Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms for licensing origins of DNA replication in eukaryotic cells

Abstract

The initiation of DNA replication in eukaryotic cells begins with the assembly of pre-replicative complexes (pre-RCs) at many sites along each chromosome during the G1 phase of the cell cycle. Pre-RCs license each chromosome for duplication during S phase and mark the origins of DNA replication. In this Review, we discuss and contextualize recent findings identifying the mechanisms of origin recognition and pre-RC assembly mediated by the origin recognition complex (ORC), Cdc6 and the Mcm2–Mcm7 (Mcm2-7) hexamer bound to Cdt1. We also present comprehensive videos that demonstrate the multiple mechanisms for pre-RC assembly and compare the structures of the complexes involved in human and Saccharomyces cerevisiae cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A general scheme for pre-RC assembly ensuring faithful duplication of all chromosomes.
Fig. 2: The assembly of a pre-RC with one ORC loading the Mcm2-7 double hexamer.
Fig. 3: Dynamic structure of the ORC.
Fig. 4: The process of establishment of pre-RCs at an S. cerevisiae origin in which the B2 domain is separated from the A and B1 origin elements.
Fig. 5: The MCM double hexamer bound to origin DNA.

Similar content being viewed by others

References

  1. Khandelwal, S. Chromosome evolution in the genus Ophioglossum L. Bot. J. Linn. Soc. 102, 205–217 (1990).

    Article  Google Scholar 

  2. Matsuoka, Y. Evolution of polyploid triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol. 52, 750–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Burgers, P. M. J. & Kunkel, T. A. Eukaryotic DNA replication fork. Annu. Rev. Biochem. 86, 417–438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Costa, A. & Diffley, J. F. X. The initiation of eukaryotic DNA replication. Annu. Rev. Biochem. 91, 107–131 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Hu, Y. & Stillman, B. Origins of DNA replication in eukaryotes. Mol. Cell 83, 352–372 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Parker, M. W., Botchan, M. R. & Berger, J. M. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit. Rev. Biochem. Mol. Biol. 52, 107–144 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Attali, I., Botchan, M. R. & Berger, J. M. Structural mechanisms for replicating DNA in eukaryotes. Annu. Rev. Biochem. 90, 1–30 (2021).

    Article  Google Scholar 

  8. Tye, B.-K. & Zhai, Y. The origin recognition complex: from origin selection to replication licensing in yeast and humans. Biology 13, 13 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lin, Y.-C. & Prasanth, S. G. Replication initiation: implications in genome integrity. DNA Repair 103, 103131 (2021).

    Article  CAS  Google Scholar 

  10. Bell, S. P. & Labib, K. Chromosome duplication in Saccharomyces cerevisiae. Genetics 203, 1027–1067 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bleichert, F., Botchan, M. R. & Berger, J. M. Mechanisms for initiating cellular DNA replication. Science 355, eaah6317 (2017).

    Article  PubMed  Google Scholar 

  12. Limas, J. C. & Cook, J. G. Preparation for DNA replication: the key to a successful S phase. FEBS Lett. 593, 2853–2867 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu, X. & Kanemaki, M. T. Replication initiation sites and zones in the mammalian genome: where are they located and how are they defined? DNA Repair 141, 103713 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Ilves, I., Petojevic, T., Pesavento, J. J. & Botchan, M. R. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol. Cell 37, 247–258 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Diffley, J. F. X., Cocker, J. H., Dowell, S. J. & Rowley, A. Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78, 303–316 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Santocanale, C., Sharma, K. & Diffley, J. F. X. Activation of dormant origins of DNA replication in budding yeast. Genes Dev. 13, 2360–2364 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deegan, T. D., Mukherjee, P. P., Fujisawa, R., Rivera, C. P. & Labib, K. CMG helicase disassembly is controlled by replication fork DNA, replisome components and a ubiquitin threshold. eLife 9, e60371 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Low, E., Chistol, G., Zaher, M. S., Kochenova, O. V. & Walter, J. C. The DNA replication fork suppresses CMG unloading from chromatin before termination. Gene Dev. 34, 1534–1545 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ge, X. Q., Jackson, D. A. & Blow, J. J. Dormant origins licensed by excess Mcm2–7 are required for human cells to survive replicative stress. Genes Dev. 21, 3331–3341 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ibarra, A., Schwob, E. & Méndez, J. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc. Natl Acad. Sci. USA 105, 8956–8961 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alver, R. C., Chadha, G. S. & Blow, J. J. The contribution of dormant origins to genome stability: from cell biology to human genetics. DNA Repair 19, 182–189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, Y. et al. Fork coupling directs DNA replication elongation and termination. Science 383, 1215–1222 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Jenkyn-Bedford, M. et al. A conserved mechanism for regulating replisome disassembly in eukaryotes. Nature 600, 743–747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kochenova, O. V., Mukkavalli, S., Raman, M. & Walter, J. C. Cooperative assembly of p97 complexes involved in replication termination. Nat. Commun. 13, 6591 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Evrin, C. et al. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc. Natl Acad. Sci. USA 106, 20240–20245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Remus, D. et al. Concerted loading of Mcm2–7 double hexamers around DNA during DNA replication origin licensing. Cell 139, 719–730 (2009). Together with Remus et al. (2009), these papers describe the reconstitution of pre-RC assembly with purified S. cerevisiae proteins ORC, Cdc6, Cdt1 and Mcm2-7 on ARS1 origin DNA.

  27. Yeeles, J. T. P., Deegan, T. D., Janska, A., Early, A. & Diffley, J. F. X. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519, 431–435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yeeles, J. T. P., Janska, A., Early, A. & Diffley, J. F. X. How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol. Cell 65, 105–116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kurat, C. F., Yeeles, J. T. P., Patel, H., Early, A. & Diffley, J. F. X. Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates. Mol. Cell 65, 117–130 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Devbhandari, S., Jiang, J., Kumar, C., Whitehouse, I. & Remus, D. Chromatin constrains the initiation and elongation of DNA replication. Mol. Cell 65, 131–141 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Foss, E. J. et al. Identification of 1600 replication origins in S. cerevisiae. eLife 12, RP88087 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Marahrens, Y. & Stillman, B. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255, 817–823 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Rao, H., Marahrens, Y. & Stillman, B. Functional conservation of multiple elements in yeast chromosomal replicators. Mol. Cell. Biol. 14, 7643–7651 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Coster, G. & Diffley, J. F. X. Bidirectional eukaryotic DNA replication is established by quasi-symmetrical helicase loading. Science 357, 314–318 (2017). This report describes the assembly of pre-RC on synthetic origins of DNA replication, revealing that two ORC binding sites in opposite orientations are required for Mcm2-7 loading, and when the two sites are at a distance, two ORCs are required for pre-RC formation.

  35. Theis, J. F. & Newlon, C. S. Domain B of ARS307 contains two functional elements and contributes to chromosomal replication origin function. Mol. Cell. Biol. 14, 7652–7659 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tan, X. et al. Yeast autonomously replicating sequence (ARS): identification, function, and modification. Eng. Life Sci. 21, 464–474 (2021).

    Article  CAS  Google Scholar 

  37. Leonard, A. C. & Méchali, M. DNA replication origins. Cold Spring Harb. Perspect. Biol. 5, a010116 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ganier, O., Prorok, P., Akerman, I. & Méchali, M. Metazoan DNA replication origins. Curr. Opin. Cell Biol. 58, 134–141 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Ekundayo, B. & Bleichert, F. Origins of DNA replication. PLoS Genet. 15, e1008320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yella, V. R., Vanaja, A., Kulandaivelu, U. & Kumar, A. Delving into eukaryotic origins of replication using DNA structural features. ACS Omega 5, 13601–13611 (2020).

  41. Hyrien, O., Guilbaud, G. & Krude, T. The double life of mammalian DNA replication origins. Genes Dev. 39, 304–324 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu, Y. et al. Evolution of DNA replication origin specification and gene silencing mechanisms. Nat. Commun. 11, 5175 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Méchali, M., Yoshida, K., Coulombe, P. & Pasero, P. Genetic and epigenetic determinants of DNA replication origins, position and activation. Curr. Opin. Genet. Dev. 23, 124–131 (2013).

    Article  PubMed  Google Scholar 

  44. Frigola, J. et al. Cdt1 stabilizes an open MCM ring for helicase loading. Nat. Commun. 8, 15720 (2017). Using both X-ray crystallography and cryo-EM, this report shows that Cdt1 engages Mcm2, Mcm4 and Mcm6 and stabilizes the Mcm2-7 hexamer in a left-handed spiral that has the Mcm2–Mcm5 gate open.

  45. Bell, S. P. & Stillman, B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357, 128–134 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, Z., Hayashi, M. K., Merkel, O., Stillman, B. & Xu, R. Structure and function of the BAH‐containing domain of Orc1p in epigenetic silencing. EMBO J. 21, 4600–4611 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hsu, H.-C., Stillman, B. & Xu, R.-M. Structural basis for origin recognition complex 1 protein-silence information regulator 1 protein interaction in epigenetic silencing. Proc. Natl Acad. Sci. USA 102, 8519–8524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hou, Z., Bernstein, D. A., Fox, C. A. & Keck, J. L. Structural basis of the Sir1–origin recognition complex interaction in transcriptional silencing. Proc. Natl Acad. Sci. USA 102, 8489–8494 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ioannes, P. D. et al. Structure and function of the Orc1 BAH–nucleosome complex. Nat. Commun. 10, 2894 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Foss, M., McNally, F., Laurenson, P. & Rine, J. Origin recognition complex (ORC) in transcriptional silencing and DNA replication in S. cerevisiae. Science 262, 1838–1844 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Bell, S. P., Mitchell, J., Leber, J., Kobayashi, R. & Stillman, B. The multidomain structure of Orc1 p reveals similarity to regulators of DNA replication and transcriptional silencing. Cell 83, 563–568 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Bell, S. P., Kobayashi, R. & Stillman, B. Yeast origin recognition complex functions in transcription silencing and DNA replication. Science 262, 1844–1849 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Triolo, T. & Sternglanz, R. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 381, 251–253 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Hoggard, T. A. et al. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins. PLoS Genet. 14, e1007418 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hoggard, T., Müller, C. A., Nieduszynski, C. A., Weinreich, M. & Fox, C. A. Sir2 mitigates an intrinsic imbalance in origin licensing efficiency between early- and late-replicating euchromatin. Proc. Natl Acad. Sci. 117, 14314–14321 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Noguchi, K., Vassilev, A., Ghosh, S., Yates, J. L. & DePamphilis, M. L. The BAH domain facilitates the ability of human Orc1 protein to activate replication origins in vivo. EMBO J. 25, 5372–5382 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Song, J., Ishibe-Murakami, S., Chen, J. K., Patel, D. J. & Gozani, O. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier–Gorlin syndrome. Nature 484, 115–119 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Azmi, I. F. et al. Nucleosomes influence multiple steps during replication initiation. eLife 6, e22512 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lipford, J. R. & Bell, S. P. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol. Cell 7, 21–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Eaton, M. L., Galani, K., Kang, S., Bell, S. P. & MacAlpine, D. M. Conserved nucleosome positioning defines replication origins. Genes Dev. 24, 748–753 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Belsky, J. A., Macalpine, H. K., Lubelsky, Y., Hartemink, A. J. & MacAlpine, D. M. Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly. Genes Dev. 29, 212–224 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li, S. et al. Origin recognition complex harbors an intrinsic nucleosome remodeling activity. Proc. Natl Acad. Sci. USA 119, e2211568119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sánchez, H. et al. A chromatinized origin reduces the mobility of ORC and MCM through interactions and spatial constraint. Nat. Commun. 14, 6735 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chacin, E. et al. Establishment and function of chromatin organization at replication origins. Nature 616, 836–842 (2023). This report describes a new function for ORC, in cooperation with chromatin remodeling proteins INO80, ISW1a, ISW2 and Chd1, that organizes nucleosomes at surrounding the origins of DNA replication.

  65. Duzdevich, D. et al. The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level. Mol. Cell 58, 483–494 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Klemm, R. D., Austin, R. J. & Bell, S. P. Coordinate binding of ATP and origin DNA regulates the ATPase activity of the origin recognition complex. Cell 88, 493–502 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Bowers, J. L., Randell, J. C. W., Chen, S. & Bell, S. P. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol. Cell 16, 967–978 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Chappleboim, M., Naveh-Tassa, S., Carmi, M., Levy, Y. & Barkai, N. Ordered and disordered regions of the origin recognition complex direct differential in vivo binding at distinct motif sequences. Nucleic Acids Res. 52, 5720–5731 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, N. et al. Structure of the origin recognition complex bound to DNA replication origin. Nature 559, 217–222 (2018). This report describes the high-resolution cryo-EM structure of ORC bound to the ARS1 origin DNA showing a pronounced bend in the DNA.

  70. Yuan, Z. et al. Structural basis of Mcm2-7 replicative helicase loading by ORC-Cdc6 and Cdt1. Nat. Struct. Mol. Biol. 24, 316–324 (2017). This report describes the use of a mutant Mcm6 protein that slows down the process of pre-RC assembly, showing by cryo-EM studies how the Mcm2-7 winged helix domains first engage the winged helix domains of the ORC–Cdc6 complex, and how the origin DNA is inserted into the Mcm2-7 hexamer.

  71. Sun, J. et al. Cryo-EM structure of a helicase loading intermediate containing ORC–Cdc6–Cdt1–MCM2-7 bound to DNA. Nat. Struct. Mol. Biol. 20, 944–51 (2013). This paper describes the cryo-EM structure of a pre-RC assembly intermediate call the OCCM that contains ORC, Cdc6, Cdt1 and the first Mcm2-7 hexamer bound to ARS1 origin DNA.

  72. Lee, C. S. K. et al. Humanizing the yeast origin recognition complex. Nat. Commun. 12, 33 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jaremko, M. J., On, K. F., Thomas, D. R., Stillman, B. & Joshua-Tor, L. The dynamic nature of the human origin recognition complex revealed through five cryoEM structures. eLife 9, e58622 (2020). This paper reports the cryo-EM structures of five forms of the human ORC, showing the dynamic movement of the ORC1 subunit from the auto-inhibited state to the active ORC in which ORC1 engages ORC4, as well as the movement of the ORC2 winged helix domain.

  74. Tocilj, A. et al. Structure of the active form of human origin recognition complex and its ATPase motor module. eLife 6, e20818 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. On, K. F., Jaremko, M., Stillman, B. & Joshua-Tor, L. A structural view of the initiators for chromosome replication. Curr. Opin. Struct. Biol. 53, 131–139 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cheng, J. et al. Structural insight into the assembly and conformational activation of human origin recognition complex. Cell Discov. 6, 88 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bleichert, F. & Berger, J. M. Crystal structure of the eukaryotic origin recognition complex. Nature 519, 321–326 (2015). A description of the crystal structure of the Drosophila ORC at 3.5 Å resolution showing that ORC can exist in an autoinhibited state.

  78. Kara, N., Hossain, M., Prasanth, S. G. & Stillman, B. Orc1 binding to mitotic chromosomes precedes spatial patterning during G 1 phase and assembly of the origin recognition complex in human cells. J. Biol. Chem. 290, 12355–12369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kreitz, S., Ritzi, M., Baack, M. & Knippers, R. The human origin recognition complex protein 1 dissociates from chromatin during S phase in HeLa cells. J. Biol. Chem. 276, 6337–6342 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Méndez, J. et al. Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol. Cell 9, 481–491 (2002).

    Article  PubMed  Google Scholar 

  81. Tatsumi, Y., Ohta, S., Kimura, H., Tsurimoto, T. & Obuse, C. The ORC1 cycle in human cells: I. cell cycle-regulated oscillation of human ORC1. J. Biol. Chem. 278, 41528–41534 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Abdurashidova, G. et al. Localization of proteins bound to a replication origin of human DNA along the cell cycle. EMBO J. 22, 4294–4303 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hartwell, L. H. Sequential function of gene products relative to DNA synthesis in the yeast cell cycle. J. Mol. Biol. 104, 803–817 (1976).

    Article  CAS  PubMed  Google Scholar 

  84. Liang, C., Weinreich, M. & Stillman, B. ORC and Cdc6p interact and determine the frequency of initiation of DNA replication in the genome. Cell 81, 667–676 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Speck, C. & Stillman, B. Cdc6 ATPase activity regulates ORC x Cdc6 stability and the selection of specific DNA sequences as origins of DNA replication. J. Biol. Chem. 282, 11705–11714 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Speck, C., Chen, Z., Li, H. & Stillman, B. ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat. Struct. Mol. Biol. 12, 965–971 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cocker, J. H., Piatti, S., Santocanale, C., Nasmyth, K. & Diffley, J. F. An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379, 180–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Kelly, T. J. et al. The fission yeast cdc18+ gene product couples S phase to START and mitosis. Cell 74, 371–382 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Feng, X. et al. The structure of ORC–Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6. Nat. Commun. 12, 3883 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schmidt, J. M. et al. A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC·DNA·Cdc6. Nat. Commun. 13, 1059 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schmidt, J. M. & Bleichert, F. Structural mechanism for replication origin binding and remodeling by a metazoan origin recognition complex and its co-loader Cdc6. Nat. Commun. 11, 4263 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Weissmann, F. et al. MCM double hexamer loading visualized with human proteins. Nature 636, 499–508 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang, R., Hunker, O., Wise, M. & Bleichert, F. Multiple mechanisms for licensing human replication origins. Nature 636, 488–498 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wells, J. N. et al. Reconstitution of human DNA licensing and the structural and functional analysis of key intermediates. Nat. Commun. 16, 478 (2025). Together with Wiessmann et al. (2024) and Yang et al. (2024), these papers describe the reconstitution of pre-RC assembly with purified human proteins ORC, CDC6, CDT1 and MCM2-7 on DNA that shows ORC6 dependent and independent mechanisms for MCM double hexamer loading.

  95. Zhai, Y. et al. Open-ringed structure of the Cdt1–Mcm2–7 complex as a precursor of the MCM double hexamer. Nat. Struct. Mol. Biol. 24, 300–308 (2017). This report shows the cryo-EM structures of the Mcm2-7 hexamer and the Mcm2-7 hexamer bound to Cdt1, in which Cdt1 engages Mcm2, Mcm4 and Mcm6 and stabilizes the Mcm2-7 hexamer in a left-handed coil that has the Mcm2–5 gate open.

  96. Samel, S. A. et al. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev. 28, 1653–1666 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Frigola, J., Remus, D., Mehanna, A. & Diffley, J. F. X. ATPase-dependent quality control of DNA replication origin licensing. Nature 495, 339–343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yuan, Z. et al. Structural mechanism of helicase loading onto replication origin DNA by ORC–Cdc6. Proc. Natl Acad. Sci. USA 117, 17747–17756 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Randell, J. C. W., Bowers, J. L., Rodríguez, H. K. & Bell, S. P. Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol. Cell 21, 29–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Ticau, S., Friedman, L. J., Ivica, N. A., Gelles, J. & Bell, S. P. Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 161, 513–525 (2015). Using single-molecule FRET studies, this report describes the events that occur during closure of the Mcm2-7 ring, concomitant with the release of Cdt1 and ATP hydrolysis by Mcm207 ATPase.

  101. Zhang, A., Friedman, L. J., Gelles, J. & Bell, S. P. Changing protein–DNA interactions promote ORC binding-site exchange during replication origin licensing. Proc. Natl Acad. Sci. USA 120, e2305556120 (2023). Using single-molecule resonance energy transfer methods, this report shows that when DNA is inserted into the first MCM double hexamer, this triggers Cdc6 release, movement of the ORC–Cdt1–Mcm2-7 complex on DNA, and dissociation of ORC from the strong binding site, allowing ORC to flip from the OM complex to the MO complex.

  102. Kang, S., Warner, M. D. & Bell, S. P. Multiple functions for Mcm2–7 ATPase motifs during replication initiation. Mol. Cell 55, 655–665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Coster, G., Frigola, J., Beuron, F., Morris, E. P. & Diffley, J. F. X. Origin licensing requires ATP binding and hydrolysis by the MCM replicative helicase. Mol. Cell 55, 666–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gupta, S., Friedman, L. J., Gelles, J. & Bell, S. P. A helicase-tethered ORC flip enables bidirectional helicase loading. eLife 10, e74282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Reuter, L. M. et al. MCM2-7 loading-dependent ORC release ensures genome-wide origin licensing. Nat. Commun. 15, 7306 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Miller, T. C. R., Locke, J., Greiwe, J. F., Diffley, J. F. X. & Costa, A. Mechanism of head-to-head MCM double-hexamer formation revealed by cryo-EM. Nature 575, 704–710 (2019). This report describes the time resolved cryo-EM structures for the assembly of the S. cerevisiae pre-RC, showing the MO complex intermediate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lim, C. T. et al. Cell cycle regulation has shaped budding yeast replication origin structure and function. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-025-01591-9 (2025). By analyzing natural and synthetic origins, this paper identifies an efficient MO-independent pathway for MCM loading from two high-affinity ORC binding sites. This cannot be inhibited by cyclin-dependent kinase phosphorylation of Orc2, however, and modern origins have thus evolved to avoid this configuration.

  108. Palzkill, T. G. & Newlon, C. S. A yeast replication origin consists of multiple copies of a small conserved sequence. Cell 53, 441–450 (1988).

    Article  CAS  PubMed  Google Scholar 

  109. Sánchez, H. et al. DNA replication origins retain mobile licensing proteins. Nat. Commun. 12, 1908 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Noguchi, Y. et al. Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model. Proc. Natl Acad. Sci. USA 114, E9529–E9538 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhai, Y. & Tye, B.-K. Structure of the MCM2-7 double hexamer and its implications for the mechanistic functions of the Mcm2-7 complex. Adv. Exp. Med Biol. 1042, 189–205 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Ali, F. A. et al. Cryo-EM structure of a licensed DNA replication origin. Nat. Commun. 8, 2241 (2017).

    Article  Google Scholar 

  113. Sun, J. et al. Structural and mechanistic insights into Mcm2–7 double-hexamer assembly and function. Gene Dev. 28, 2291–2303 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hatoyama, Y. & Kanemaki, M. T. The assembly of the MCM2–7 hetero-hexamer and its significance in DNA replication. Biochem. Soc. Trans. 51, 1289–1295 (2023).

  115. Dhar, S. K., Delmolino, L. & Dutta, A. Architecture of the human origin recognition complex*. J. Biol. Chem. 276, 29067–29071 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Gillespie, P. J., Li, A. & Blow, J. J. Reconstitution of licensed replication origins on Xenopus sperm nuclei using purified proteins. BMC Biochem. 2, 15 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vashee, S., Simancek, P., Challberg, M. D. & Kelly, T. J. Assembly of the human origin recognition complex. J. Biol. Chem. 276, 26666–26673 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Vashee, S. et al. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev. 17, 1894–1908 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Giordano-Coltart, J., Ying, C. Y., Gautier, J. & Hurwitz, J. Studies of the properties of human origin recognition complex and its Walker A motif mutants. Proc. Natl Acad. Sci. USA 102, 69–74 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Siddiqui, K. & Stillman, B. ATP-dependent assembly of the human origin recognition complex. J. Biol. Chem. 282, 32370–32383 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Zou, L. & Stillman, B. Formation of a preinitiation complex by S-phase cyclin CDK-dependent loading of Cdc45p onto chromatin. Science 280, 593–596 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Liang, C. & Stillman, B. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev. 11, 3375–3386 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ohta, S., Tatsumi, Y., Fujita, M., Tsurimoto, T. & Obuse, C. The ORC1 cycle in human cells: II. Dynamic changes in the human ORC complex during the cell cycle. J. Biol. Chem. 278, 41535–41540 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Okuno, Y., McNairn, A. J., den Elzen, N., Pines, J. & Gilbert, D. M. Stability, chromatin association and functional activity of mammalian pre-replication complex proteins during the cell cycle. EMBO J. 20, 4263–4277 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Prasanth, S. G., Prasanth, K. V. & Stillman, B. Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science 297, 1026–1031 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Lin, Y.-C. et al. Orc6 is a component of the replication fork and enables efficient mismatch repair. Proc. Natl Acad. Sci. USA 119, e2121406119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kurniawan, F. et al. Phosphorylation of Orc6 during mitosis regulates DNA replication and ribosome biogenesis. Mol. Cell. Biol. 44, 289–301 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gambus, A., Khoudoli, G. A., Jones, R. C. & Blow, J. J. MCM2-7 form double hexamers at licensed origins in Xenopus egg extract. J. Biol. Chem. 286, 11855–11864 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, J. et al. The human pre-replication complex is an open complex. Cell 186, 98–111 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Lewis, J. S. et al. Mechanism of replication origin melting nucleated by CMG helicase assembly. Nature 606, 1007–1014 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Miller, J. M. & Enemark, E. J. Archaeal MCM proteins as an analog for the eukaryotic Mcm2–7 helicase to reveal essential features of structure and function. Archaea 2015, 1–14 (2015).

    Article  Google Scholar 

  132. Saleh, A. et al. The structural basis of Cdc7–Dbf4 kinase dependent targeting and phosphorylation of the MCM2-7 double hexamer. Nat. Commun. 13, 2915 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Greiwe, J. F. et al. Structural mechanism for the selective phosphorylation of DNA-loaded MCM double hexamers by the Dbf4-dependent kinase. Nat. Struct. Mol. Biol. 29, 10–20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Sheu, Y.-J. & Stillman, B. The Dbf4–Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 463, 113–117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sheu, Y.-J. & Stillman, B. Cdc7–Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol. Cell 24, 101–113 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cheng, J. et al. Structural insight into the MCM double hexamer activation by Dbf4-Cdc7 kinase. Nat. Commun. 13, 1396 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zou, L. & Stillman, B. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p–Dbf4p kinase. Mol. Cell. Biol. 20, 3086–3096 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Weinreich, M., Liang, C., Chen, H. H. & Stillman, B. Binding of cyclin-dependent kinases to ORC and Cdc6p regulates the chromosome replication cycle. Proc. Natl Acad. Sci. USA 98, 11211–11217 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nguyen, V. Q., Co, C. & Li, J. J. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411, 1068–1073 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Piatti, S., Böhm, T., Cocker, J. H., Diffley, J. F. & Nasmyth, K. Activation of S-phase-promoting CDKs in late G1 defines a ‘point of no return’ after which Cdc6 synthesis cannot promote DNA replication in yeast. Genes Dev. 10, 1516–1531 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. Labib, D., Diffley, J. F. & Kearsey, S. E. G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Nat. Cell Biol. 1, 415–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Zegerman, P. & Diffley, J. F. X. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445, 281–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Siddiqui, K., On, K. F. & Diffley, J. F. X. Regulating DNA replication in eukarya. Cold Spring Harb. Perspect. Biol. 5, a012930 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Dahmann, C., Diffley, J. F. & Nasmyth, K. A. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr. Biol. 5, 1257–1269 (1995).

    Article  CAS  PubMed  Google Scholar 

  145. Seki, T. & Diffley, J. F. Stepwise assembly of initiation proteins at budding yeast replication origins in vitro. Proc. Natl Acad. Sci. USA 97, 14115–14120 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chen, S. & Bell, S. P. CDK prevents Mcm2-7 helicase loading by inhibiting Cdt1 interaction with Orc6. Genes Dev. 25, 363–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Heller, R. C. et al. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 146, 80–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Amasino, A. L., Gupta, S., Friedman, L. J., Gelles, J. & Bell, S. P. Regulation of replication origin licensing by ORC phosphorylation reveals a two-step mechanism for Mcm2-7 ring closing. Proc. Natl Acad. Sci. USA 120, e2221484120 (2023). Using single-molecule techniques, this paper reports the inhibition of pre-RC assembly by cyclin-dependent protein kinase phosphorylation of the Orc2 and Orc6 subunits of S. cerevisiae ORC by blocking the formation of the MO complex dependent on Orc6 interaction with the N termini of Mcm2-7.

  149. Masumoto, H., Muramatsu, S., Kamimura, Y. & Araki, H. S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature 415, 651–655 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Tanaka, S., Tak, Y.-S. & Araki, H. The role of CDK in the initiation step of DNA replication in eukaryotes. Cell Div. 2, 16 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Araki, H. Cyclin-dependent kinase-dependent initiation of chromosomal DNA replication. Curr. Opin. Cell Biol. 22, 766–771 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Tanaka, S. et al. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445, 328–332 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Tak, Y.-S., Tanaka, Y., Endo, S., Kamimura, Y. & Araki, H. A CDK-catalysed regulatory phosphorylation for formation of the DNA replication complex Sld2–Dpb11. EMBO J. 25, 1987–1996 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Schwob, E. & Nasmyth, K. CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 7, 1160–1175 (1993).

    Article  CAS  PubMed  Google Scholar 

  155. Muramatsu, S., Hirai, K., Tak, Y.-S., Kamimura, Y. & Araki, H. CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol ε, and GINS in budding yeast. Genes Dev. 24, 602–612 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tian, M. et al. Integrative analysis of DNA replication origins and ORC-/MCM-binding sites in human cells reveals a lack of overlap. eLife 12, RP89548 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The studies of DNA replication in the author’s laboratories have been supported by grants: NIH grant GM45346, the Goldring Family Foundation and Cold Spring Harbor Laboratory (to B.S.); the Francis Crick Institute, which receives its core funding from Cancer Research UK (CC2002), the UK Medical Research Council (CC2002) and the Wellcome Trust (CC2002); Wellcome Trust Senior Investigator Awards (106252/Z/14/Z and 219527/Z/19/Z); and European Research Council Advanced Grants (669424-CHROMOREP and 101020432-MeChroRep) to J.F.X.D. Research on animation in cell biology has been supported by NIH grant U54 AI170856 (to J.H.I.). The production of the videos in this Review was supported by a grant to J.H.I. from Cold Spring Harbor Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Stillman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks David MacAlpine, Yuanliang Zhai, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Dimitris Typas was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Video 1

The process of establishing pre-RCs at the S. cerevisiae ARS1 origin by a single ORC that cooperates with Cdc6 and Cdt1 to load two Mcm2-7 (MCM) hexamers in a head-to-head manner at each origin. A positioned nucleosome is bound to the DNA adjacent to the ARS1 origin. The A/B1 ORC-binding site is relatively close to the inverted but weaker ORC-binding site B2. One ORC binds first to the A and B1 element and, with Cdc6 and Cdt1, loads the first MCM hexamer and then flips to the B2 element, where it cooperates with new Cdc6 and Cdt1 proteins to load a second MCM hexamer that then rotates to form the MCM double hexamer. The MCM hexamer bound to Cdt1 interacts with ORC–Cdc6 on DNA through WH domains in the MCM hexamer (initially in the Mcm3 and Mcm7 subunits of MCM (highlighted purple domains)). The source of the structures for this movie is the same as those in the Figure 2 legend. The structures of pre-RC components, DNA and nucleosomes were downloaded from the RCSB PDB (http://rcsb.org) and used for animation and as structural references (PDB IDs: 5V8F, 5XF8, 5BK4, 5ZR1, 6OM3, 6RQC, 6WGG, 7MCA, 5UJ7, 7JPO, 7JPP, 7JPQ, 7JPR, 7JPS and 1AOI). Intrinsically disordered regions that were missing from published structures were modeled using AlphaFold (https://alphafold.ebi.ac.uk/). Molecular structures were exported as meshes using UCSF Chimera (https://www.cgl.ucsf.edu/chimera/) and animation of molecular processes was completed using Autodesk Maya.

Supplementary Video 2

A comparison of the structures of the S. cerevisiae ORC and the human ORC. The human ORC can exist in an autoinhibited structure with the ORC1 subunit far away from the ORC4 subunit and the ORC2 winged helix in the channel that binds DNA. The ORC1 subunit rotates to interact with ORC4 to create an active ATP-binding pocket and the ORC2 WH domain moves out of the DNA channel to allow ORC to bind DNA. The sources of the structures were PDB IDs: 5ZR1 (yeast ORC), 5UJ7 (human ORC), 7JPO, 7JPP, 7JPQ, 7JPR and 7JPS (human ORC).

Supplementary Video 3

The process of establishment of pre-RCs at S. cerevisiae origins of DNA replication, where the inverted B2 ORC binding site is further apart from the A/B1 element. In this case, the first MCM hexamer bound to Cdt1 is loaded by an ORC-–dc6 complex and then the second MCM hexamer bound to Cdt1 is loaded by a second ORC–Cdc6 complex. The MCM hexamers rotate along the DNA, forming the MCM double hexamer. The annotation is similar to the annotation in Supplementary Video 1. The sources of the structures are the same as shown in the Figure 2 legend.

Supplementary Video 4

Comparison of the S. cerevisiae MCM double hexamer and the human MCM double hexamer. The DNA in the S. cerevisiae double hexamer has duplex DNA pass through the MCM proteins in a zig-zag manner but is not unwound. The human MCM double hexamer is similar to the S. cerevisiae MCM double hexamer but the DNA in the human MCM double hexamer is unwound and the bases in the central base pair are completely separated. The sources of the structures were PDBs 5BK4 (yeast MCM double hexamer), 7W1Y (human MCM double hexamer).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stillman, B., Diffley, J.F.X. & Iwasa, J.H. Mechanisms for licensing origins of DNA replication in eukaryotic cells. Nat Struct Mol Biol 32, 1143–1153 (2025). https://doi.org/10.1038/s41594-025-01587-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41594-025-01587-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing