaxy of IRESs. Cell. Mol. Life Sci. 74, 1431–1455 (2017). A comprehensive review focused on the challenges in IRES studies, providing a methodological workflow for validating IRES activity in a nucleotide sequence of interest.

    CAS  PubMed  Google Scholar 

  63. Kozak, M. New ways of initiating translation in eukaryotes? Mol. Cell. Biol. 21, 1899–1907 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schneider, R. et al. New ways of initiating translation in eukaryotes. Mol. Cell. Biol. 21, 8238–8246 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kozak, M. Alternative ways to think about mRNA sequences and proteins that appear to promote internal initiation of translation. Gene 318, 1–23 (2003).

    CAS  PubMed  Google Scholar 

  66. Jacobs, J. L. & Dinman, J. D. Systematic analysis of bicistronic reporter assay data. Nucleic Acids Res. 32, e160 (2004).

    PubMed  PubMed Central  Google Scholar 

  67. Mardanova, E. S., Zamchuk, L. A. & Ravin, N. V. Contribution of internal initiation to translation of cellular mRNAs containing IRESs. Biochem. Soc. Trans. 36, 694–697 (2008).

    CAS  PubMed  Google Scholar 

  68. Thompson, S. R. So you want to know if your message has an IRES? Wiley Interdiscip. Rev. RNA 3, 697–705 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jackson, R. J. The current status of vertebrate cellular mRNA IRESs. Cold Spring Harb. Perspect. Biol. 5, a011569 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Shatsky, I. N., Dmitriev, S. E., Andreev, D. E. & Terenin, I. M. Transcriptome-wide studies uncover the diversity of modes of mRNA recruitment to eukaryotic ribosomes. Crit. Rev. Biochem. Mol. Biol. 49, 164–177 (2014).

    CAS  PubMed  Google Scholar 

  71. Bustin, S. A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169–193 (2000).

    CAS  PubMed  Google Scholar 

  72. Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl Acad. Sci. USA 100, 15776–15781 (2003). First description of cap analysis of gene expression analysis for mapping transcription start sites transcriptome wide.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Atkins, J. F. et al. A case for ‘StopGo’: reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of glycine and then allowing continued translation (Go). RNA 13, 803–810 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ryan, M. D. & Drew, J. Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J. 13, 928–933 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Minskaia, E., Nicholson, J. & Ryan, M. D. Optimisation of the foot-and-mouth disease virus 2A co-expression system for biomedical applications. BMC Biotechnol. 13, 67 (2013).

    CAS  Google Scholar 

  76. Kim, J. H. et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE 6, e18556 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Donnelly, M. L. L. et al. The ‘cleavage’ activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences. J. Gen. Virol. 82, 1027–1041 (2001).

    CAS  PubMed  Google Scholar 

  78. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    CAS  PubMed  Google Scholar 

  79. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Akulich, K. A. et al. Four translation initiation pathways employed by the leaderless mRNA in eukaryotes. Sci. Rep. 6, 37905 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Barreau, C., Dutertre, S., Paillard, L. & Osborne, H. B. Liposome-mediated RNA transfection should be used with caution. RNA 12, 1790–1793 (2006). A study revealing artifacts produced by mRNA stability tests when applied to transcripts delivered via liposome-mediated transfection.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Paramasivam, P. et al. Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale. J. Cell Biol. 221, e202110137 (2022).

    CAS  PubMed  Google Scholar 

  83. Hollien, J. et al. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J. Cell Biol. 186, 323–331 (2009).

    CAS  Google Scholar 

  84. Han, D. et al. IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Karasik, A., Jones, G. D., DePass, A. V. & Guydosh, N. R. Activation of the antiviral factor RNase L triggers translation of non-coding mRNA sequences. Nucleic Acids Res. 49, 6007–6026 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Malka, Y. et al. Post-transcriptional 3´-UTR cleavage of mRNA transcripts generates thousands of stable uncapped autonomous RNA fragments. Nat. Commun. 8, 2029 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Andreev, D. E., Terenin, I. M., Dmitriev, S. E. & Shatsky, I. N. Pros and cons of pDNA and mRNA transfection to study mRNA translation in mammalian cells. Gene 578, 1–6 (2016). An insight into what works the best for a particular experimental setup: DNA or RNA transfection?

    CAS  PubMed  Google Scholar 

  88. Matreyek, K. A., Stephany, J. J., Chiasson, M. A., Hasle, N. & Fowler, D. M. An improved platform for functional assessment of large protein libraries in mammalian cells. Nucleic Acids Res. 48, e1 (2020).

    CAS  PubMed  Google Scholar 

  89. She, R., Luo, J. & Weissman, J. S. Translational fidelity screens in mammalian cells reveal eIF3 and eIF4G2 as regulators of start codon selectivity. Nucleic Acids Res. 51, 6355–6369 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dmitriev, S. E., Andreev, D. E., Adyanova, Z. V., Terenin, I. M. & Shatsky, I. N. Efficient cap-dependent in vitro and in vivo translation of mammalian mRNAs with long and highly structured 5′-untranslated regions. Mol. Biol. 43, 108–113 (2009). The study highlights that the traditional view of long and highly structured 5′ UTRs inhibiting cap-dependent translation may be incorrect, and the use of ntRRL can lead to false conclusions about the cap dependence and translation efficiency of reporter mRNAs compared with conditions in living cells.

    CAS  Google Scholar 

  91. Kozak, M. Evaluation of the fidelity of initiation of translation in reticulocyte lysates from commercial sources. Nucleic Acids Res. 18, 2828 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Soto Rifo, R., Ricci, E. P., Décimo, D., Moncorgé, O. & Ohlmann, T. Back to basics: the untreated rabbit reticulocyte lysate as a competitive system to recapitulate cap/poly(A) synergy and the selective advantage of IRES-driven translation. Nucleic Acids Res. 35, e121 (2007).

    PubMed  Google Scholar 

  93. Dmitriev, S. E., Bykova, N. V., Andreev, D. E. & Terenin, I. M. Adequate system for studying translation initiation on the human retrotransposon L1 mRNA in vitro. Mol. Biol. 40, 20–24 (2006).

    CAS  Google Scholar 

  94. Iizuka, N., Najita, L., Franzusoff, A. & Sarnow, P. Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 7322–7330 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tuite, M. F. & McLaughlin, C. S. Polyamines enhance the efficiency of tRNA-mediated readthrough of amber and UGA termination codons in a yeast cell-free system. Curr. Genet. 7, 421–426 (1983).

    CAS  PubMed  Google Scholar 

  96. Skabkin, M. A., Skabkina, O. V., Hellen, C. U. T. & Pestova, T. V. Reinitiation and other unconventional posttermination events during eukaryotic translation. Mol. Cell 51, 249–264 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zinoviev, A., Hellen, C. U. T. & Pestova, T. V. Multiple mechanisms of reinitiation on bicistronic calicivirus mRNAs. Mol. Cell 57, 1059–1073 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Terenin, I. M. et al. A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry. Mol. Cell. Biol. 25, 7879–7888 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Abaeva, I. S., Pestova, T. V. & Hellen, C. U. T. Attachment of ribosomal complexes and retrograde scanning during initiation on the Halastavi árva virus IRES. Nucleic Acids Res. 44, 2362–2377 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Beznosková, P., Pavlíková, Z., Zeman, J., Echeverría Aitken, C. & Valášek, L. S. Yeast applied readthrough inducing system (YARIS): an invivo assay for the comprehensive study of translational readthrough. Nucleic Acids Res. 47, 6339–6350 (2019).

    PubMed  PubMed Central  Google Scholar 

  101. Beznosková, P., Gunišová, S. & Valášek, L. S. Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA 22, 456–466 (2016).

    PubMed  PubMed Central  Google Scholar 

  102. Powell, M. L. et al. Further characterisation of the translational termination-reinitiation signal of the influenza B virus segment 7 RNA. PLoS ONE 6, e16822 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Luttermann, C. & Meyers, G. A bipartite sequence motif induces translation reinitiation in feline calicivirus RNA. J. Biol. Chem. 282, 7056–7065 (2007).

    CAS  PubMed  Google Scholar 

  104. Pöyry, T. A. A., Kaminski, A., Connell, E. J., Fraser, C. S. & Jackson, R. J. The mechanism of an exceptional case of reinitiation after translation of a long ORF reveals why such events do not generally occur in mammalian mRNA translation. Genes Dev. 21, 3149–3162 (2007).

    PubMed  PubMed Central  Google Scholar 

  105. Gould, P. S., Dyer, N. P., Croft, W., Ott, S. & Easton, A. J. Cellular mRNAs access second ORFs using a novel amino acid sequence-dependent coupled translation termination-reinitiation mechanism. RNA 20, 373–381 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Michel, A. M., Kiniry, S. J., O’Connor, P. B. F., Mullan, J. P. & Baranov, P. V. GWIPS-viz: 2018 update. Nucleic Acids Res. 46, D823–D830 (2018).

    CAS  PubMed  Google Scholar 

  107. Kiniry, S. J., Judge, C. E., Michel, A. M. & Baranov, P. V. Trips-Viz: an environment for the analysis of public and user-generated ribosome profiling data. Nucleic Acids Res. 49, W662–W670 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Andreev, D. E. et al. Insights into the mechanisms of eukaryotic translation gained with ribosome profiling. Nucleic Acids Res. 45, 513–526 (2017).

    CAS  PubMed  Google Scholar 

  109. Ingolia, N. T., Hussmann, J. A. & Weissman, J. S. Ribosome profiling: global views of translation. Cold Spring Harb. Perspect. Biol. 11, a032698 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gunišová, S., Hronová, V., Mohammad, M. P., Hinnebusch, A. G. & Valášek, L. S. Please do not recycle! Translation reinitiation in microbes and higher eukaryotes. FEMS Microbiol. Rev. 42, 165–192 (2018). A comprehensive overview of all known translation reinitiation mechanisms in eukaryotes including the means of their study.

    PubMed  Google Scholar 

  111. Kozak, M. Constraints on reinitiation of translation in mammals. Nucleic Acids Res. 29, 5226–5232 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Sorokin, I. I. et al. Non-canonical translation initiation mechanisms employed by eukaryotic viral mRNAs. Biochemistry 86, 1060–1094 (2021).

    CAS  PubMed  Google Scholar 

  113. Makeeva, D. S. et al. Relocalization of translation termination and ribosome recycling factors to stress granules coincides with elevated stop-codon readthrough and reinitiation rates upon oxidative stress. Cells 12, 259 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Brown, C. M., Dinesh-Kumar, S. P. & Miller, W. A. Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. J. Virol. 70, 5884–5892 (1996).

    CAS  Google Scholar 

  115. Xu, Y. et al. A stem-loop structure in potato leafroll virus open reading frame 5 (ORF5) is essential for readthrough translation of the coat protein ORF stop codon 700 bases upstream. J. Virol. 92, e01544-17 (2018).

    Google Scholar 

  116. Barry, J. K. & Miller, W. A. A −1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA. Proc. Natl Acad. Sci. USA 99, 11133–11138 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kimura, K. et al. Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res. 16, 55–65 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Makhnovskii, P. A. et al. Alternative transcription start sites contribute to acute-stress-induced transcriptome response in human skeletal muscle. Hum. Genomics 16, 24 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Huang, F. et al. Inhibiting the MNK1/2–eIF4E axis impairs melanoma phenotype switching and potentiates antitumor immune responses. J. Clin. Invest. 131, e140752 (2021).

    PubMed  PubMed Central  Google Scholar 

  120. Watt, K. et al. Epigenetic coordination of transcriptional and translational programs in hypoxia. Preprint at bioRxiv https://doi.org/10.1101/2023.09.16.558067 (2023).

  121. Wang, X.-Q. & Rothnagel, J. A. 5′-untranslated regions with multiple upstream AUG codons can support low-level translation via leaky scanning and reinitiation. Nucleic Acids Res. 32, 1382–1391 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Dmitriev, S. E. et al. Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5′ untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated. Mol. Cell. Biol. 27, 4685–4697 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge many colleagues who informally supported and encouraged the development of these guidelines. The following authors acknowledge funding support: P.V.B. by the Wellcome Trust (210692/Z/18/]) and Science Foundation Ireland (20/FFP-A/8929); L.S.V. by the Lead Agency (DFG and CSF) (grant 23-08669L) and the Praemium Academiae grant provided by the Czech Academy of Sciences and CZ.02.01.01/00/22_008/0004575 (RNA for therapy by ERDF and MEYS); S.E.D. from the Russian Science Foundation (23-14-00218, the IRES and cell-free sections); C.S.F. by the NIH (R35 GM152137); W.V.G. by the NIH (R01GM132358); Y.C. by the NIH (R01GM130838); J.F.A. by the Irish Research Council (IRCLA/2019/74); D.E.A. by the Russian Science Foundation (20-14-00121, RNA versus DNA transfection section); M. Mariotti by RYC2019-027746-I, PID2020-115122GA-I00 and PID2023-147164NB-I00 by MICIU/AEI (Ministry of Science, Innovation and Universities; State Research Agency of Spain) /10.13039/501100011033 and “ESF Investing in your future.; M.S.S. by the NIH (R01GM148702). J.K. by National Science Centre (UMO-2021/41/B/NZ2/03036). J.S.K. by NIH (R35GM118070). P.L.C. by the NIH (DP1GM146256). S.I. by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (JP24H02307). M. Mikl by ISF personal grant (2219/22).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gary Loughran, Leos Shivaya Valasek, Sergey E. Dmitriev or Pavel V. Baranov.

Ethics declarations

Competing interests

G.L. and P.V.B. are cofounders and shareholders of EIRNA Bio Ltd. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Andrei Korostelev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Michelle Korda and Dimitris Typas, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loughran, G., Andreev, D.E., Terenin, I.M. et al. Guidelines for minimal reporting requirements, design and interpretation of experiments involving the use of eukaryotic dual gene expression reporters (MINDR). Nat Struct Mol Biol 32, 418–430 (2025). https://doi.org/10.1038/s41594-025-01492-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41594-025-01492-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing