Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and genomic implications of break-induced replication

Abstract

DNA double-strand breaks (DSBs) are a severe threat to genome stability, as DSB-repair mechanisms with low fidelity contribute to loss of genome integrity. Break-induced replication (BIR) is a crucial DSB-repair pathway when classical homologous recombination mechanisms fail. BIR is often triggered by stalled or collapsed replication forks, following extensive end resection that generates a single-stranded DNA substrate, which can engage either canonical homology-driven BIR, or microhomology-mediated BIR (mmBIR), which requires shorter sequence homologies than does canonical BIR. BIR is a double-edged sword: it is necessary for DSB repair, but is also culpable for introducing mutations and structural variations that are linked to cancer and genetic disorders. In this Review, we discuss BIR regulation in mammalian cells, and the role of BIR in telomere maintenance and in human disease, as well as in genome engineering. We highlight emerging findings in these areas and advances in technologies that have enabled their discovery and reshape our understanding of this enigmatic repair mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The transition from canonical replication to BIR is responsible for ALT.
Fig. 2: Consequences of break-induced replication versus microhomology-mediated break-induced replication.
Fig. 3: Break-induced replication-driven genomic amplification mechanisms.

Similar content being viewed by others

References

  1. Richardson, C. & Jasin, M. Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol. Cell. Biol. 20, 9068–9075 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meselson, M. & Weigle, J. J. Chromosome breakage accompanying genetic recombination in bacteriophage*. Proc. Natl Acad.Sci. USA 47, 857–868 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Skalka, A. in Mechanisms in Recombination (ed. Grell, R. F.) 421–432 (Springer, 1974).

  4. Donnianni, R. A. & Symington, L. S. Break-induced replication occurs by conservative DNA synthesis. Proc. Natl Acad. Sci. USA 110, 13475–13480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Malkova, A., Naylor, M. L., Yamaguchi, M., Ira, G. & Haber, J. E. RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol. Cell. Biol. 25, 933–944 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Malkova, A., Ivanov, E. L. & Haber, J. E. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc. Natl Acad. Sci. USA 93, 7131–7136 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bosco, G. & Haber, J. E. Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 150, 1037–1047 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morrow, D. M., Connelly, C. & Hieter, P. ‘Break copy’ duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147, 371–382 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davis, A. P. & Symington, L. S. RAD51-dependent break-induced replication in yeast. Mol. Cell. Biol. 24, 2344–2351 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lydeard, J. R., Jain, S., Yamaguchi, M. & Haber, J. E. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448, 820–823 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Le, S., Moore, J. K., Haber, J. E. & Greider, C. W. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152, 143–152 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ira, G. & Haber, J. E. Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol. Cell. Biol. 22, 6384–6392 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Osia, B. et al. Cancer cells are highly susceptible to accumulation of templated insertions linked to MMBIR. Nucleic Acids Res. 49, 8714–8731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, F. et al. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat. Genet. 41, 849–853 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Verdin, H. et al. Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain. PLoS Genet. 9, e1003358 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ambroziak, W. et al. Genomic instability in the PARK2 locus is associated with Parkinson’s disease. J. Appl. Genet. 56, 451–461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, C.-Z. & Pellman, D. Cancer genomic rearrangements and copy number alterations from errors in cell division. Annu. Rev. Cancer Biol. 6, 245–268 (2022).

    Article  Google Scholar 

  19. Hastings, P. J., Ira, G. & Lupski, J. R. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 5, e1000327 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakofsky, C. J. et al. Break-induced replication is a source of mutation clusters underlying kataegis. Cell Rep. 7, 1640–1648 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grochowski, C. M. et al. Inverted triplications formed by iterative template switches generate structural variant diversity at genomic disorder loci. Cell Genom. 4, 100590 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kohmoto, T. et al. A case with concurrent duplication, triplication, and uniparental isodisomy at 1q42.12-qter supporting microhomology-mediated break-induced replication model for replicative rearrangements. Mol. Cytogenet. 10, 15 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ottaviani, D., LeCain, M. & Sheer, D. The role of microhomology in genomic structural variation. Trends Genet. 30, 85–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Payen, C., Koszul, R., Dujon, B. & Fischer, G. Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet. 4, e1000175 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Verma, P. et al. RAD52 and SLX4 act nonepistatically to ensure telomere stability during alternative telomere lengthening. Genes Dev. 33, 221–235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, J.-M., Yadav, T., Ouyang, J., Lan, L. & Zou, L. Alternative lengthening of telomeres through two distinct break-induced replication pathways. Cell Rep. 26, 955–968.e3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nagaraju, G., Odate, S., Xie, A. & Scully, R. Differential regulation of short- and long-tract gene conversion between sister chromatids by Rad51C. Mol. Cell. Biol. 26, 8075–8086 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, X. & Malkova, A. Break-induced replication mechanisms in yeast and mammals. Curr. Opin. Genet. Dev. 71, 163–170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kramara, J., Osia, B. & Malkova, A. Break-induced replication: the where, the why, and the how. Trends Genet. 34, 518–531 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Kockler, Z. W., Osia, B., Lee, R., Musmaker, K. & Malkova, A. Repair of DNA breaks by break-induced replication. Annu. Rev. Biochem. 90, 165–191 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, R. S., Twarowski, J. M. & Malkova, A. Stressed? Break-induced replication comes to the rescue!. DNA Repair 142, 103759 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Anand, R. P., Lovett, S. T. & Haber, J. E. Break-induced DNA replication. Cold Spring Harb. Perspect. Biol. 5, a010397 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hu, Y. & Stillman, B. Origins of DNA replication in eukaryotes. Mol. Cell 83, 352–372 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Li, S. et al. PIF1 helicase promotes break‐induced replication in mammalian cells. EMBO J. 40, e104509 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saini, N. et al. Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502, 389–392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilson, M. A. et al. Pif1 helicase and Polδ promote recombination-coupled DNA synthesis via bubble migration. Nature 502, 393–396 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dilley, R. L. et al. Break-induced telomere synthesis underlies alternative telomere maintenance. Nature 539, 54–58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roumelioti, F. et al. Alternative lengthening of human telomeres is a conservative DNA replication process with features of break‐induced replication. EMBO Rep. 17, 1731–1737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deem, A. et al. Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae. Genetics 179, 1845–1860 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vasan, S., Deem, A., Ramakrishnan, S., Argueso, J. L. & Malkova, A. Cascades of genetic instability resulting from compromised break-induced replication. PLoS Genet. 10, e1004119 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Smith, C. E., Lam, A. F. & Symington, L. S. Aberrant double-strand break repair resulting in half crossovers in mutants defective for Rad51 or the DNA polymerase delta complex. Mol. Cell. Biol. 29, 1432–1441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Minocherhomji, S. et al. Replication stress activates DNA repair synthesis in mitosis. Nature 528, 286–290 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Bursomanno, S. et al. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells. DNA Repair 25, 84–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Donnianni, R. A. et al. DNA polymerase delta synthesizes both strands during break-induced replication. Mol. Cell 76, 371–381.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johansson, E., Garg, P. & Burgers, P. M. J. The Pol32 subunit of DNA polymerase delta contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J. Biol. Chem. 279, 1907–1915 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Langston, L. D. et al. CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc. Natl Acad. Sci. USA 111, 15390–15395 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu, Z. et al. Synergism between CMG helicase and leading strand DNA polymerase at replication fork. Nat. Commun. 14, 5849 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Buzovetsky, O. et al. Role of the Pif1-PCNA Complex in Pol δ-Dependent Strand Displacement DNA Synthesis and Break-Induced Replication. Cell Rep. 21, 1707–1714 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Garbacz, M. A. et al. Evidence that DNA polymerase δ contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae. Nat. Commun. 9, 858 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Geronimo, C. L. & Zakian, V. A. Getting it done at the ends: Pif1 family DNA helicases and telomeres. DNA Repair 44, 151–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu, Y. et al. Telomerase-null survivor screening identifies novel telomere recombination regulators. PLoS Genet. 9, e1003208 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kocak, E. et al. The Drosophila melanogaster PIF1 helicase promotes survival during replication stress and processive DNA synthesis during double-strand gap repair. Genetics 213, 835 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, T. et al. Break-induced replication orchestrates resection-dependent template switching. Nature 619, 201–208 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu, Y. et al. DNA nicks in both leading and lagging strand templates can trigger break-induced replication. Mol. Cell 85, 91–106.e5 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mayle, R. et al. Mus81 and converging forks limit the mutagenicity of replication fork breakage. Science 349, 742 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pavani, R. et al. Structure and repair of replication-coupled DNA breaks. Science 385, eado3867 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kimble, M. T. et al. Repair of replication-dependent double-strand breaks differs between the leading and lagging strands. Mol. Cell 85, 61–77 (2025).

    Article  CAS  PubMed  Google Scholar 

  58. Elango, R. et al. Two-ended recombination at a Flp-nickase-broken replication fork. Mol. Cell 85, 78–90.e3 (2025).

    Article  CAS  PubMed  Google Scholar 

  59. Sakofsky, C. J. et al. Translesion polymerases drive microhomology-mediated break-induced replication leading to complex chromosomal rearrangements. Mol. Cell 60, 860 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anand, R. P. et al. Chromosome rearrangements via template switching between diverged repeated sequences. Genes Dev. 28, 2394–2406 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Smith, C. E., Llorente, B. & Symington, L. S. Template switching during break-induced replication. Nature 447, 102–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Wu, T., Li, Y., Shi, L. Z. & Wu, X. Break-induced replication is activated to repair R-loop-associated double-strand breaks in SETX-deficient cells. Preprint at bioRxiv https://doi.org/10.1101/2024.06.29.601361 (2024).

  63. Lydeard, J. R. et al. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev. 24, 1133–1144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Garcia-Exposito, L. et al. Proteomic profiling reveals a specific role for translesion DNA polymerase η in the alternative lengthening of telomeres. Cell Rep. 17, 1858–1871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, S. et al. Polyubiquitinated PCNA triggers SLX4-mediated break-induced replication in alternative lengthening of telomeres (ALT) cancer cells. Nucleic Acids Res. 52, 11785–11805 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jiang, H. et al. BLM helicase unwinds lagging strand substrates to assemble the ALT telomere damage response. Mol. Cell 84, 1684–1698 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, J. et al. Extrachromosomal telomere DNA derived from excessive strand displacements. Proc. Natl Acad. Sci. USA 121, e2318438121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gravel, S., Chapman, J. R., Magill, C. & Jackson, S. P. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev. 22, 2767–2772 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mimitou, E. P. & Symington, L. S. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455, 770–774 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Zhu, Z., Chung, W.-H., Shim, E. Y., Lee, S. E. & Ira, G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double strand break ends. Cell 134, 981–994 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lippert, T. P. et al. Oncogenic herpesvirus KSHV triggers hallmarks of alternative lengthening of telomeres. Nat. Commun. 12, 512 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Deem, A. et al. Break-induced replication is highly inaccurate. PLoS Biol. 9, e1000594 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rodgers, K. & McVey, M. Error-prone repair of DNA double-strand breaks. J. Cell. Physiol. 231, 15–24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cortez, D. Replication-coupled DNA Repair. Mol. Cell 74, 866–876 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Elango, R. et al. Repair of base damage within break-induced replication intermediates promotes kataegis associated with chromosome rearrangements. Nucleic Acids Res. 47, 9666–9684 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stafa, A., Donnianni, R. A., Timashev, L. A., Lam, A. F. & Symington, L. S. Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae. Genetics 196, 1017–1028 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stivison, E. A., Young, K. J. & Symington, L. S. Interstitial telomere sequences disrupt break-induced replication and drive formation of ectopic telomeres. Nucleic Acids Res. 48, 12697–12710 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pan, X. et al. FANCM, BRCA1, and BLM cooperatively resolve the replication stress at the ALT telomeres. Proc. Natl Acad. Sci. USA 114, E5940–E5949 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Silva, B. et al. FANCM limits ALT activity by restricting telomeric replication stress induced by deregulated BLM and R-loops. Nat. Commun. 10, 2253 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. O’Rourke, J. J., Bythell-Douglas, R., Dunn, E. A. & Deans, A. J. ALT control, delete: FANCM as an anti-cancer target in alternative lengthening of telomeres. Nucl. Austin Tex. 10, 221–230 (2019).

    Google Scholar 

  81. Lu, R. et al. The FANCM–BLM–TOP3A–RMI complex suppresses alternative lengthening of telomeres (ALT). Nat. Commun. 10, 2252 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kim, J. C., Harris, S. T., Dinter, T., Shah, K. A. & Mirkin, S. M. The role of break-induced replication in large-scale expansions of (CAG)n•(CTG)n repeats. Nat. Struct. Mol. Biol. 24, 55–60 (2017).

    Article  PubMed  Google Scholar 

  83. Irony-Tur Sinai, M. & Kerem, B. Insights into common fragile site instability: DNA replication challenges at DNA repeat sequences. Emerg. Top. Life Sci. 7, 277–287 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Silva, B., Arora, R., Bione, S. & Azzalin, C. M. TERRA transcription destabilizes telomere integrity to initiate break-induced replication in human ALT cells. Nat. Commun. 12, 3760 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Min, J. et al. Mechanisms of insertions at a DNA double-strand break. Mol. Cell 83, 2434–2448 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Macheret, M. et al. High-resolution mapping of mitotic DNA synthesis regions and common fragile sites in the human genome through direct sequencing. Cell Res. 30, 997–1008 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Scully, R., Walter, J. C. & Nussenzweig, A. One-ended and two-ended breaks at nickase-broken replication forks. DNA Repair 144, 103783 (2024).

    Article  CAS  PubMed  Google Scholar 

  88. Wu, X. & Wang, B. Abraxas suppresses DNA end resection and limits break-induced replication by controlling SLX4/MUS81 chromatin loading in response to TOP1 inhibitor-induced DNA damage. Nat. Commun. 12, 4373 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Napier, C. E. et al. ATRX represses alternative lengthening of telomeres. Oncotarget 6, 16543–16558 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lovejoy, C. A. et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet. 8, e1002772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Clynes, D. et al. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nat. Commun. 6, 7538 (2015).

    Article  PubMed  Google Scholar 

  92. Mehta, A., Beach, A. & Haber, J. E. Homology requirements and competition between gene conversion and break-induced replication during double-strand break repair. Mol. Cell 65, 515–526.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jain, S. et al. A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev. 23, 291–303 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cho, N. W., Dilley, R. L., Lampson, M. A. & Greenberg, R. A. Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 159, 108–121 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Barroso-González, J. et al. RAD51AP1 is an essential mediator of alternative lengthening of telomeres. Mol. Cell 76, 11–26 (2019).

    Article  PubMed  Google Scholar 

  96. Guh, C.-Y. et al. XPF activates break-induced telomere synthesis. Nat. Commun. 13, 5781 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li, D., Hou, K., Zhang, K. & Jia, S. Regulation of replication stress in alternative lengthening of telomeres by fanconi anaemia protein. Genes 13, 180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Balk, B. et al. Telomeric RNA–DNA hybrids affect telomere-length dynamics and senescence. Nat. Struct. Mol. Biol. 20, 1199–1205 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Graf, M. et al. Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell 170, 72–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Misino, S., Bonetti, D., Luke-Glaser, S. & Luke, B. Increased TERRA levels and RNase H sensitivity are conserved hallmarks of post-senescent survivors in budding yeast. Differ. Res. Biol. Divers. 100, 37–45 (2018).

    CAS  Google Scholar 

  101. Misino, S., Busch, A., Wagner, C. B., Bento, F. & Luke, B. TERRA increases at short telomeres in yeast survivors and regulates survivor associated senescence (SAS). Nucleic Acids Res. 50, 12829–12843 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Arora, R. & Azzalin, C. M. Telomere elongation chooses TERRA ALTernatives. RNA Biol. 12, 938–941 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yadav, T. et al. TERRA and RAD51AP1 promote alternative lengthening of telomeres through an R- to D-loop switch. Mol. Cell 82, 3985–4000 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xu, M. et al. TERRA-LSD1 phase separation promotes R-loop formation for telomere maintenance in ALT cancer cells. Nat. Commun. 15, 2165 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yeager, T. R. et al. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res. 59, 4175–4179 (1999).

    CAS  PubMed  Google Scholar 

  106. Min, J., Wright, W. E. & Shay, J. W. Clustered telomeres in phase-separated nuclear condensates engage mitotic DNA synthesis through BLM and RAD52. Genes Dev. 33, 814–827 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, J.-M., Genois, M.-M., Ouyang, J., Lan, L. & Zou, L. Alternative lengthening of telomeres is a self-perpetuating process in ALT-associated PML bodies. Mol. Cell 81, 1027–1042.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Loe, T. K. et al. Telomere length heterogeneity in ALT cells is maintained by PML-dependent localization of the BTR complex to telomeres. Genes Dev. 34, 650–662 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lamm, N. et al. Nuclear F-actin counteracts nuclear deformation and promotes fork repair during replication stress. Nat. Cell Biol. 22, 1460–1470 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Palumbieri, M. D. et al. Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity. Nat. Commun. 14, 7819 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Seeber, A. & Gasser, S. M. Chromatin organization and dynamics in double-strand break repair. Curr. Opin. Genet. Dev. 43, 9–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Zagelbaum, J. & Gautier, J. Double-strand break repair and mis-repair in 3D. DNA Repair 121, 103430 (2023).

    Article  CAS  PubMed  Google Scholar 

  113. Carvalho, C. M. B. et al. Replicative mechanisms for CNV formation are error prone. Nat. Genet. 45, 1319–1326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sakofsky, C. J. et al. Repair of multiple simultaneous double-strand breaks causes bursts of genome-wide clustered hypermutation. PLoS Biol. 17, e3000464 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Stok, C., Kok, Y. P., van den Tempel, N. & Van Vugt, M. A. T. M. Shaping the BRCAness mutational landscape by alternative double-strand break repair, replication stress and mitotic aberrancies. Nucleic Acids Res. 49, 4239–4257 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Carvalho, C. M. B. & Lupski, J. R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 17, 224–238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Costantino, L. et al. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343, 88–91 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Showman, S., Talbert, P. B., Xu, Y., Adeyemi, R. O. & Henikoff, S. Expansion of human centromeric arrays in cells undergoing break-induced replication. Cell Rep. 43, 113851 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sobinoff, A. P. & Pickett, H. A. Alternative lengthening of telomeres: DNA repair pathways converge. Trends Genet. 33, 921–932 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Gu, L. et al. Telomere-related DNA damage response pathways in cancer therapy: prospective targets. Front. Pharmacol. 15, 1379166 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Stroik, S., Luthman, A. J. & Ramsden, D. A. Templated insertions—DNA repair gets acrobatic. Environ. Mol. Mutagen. 65, 82–89 (2024).

    Article  PubMed  Google Scholar 

  122. Panday, A. et al. FANCM regulates repair pathway choice at stalled replication forks. Mol. Cell 81, 2428–2444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. van Wietmarschen, N. et al. Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature 586, 292–298 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Morales-Juarez, D. A. & Jackson, S. P. Clinical prospects of WRN inhibition as a treatment for MSI tumours. npj Precis.Oncol. 6, 85 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chan, E. M. et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568, 551–556 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Carvalho, C. M. B. et al. Absence of heterozygosity due to template switching during replicative rearrangements. Am. J. Hum. Genet. 96, 555–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Marcomini, I. et al. Asymmetric processing of DNA ends at a double-strand break leads to unconstrained dynamics and ectopic translocation. Cell Rep. 24, 2614–2628 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Neil, A. J., Liang, M. U., Khristich, A. N., Shah, K. A. & Mirkin, S. M. RNA–DNA hybrids promote the expansion of Friedreich’s ataxia (GAA)n repeats via break-induced replication. Nucleic Acids Res. 46, 3487–3497 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, L., Scott, W. S., Khristich, A. N., Armenia, J. F. & Mirkin, S. M. Recurrent DNA nicks drive massive expansions of (GAA)n repeats. Proc. Natl Acad. Sci. USA 121, e2413298121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nguyen, M. O., Jalan, M., Morrow, C. A., Osman, F. & Whitby, M. C. Recombination occurs within minutes of replication blockage by RTS1 producing restarted forks that are prone to collapse. eLife 4, e04539 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hu, Q. et al. Break-induced replication plays a prominent role in long-range repeat-mediated deletion. EMBO J. 38, e101751 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kononenko, A. V., Ebersole, T., Vasquez, K. M. & Mirkin, S. M. Mechanisms of genetic instability caused by (CGG)n repeats in an experimental mammalian system. Nat. Struct. Mol. Biol. 25, 669–676 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Halliwell, J. A. et al. Nanopore sequencing indicates that tandem amplification of chromosome 20q11.21 in human pluripotent stem cells is driven by break-induced replication. Stem. Cells Dev. 30, 578–586 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fadaie, Z. et al. Long-read technologies identify a hidden inverted duplication in a family with choroideremia. Hum. Genet. Genomics Adv. 2, 100046 (2021).

    Article  CAS  Google Scholar 

  135. Mizuguchi, T. et al. Pathogenic 12-kb copy-neutral inversion in syndromic intellectual disability identified by high-fidelity long-read sequencing. Genomics 113, 1044–1053 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Liu, L. et al. Tracking break-induced replication shows that it stalls at roadblocks. Nature 590, 655–659 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Leung, H. C. M. et al. Detecting structural variations with precise breakpoints using low-depth WGS data from a single oxford nanopore MinION flowcell. Sci. Rep. 12, 4519 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Romagnoli, S., Bartalucci, N. & Vannucchi, A. M. Resolving complex structural variants via nanopore sequencing. Front. Genet. 14, 1213917 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen, Y. et al. Deciphering the exact breakpoints of structural variations using long sequencing reads with DeBreak. Nat. Commun. 14, 283 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, F., Wen, Y. & Guo, X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum. Mol. Genet. 23, R40–R46 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Zhang, R. et al. Amplification editing enables efficient and precise duplication of DNA from short sequence to megabase and chromosomal scale. Cell 187, 3936–3952 (2024).

    Article  CAS  PubMed  Google Scholar 

  142. Richardson, C. D. et al. CRISPR–Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat. Genet. 50, 1132–1139 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Baylor-Hopkins Center for Mendelian Genomics et al. Interchromosomal template-switching as a novel molecular mechanism for imprinting perturbations associated with Temple syndrome. Genome Med. 11, 25 (2019).

  144. Bartsch, O. et al. Four unrelated patients with Lubs X-linked mental retardation syndrome and different Xq28 duplications. Am. J. Med. Genet. A. 152A, 305–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Boerkoel, P. K. et al. Long-read genome sequencing resolves a complex 13q structural variant associated with syndromic anophthalmia. Am. J. Med. Genet. A. 188, 1589–1594 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Beck, C. R. et al. Megabase length hypermutation accompanies human structural variation at 17p11.2. Cell 176, 1310–1324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sun, Z. et al. Replicative mechanisms of CNV formation preferentially occur as intrachromosomal events: evidence from Potocki–Lupski duplication syndrome. Hum. Mol. Genet. 22, 749–756 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Pehlivan, D. et al. Structural variant allelic heterogeneity in MECP2 duplication syndrome provides insight into clinical severity and variability of disease expression. Genome Med. 16, 146 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bauters, M. et al. Nonrecurrent MECP2 duplications mediated by genomic architecture-driven DNA breaks and break-induced replication repair. Genome Res. 18, 847–858 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vatta, M. et al. Evidence for replicative mechanism in a CHD7 rearrangement in a patient with CHARGE syndrome. Am. J. Med. Genet. A. 0, 3182–3186 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  151. Buki, G., Hadzsiev, K. & Bene, J. Microhomology-mediated break-induced replication: a possible molecular mechanism of the formation of a large CNV in FBN1 gene in a patient with Marfan syndrome. Curr. Mol. Med. 23, 433–441 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Nagai, K. et al. Xp22.31 microdeletion due to microhomology-mediated break-induced replication in a boy with contiguous gene deletion syndrome. Cytogenet. Genome Res. 151, 1–4 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Yuan, B. et al. Nonrecurrent PMP22–RAI1 contiguous gene deletions arise from replication-based mechanisms and result in Smith-Magenis syndrome with evident peripheral neuropathy. Hum. Genet. 135, 1161–1174 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Motobayashi, M. et al. Neurodevelopmental features in 2q23.1 microdeletion syndrome: report of a new patient with intractable seizures and review of literature. Am. J. Med. Genet. A. 158A, 861–868 (2012).

    Article  PubMed  Google Scholar 

  155. Stankiewicz, P. et al. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am. J. Hum. Genet. 84, 780–791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nagamani, S. C. S. et al. Microdeletions including YWHAE in the Miller–Dieker syndrome region on chromosome 17p13.3 result in facial dysmorphisms, growth restriction, and cognitive impairment. J. Med. Genet. 46, 825–833 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. van der Maarel, S. M. et al. De novo facioscapulohumeral muscular dystrophy: frequent somatic mosaicism, sex-dependent phenotype, and the role of mitotic transchromosomal repeat interaction between chromosomes 4 and 10. Am. J. Hum. Genet. 66, 26–35 (2000).

    Article  PubMed  Google Scholar 

  158. Musmaker, K., Wells, J., Tsai, M.-C., Comeron, J. M. & Malkova, A. Alternative lengthening of telomeres in yeast: old questions and new approaches. Biomolecules 14, 113 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kim, C. et al. Long-read sequencing reveals intra-species tolerance of substantial structural variations and new subtelomere formation in C. elegans. Genome Res. 29, 1023–1035 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bhandari, J., Karg, T. & Golic, K. G. Homolog-dependent repair following dicentric chromosome breakage in Drosophila melanogaster. Genetics 212, 615–630 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sanchez‐Puerta, M. V., Zubko, M. K. & Palmer, J. D. Homologous recombination and retention of a single form of most genes shape the highly chimeric mitochondrial genome of a cybrid plant. N. Phytol. 206, 381–396 (2015).

    Article  Google Scholar 

  162. Garcia, L. E., Zubko, M. K., Zubko, E. I. & Sanchez-Puerta, M. V. Elucidating genomic patterns and recombination events in plant cybrid mitochondria. Plant Mol. Biol. 100, 433–450 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Christensen, A. C. Plant mitochondrial genome evolution can be explained by DNA repair mechanisms. Genome Biol. Evol. 5, 1079 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Christensen, A. C. Genes and junk in plant mitochondria—repair mechanisms and selection. Genome Biol. Evol. 6, 1448 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Smith, D. R. Can green algal plastid genome size be explained by DNA repair mechanisms? Genome Biol. Evol. 12, 3797–3802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rahnama, M. et al. Telomere roles in fungal genome evolution and adaptation. Front. Genet. 12, 676751 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bergthorsson, U., Adams, K. L., Thomason, B. & Palmer, J. D. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424, 197–201 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Maréchal, A. & Brisson, N. Recombination and the maintenance of plant organelle genome stability. N. Phytol. 186, 299–317 (2010).

    Article  Google Scholar 

  169. Taylor, Z. N., Rice, D. W. & Palmer, J. D. The complete moss mitochondrial genome in the angiosperm amborella is a chimera derived from two moss whole-genome transfers. PLoS ONE 10, e0137532 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Roulet, M. E., Ceriotti, L. F., Gatica-Soria, L. & Sanchez-Puerta, M. V. Horizontally transferred mitochondrial DNA tracts become circular by microhomology-mediated repair pathways. N. Phytol. 243, 2442–2456 (2024).

    Article  CAS  Google Scholar 

  171. Gandini, C. L. et al. Break-induced replication is the primary recombination pathway in plant somatic hybrid mitochondria: a model for mitochondrial horizontal gene transfer. J. Exp. Bot. 74, 3503–3517 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by R01 CA138835, R01 CA174904 and GM 101194; a Bloom Syndrome Grant from the UPENN Orphan Disease Center; NSFGRFP grant DGE-2236662 to A.A, and an ACS-funded postdoctoral fellowship PF-23-1150186-01-DMC to H.J.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Roger A. Greenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Anna Malkova, Xiaohua Wu, and James Haber for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atari, A., Jiang, H. & Greenberg, R.A. Mechanisms and genomic implications of break-induced replication. Nat Struct Mol Biol (2025). https://doi.org/10.1038/s41594-025-01644-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41594-025-01644-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing