Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A transcription coupling model for how enhancers communicate with their target genes

Abstract

How enhancers communicate with their target genes to influence transcription is an unresolved question of fundamental importance. Current models of the mechanism of enhancer–target gene or enhancer–promoter (E–P) communication are transcription-factor-centric and underappreciate major findings, including that enhancers are themselves transcribed by RNA polymerase II, which correlates with enhancer activity. In this Perspective, we posit that enhancer transcription and its products, enhancer RNAs, are elementary components of enhancer–gene communication. Specifically, we discuss the possibility that transcription at enhancers and at their cognate genes are linked and that this coupling is at the basis of how enhancers communicate with their targets. This model of transcriptional coupling between enhancers and their target genes is supported by growing experimental evidence and represents a synthesis of recent key discoveries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RNA polymerase II-mediated transcription at genes and their cognate enhancers.
Fig. 2: Transcription coupling model of enhancer–target gene communication.
Fig. 3: Mechanisms of eRNA-mediated transcription coupling between enhancer and target gene regions.

Similar content being viewed by others

References

  1. Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wissink, E. M., Vihervaara, A., Tippens, N. D. & Lis, J. T. Nascent RNA analyses: tracking transcription and its regulation. Nat. Rev. Genet. 20, 705–723 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhuiyan, T. & Timmers, H. T. M. Promoter recognition: putting TFIID on the spot. Trends Cell Biol. 29, 752–763 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Vos, S. M. et al. Structure of activated transcription complex Pol II–DSIF–PAF–SPT6. Nature 560, 607–612 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Kireeva, M. L., Komissarova, N., Waugh, D. S. & Kashlev, M. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J. Biol. Chem. 275, 6530–6536 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Fong, N. et al. Effects of transcription elongation rate and Xrn2 exonuclease activity on RNA polymerase II termination suggest widespread kinetic competition. Mol. Cell 60, 256–267 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schwalb, B. et al. TT-seq maps the human transient transcriptome. Science 352, 1225–1228 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, F. X., Smith, E. R. & Shilatifard, A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19, 464–478 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Core, L. & Adelman, K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev. 33, 960–982 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gonzalez, M. N., Blears, D. & Svejstrup, J. Q. Causes and consequences of RNA polymerase II stalling during transcript elongation. Nat. Rev. Mol. Cell Biol. 22, 3–21 (2021).

    Article  Google Scholar 

  11. Thomas, H. F. & Buecker, C. What is an enhancer? BioEssays 45, e2300044 (2023).

    Article  PubMed  Google Scholar 

  12. Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Beagrie, R. A. & Pombo, A. Gene activation by metazoan enhancers: diverse mechanisms stimulate distinct steps of transcription. BioEssays 38, 881–893 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Szutorisz, H., Dillon, N. & Tora, L. The role of enhancers as centres for general transcription factor recruitment. Trends Biochem. Sci. 30, 593–599 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, W. et al. Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release. Cell 155, 1581–1595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ghavi-Helm, Y. et al. Enhancer loops appear stable during development and are associated with paused polymerase. Nature 512, 96–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, F. X. et al. PAF1 regulation of promoter-proximal pause release via enhancer activation. Science 357, 1294–1298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meng, H. & Bartholomew, B. Emerging roles of transcriptional enhancers in chromatin looping and promoter-proximal pausing of RNA polymerase II. J. Biol. Chem. 293, 13786–13794 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. McCord, R. P., Kaplan, N. & Giorgetti, L. Chromosome conformation capture and beyond: toward an integrative view of chromosome structure and function. Mol. Cell 77, 688–708 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Hafner, A. & Boettiger, A. The spatial organization of transcriptional control. Nat. Rev. Genet. 24, 53–68 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Robson, M. I., Ringel, A. R. & Mundlos, S. Regulatory landscaping: how enhancer–promoter communication is sculpted in 3D. Mol. Cell 74, 1110–1122 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Panne, D. The enhanceosome. Curr. Opin. Struct. Biol. 18, 236–242 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Karr, J. P., Ferrie, J. J., Tjian, R. & Darzacq, X. The transcription factor activity gradient (TAG) model: contemplating a contact-independent mechanism for enhancer–promoter communication. Genes Dev. 36, 7–16 (2021).

    Article  PubMed  Google Scholar 

  25. Zabidi, M. A. & Stark, A. Regulatory enhancer–core–promoter communication via transcription factors and cofactors. Trends Genet. 32, 801–814 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, S. & Wysocka, J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol. Cell 83, 373–392 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Li, J. & Pertsinidis, A. New insights into promoter–enhancer communication mechanisms revealed by dynamic single-molecule imaging. Biochem. Soc. Trans. 49, 1299–1309 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, J. H. & Hansen, A. S. Enhancer selectivity in space and time: from enhancer–promoter interactions to promoter activation. Nat. Rev. Mol. Cell Biol. 25, 574–591 (2024).

  29. Popay, T. M. & Dixon, J. R. Coming full circle: on the origin and evolution of the looping model for enhancer–promoter communication. J. Biol. Chem. 298, 102117 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zuin, J. et al. Nonlinear control of transcription through enhancer–promoter interactions. Nature 604, 571–577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lim, B. & Levine, M. S. Enhancer–promoter communication: hubs or loops? Curr. Opin. Genet. Dev. 67, 5–9 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Vernimmen, D. & Bickmore, W. A. The hierarchy of transcriptional activation: from enhancer to promoter. Trends Genet. 31, 696–708 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, K., Hsiung, C. C.-S., Huang, P., Raj, A. & Blobel, G. A. Dynamic enhancer–gene body contacts during transcription elongation. Genes Dev. 29, 1992–1997 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bressin, A. et al. High-sensitive nascent transcript sequencing reveals BRD4-specific control of widespread enhancer and target gene transcription. Nat. Commun. 14, 4971 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Santa, F. D. et al. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim, T.-K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koch, F. et al. Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat. Struct. Mol. Biol. 18, 956–963 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Core, L. J. et al. Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat. Genet. 46, 1311–1320 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Henriques, T. et al. Widespread transcriptional pausing and elongation control at enhancers. Genes Dev. 32, 26–41 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mikhaylichenko, O. et al. The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes Dev. 32, 42–57 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hah, N., Murakami, S., Nagari, A., Danko, C. G. & Kraus, W. L. Enhancer transcripts mark active estrogen receptor binding sites. Genome Res. 23, 1210–1223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tippens, N. D. et al. Transcription imparts architecture, function and logic to enhancer units. Nat. Genet. 52, 1067–1075 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Raisner, R. et al. Enhancer activity requires CBP/P300 bromodomain-dependent histone H3K27 acetylation. Cell Rep. 24, 1722–1729 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, T.-K. & Shiekhattar, R. Architectural and functional commonalities between enhancers and promoters. Cell 162, 948–959 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Andersson, R., Sandelin, A. & Danko, C. G. A unified architecture of transcriptional regulatory elements. Trends Genet. 31, 426–433 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Lai, F., Gardini, A., Zhang, A. & Shiekhattar, R. Integrator mediates the biogenesis of enhancer RNAs. Nature 525, 399–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wagner, E. J., Tong, L. & Adelman, K. Integrator is a global promoter-proximal termination complex. Mol. Cell 83, 416–427 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Narita, T. et al. Enhancers are activated by p300/CBP activity-dependent PIC assembly, RNAPII recruitment, and pause release. Mol. Cell 81, 2166–2182 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Dukler, N. et al. Nascent RNA sequencing reveals a dynamic global transcriptional response at genes and enhancers to the natural medicinal compound celastrol. Genome Res. 27, 1816–1829 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tippens, N. D., Vihervaara, A. & Lis, J. T. Enhancer transcription: what, where, when, and why? Genes Dev. 32, 1–3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dao, L. T. M. et al. Genome-wide characterization of mammalian promoters with distal enhancer functions. Nat. Genet. 49, 1073–1081 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Kowalczyk, M. S. et al. Intragenic enhancers act as alternative promoters. Mol. Cell 45, 447–458 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Natoli, G. & Andrau, J.-C. Noncoding transcription at enhancers: general principles and functional models. Annu. Rev. Genet. 46, 1–19 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, S. et al. PAX3–FOXO1 coordinates enhancer architecture, eRNA transcription, and RNA polymerase pause release at select gene targets. Mol. Cell 82, 4428–4442 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hou, T. Y. & Kraus, W. L. Spirits in the material world: enhancer RNAs in transcriptional regulation. Trends Biochem. Sci 46, 138–153 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Kopp, F. & Mendell, J. T. Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 393–407 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gil, N. & Ulitsky, I. Production of spliced long noncoding RNAs specifies regions with increased enhancer activity. Cell Syst. 7, 537–547 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, Q. et al. Enhancer RNAs in transcriptional regulation: recent insights. Front. Cell Dev. Biol. 11, 1205540 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sartorelli, V. & Lauberth, S. M. Enhancer RNAs are an important regulatory layer of the epigenome. Nat. Struct. Mol. Biol. 27, 521–528 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, W. et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516–520 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xiang, J.-F. et al. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res. 24, 513–531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hsieh, C.-L. et al. Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc. Natl Acad. Sci. USA 111, 7319–7324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tan, S. H. et al. The enhancer RNA ARIEL activates the oncogenic transcriptional program in T-cell acute lymphoblastic leukemia. Blood 134, 239–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sigova, A. A. et al. Transcription factor trapping by RNA in gene regulatory elements. Science 350, 978–981 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rahnamoun, H. et al. RNAs interact with BRD4 to promote enhanced chromatin engagement and transcription activation. Nat. Struct. Mol. Biol. 25, 687–697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mousavi, K. et al. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol. Cell 51, 606–617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tsai, P.-F. et al. A muscle-specific enhancer RNA mediates cohesin recruitment and regulates transcription in trans. Mol. Cell 71, 129–141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bose, D. A. et al. RNA binding to CBP stimulates histone acetylation and transcription. Cell 168, 135–149 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Saha, D. et al. Enhancer switching in cell lineage priming is linked to eRNA, Brg1’s AT-hook, and SWI/SNF recruitment. Mol. Cell 84, 1855–1869 (2024).

  76. Shi, L. et al. Enhancer RNA and NFκB-dependent P300 regulation of ADAMDEC1. Mol. Immunol. 103, 312–321 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hou, T. Y. & Kraus, W. L. Analysis of estrogen-regulated enhancer RNAs identifies a functional motif required for enhancer assembly and gene expression. Cell Rep. 39, 110944 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhao, Y. et al. Activation of P-TEFb by Androgen Receptor-Regulated Enhancer RNAs in Castration-Resistant Prostate Cancer. Cell Rep. 15, 599–610 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhao, Y. et al. MyoD induced enhancer RNA interacts with hnRNPL to activate target gene transcription during myogenic differentiation. Nat. Commun. 10, 5787 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schaukowitch, K. et al. Enhancer RNA Facilitates NELF Release from immediate early genes. Mol. Cell 56, 29–42 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gorbovytska, V. et al. Enhancer RNAs stimulate Pol II pause release by harnessing multivalent interactions to NELF. Nat. Commun. 13, 2429 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Altendorfer, E., Mochalova, Y. & Mayer, A. BRD4: a general regulator of transcription elongation. Transcription 13, 70–81 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee, J.-H. et al. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol. Cell 81, 3368–3385 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kaikkonen, M. U. et al. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell 51, 310–325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Alexander, J. M. et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. eLife 8, e41769 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Benabdallah, N. S. et al. Decreased enhancer–promoter proximity accompanying enhancer activation. Mol. Cell 76, 473–484.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bialek, W., Gregor, T. & Tkačik, G. Action at a distance in transcriptional regulation. Preprint at https://doi.org/10.48550/arxiv.1912.08579 (2019).

  89. Heist, T., Fukaya, T. & Levine, M. Large distances separate coregulated genes in living Drosophila embryos. Proc. Natl Acad. Sci. USA 116, 15062–15067 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Shrinivas, K. et al. Enhancer features that drive formation of transcriptional condensates. Mol. Cell 75, 549–561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Williamson, I., Lettice, L. A., Hill, R. E. & Bickmore, W. A. Shh and ZRS enhancer colocalisation is specific to the zone of polarising activity. Development 143, 2994–3001 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Partridge, E. C. et al. Occupancy maps of 208 chromatin-associated proteins in one human cell type. Nature 583, 720–728 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Arnold, M. & Stengel, K. R. Emerging insights into enhancer biology and function. Transcription 14, 68–87 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Winter, G. E. et al. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol. Cell 67, 5–18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang, W. et al. Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J. Biol. Chem. 287, 43137–43155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ramasamy, S. et al. The Mediator complex regulates enhancer-promoter interactions. Nat. Struct. Mol. Biol. 30, 991–1000 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Aguilo, F. et al. Deposition of 5-methylcytosine on enhancer RNAs enables the coactivator function of PGC-1α. Cell Rep. 14, 479–492 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fitz, J. et al. Spt5-mediated enhancer transcription directly couples enhancer activation with physical promoter interaction. Nat. Genet. 52, 505–515 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Hu, S. et al. SPT5 stabilizes RNA polymerase II, orchestrates transcription cycles, and maintains the enhancer landscape. Mol. Cell 81, 4425–4439 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Gajos, M. et al. Conserved DNA sequence features underlie pervasive RNA polymerase pausing. Nucleic Acids Res. 49, 4402–4420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Michel, M. et al. TT‐seq captures enhancer landscapes immediately after T‐cell stimulation. Mol. Syst. Biol. 13, 920 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Arner, E. et al. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347, 1010–1014 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hirabayashi, S. et al. NET-CAGE characterizes the dynamics and topology of human transcribed cis-regulatory elements. Nat. Genet. 51, 1369–1379 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Cheng, J.-H., Pan, D. Z.-C., Tsai, Z. T.-Y. & Tsai, H.-K. Genome-wide analysis of enhancer RNA in gene regulation across 12 mouse tissues. Sci. Rep. 5, 12648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen, R. A.-J. et al. The landscape of RNA polymerase II transcription initiation in C. elegans reveals promoter and enhancer architectures. Genome Res. 23, 1339–1347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Khor, J. M., Guerrero-Santoro, J., Douglas, W. & Ettensohn, C. A. Global patterns of enhancer activity during sea urchin embryogenesis assessed by eRNA profiling. Genome Res. 31, 1680–1692 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kim, Y. J., Xie, P., Cao, L., Zhang, M. Q. & Kim, T. H. Global transcriptional activity dynamics reveal functional enhancer RNAs. Genome Res. 28, 1799–1811 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hamamoto, K., Umemura, Y., Makino, S. & Fukaya, T. Dynamic interplay between non-coding enhancer transcription and gene activity in development. Nat. Commun. 14, 826 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Panigrahi, A. K. et al. SRC-3 coactivator governs dynamic estrogen-induced chromatin looping interactions during transcription. Mol. Cell 70, 679–694 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Panigrahi, A. K., Lonard, D. M. & O’Malley, B. W. Enhancer–promoter entanglement explains their transcriptional interdependence. Proc. Natl Acad. Sci. USA 120, e2216436120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Melo, C. A. et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol. Cell 49, 524–535 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Simeonov, D. R. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li, K. et al. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat. Commun. 11, 485 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Carullo, N. V. N. et al. Enhancer RNAs predict enhancer–gene regulatory links and are critical for enhancer function in neuronal systems. Nucleic Acids Res. 48, gkaa671 (2020).

    Article  Google Scholar 

  119. Nuñez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66, 285–299 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Henninger, J. E. et al. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Lai, F. et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494, 497–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sawada, T. et al. Androgen-dependent and DNA-binding-independent association of androgen receptor with chromatic regions coding androgen-induced noncoding RNAs. Biosci. Biotechnol. Biochem. 85, 2121–2130 (2021).

    Article  PubMed  Google Scholar 

  126. Nair, S. J. et al. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat. Struct. Mol. Biol. 26, 193–203 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ortega, E. et al. Transcription factor dimerization activates the p300 acetyltransferase. Nature 562, 538–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nepal, C. et al. Ancestrally duplicated conserved noncoding element suggests dual regulatory roles of HOTAIR in cis and trans. iScience 23, 101008 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lyons, H. et al. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 186, 327–345 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fukaya, T., Lim, B. & Levine, M. Enhancer control of transcriptional bursting. Cell 166, 358–368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lim, B., Heist, T., Levine, M. & Fukaya, T. Visualization of transvection in living Drosophila embryos. Mol. Cell 70, 287–296 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Allou, L. et al. Non-coding deletions identify Maenli lncRNA as a limb-specific En1 regulator. Nature 592, 93–98 (2021).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work was not cited owing to space constraints. This Perspective was strongly improved by critical feedback from D. M. Ibrahim, L. Behrens, A. Bressin and G. J. Villafano. The original figures were created with Biorender.com. This work was supported by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

E.A. prepared the original figures and helped write the manuscript. S.M. provided conceptual help. A.M. conceptualized the transcription coupling model and had overall responsibility for this work. A.M. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Andreas Mayer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Eytan Zlotorynski & Dimitris Typas, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Box 1,

Supplementary Figures 1 and 2 and Supplementary References

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altendorfer, E., Mundlos, S. & Mayer, A. A transcription coupling model for how enhancers communicate with their target genes. Nat Struct Mol Biol 32, 598–606 (2025). https://doi.org/10.1038/s41594-025-01523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41594-025-01523-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing