Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Core principles of autophagy initiation mechanisms

Abstract

Autophagy is a conserved intracellular degradation system essential for maintaining cellular homeostasis and adapting to a variety of environmental or metabolic cues. Different types of autophagy are induced in response to various physiological signals through distinct mechanisms. In this Review, we highlight recent advances in understanding the molecular mechanisms that induce autophagic degradation of cytoplasmic material in bulk upon nutrient or energy deprivation, and those that trigger the selective autophagic removal of specific cellular components for their quality or quantity control. We discuss mechanistic principles shared across different types of autophagy, such as phase-separation-mediated assembly and activation of related factors, and the coordination between cargo recognition and membrane biogenesis, delineating how diverse mechanisms converge on core principles to ensure context-specific control of autophagy initiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Non-selective autophagy and selective autophagy.
Fig. 2: Assembly of autophagy initiation complexes.
Fig. 3: Initiation of selective autophagy.

Similar content being viewed by others

References

  1. Yang, Z. & Klionsky, D. J. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12, 814–822 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Nakatogawa, H. Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Biol. 21, 439–458 (2020).

    Article  CAS  Google Scholar 

  3. Lamark, T. & Johansen, T. Mechanisms of selective autophagy. Annu. Rev. Cell Dev. Biol. 37, 143–169 (2021).

    Article  PubMed  CAS  Google Scholar 

  4. Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018).

    Article  CAS  Google Scholar 

  5. Levine, B. & Kroemer, G. Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kamada, Y. et al. Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol. 30, 1049–1058 (2010).

    Article  PubMed  CAS  Google Scholar 

  7. Fujioka, Y. et al. Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat. Struct. Mol. Biol. 21, 513–521 (2014).

    Article  CAS  Google Scholar 

  8. Powis, K. & De Virgilio, C. Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling. Cell Discov. 2, 15049 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yeasmin, A. M. et al. Orchestrated action of PP2A antagonizes Atg13 phosphorylation and promotes autophagy after the inactivation of TORC1. PLoS ONE 11, e0166636 (2016).

    Article  Google Scholar 

  10. Memisoglu, G., Eapen, V. V., Yang, Y., Klionsky, D. J. & Haber, J. E. PP2C phosphatases promote autophagy by dephosphorylation of the Atg1 complex. Proc. Natl Acad. Sci. USA 116, 1613–1620 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hollenstein, D. M. et al. Vac8 spatially confines autophagosome formation at the vacuole in S. Cerevisiae. J. Cell Sci. 132, jcs235002 (2019).

  12. Yeh, Y. Y., Wrasman, K. & Herman, P. K. Autophosphorylation within the Atg1 activation loop is required for both kinase activity and the induction of autophagy in Saccharomyces cerevisiae. Genetics 185, 871–882 (2010).

    Article  PubMed Central  CAS  Google Scholar 

  13. Yamamoto, H. et al. The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Dev. Cell 38, 86–99 (2016).

    Article  PubMed  CAS  Google Scholar 

  14. Fujioka, Y. et al. Phase separation organizes the site of autophagosome formation. Nature 578, 301–305 (2020).

    Article  PubMed  CAS  Google Scholar 

  15. Suzuki, K. et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20, 5971–5981 (2001).

    Article  CAS  Google Scholar 

  16. Yamamoto, H. et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198, 219–233 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Suzuki, S. W. et al. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proc. Natl Acad. Sci. USA 112, 3350–3355 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sawa-Makarska, J. et al. Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation. Science 369, eaaz7714 (2020).

  19. Lei, Y. et al. Autophagic elimination of ribosomes during spermiogenesis provides energy for flagellar motility. Dev. Cell 56, 2313–2328 (2021).

    Article  CAS  Google Scholar 

  20. Hollenstein, D. M. et al. Spatial control of avidity regulates initiation and progression of selective autophagy. Nat. Commun. 12, 7194 (2021).

    Article  PubMed Central  CAS  Google Scholar 

  21. Hitomi, K., Kotani, T., Noda, N. N., Kimura, Y. & Nakatogawa, H. The Atg1 complex, Atg9, and Vac8 recruit PI3K complex I to the pre-autophagosomal structure. J. Cell. Biol. 222, e202210017 (2023).

  22. Obara, K., Sekito, T., Niimi, K. & Ohsumi, Y. The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J. Biol. Chem. 283, 23972–23980 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458–467 (2009).

    Article  PubMed  CAS  Google Scholar 

  24. Rieter, E. et al. Atg18 function in autophagy is regulated by specific sites within its β-propeller. J. Cell Sci. 126, 593–604 (2013).

    Article  PubMed  CAS  Google Scholar 

  25. Juris, L. et al. PI3P binding by Atg21 organises Atg8 lipidation. EMBO J. 34, 955–973 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  26. Harada, K. et al. Two distinct mechanisms target the autophagy-related E3 complex to the pre-autophagosomal structure. eLife 8, e43088 (2019).

  27. Papinski, D. et al. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol. Cell 53, 471–483 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sánchez-Wandelmer, J. et al. Atg4 proteolytic activity can be inhibited by Atg1 phosphorylation. Nat. Commun. 8, 295 (2017).

    Article  PubMed Central  Google Scholar 

  29. Hu, Z. et al. Multilayered control of protein turnover by TORC1 and Atg1. Cell Rep. 28, 3486–3496 (2019).

    Article  CAS  Google Scholar 

  30. Gómez-Sánchez, R. et al. Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. J. Cell. Biol. 217, 2743–2763 (2018).

    Article  Google Scholar 

  31. Kotani, T., Kirisako, H., Koizumi, M., Ohsumi, Y. & Nakatogawa, H. The Atg2–Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Proc. Natl Acad. Sci. USA 115, 10363–10368 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Osawa, T. et al. Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat. Struct. Mol. Biol. 26, 281–288 (2019).

    Article  PubMed  CAS  Google Scholar 

  33. Matoba, K. et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27, 1185–1193 (2020).

    Article  PubMed  CAS  Google Scholar 

  34. van Vliet, A. R. et al. ATG9A and ATG2A form a heteromeric complex essential for autophagosome formation. Mol. Cell 82, 4324–4339 (2022).

    Article  PubMed  Google Scholar 

  35. Gómez-Sánchez, R. et al. Establishment of the phagophore–ERES membrane contact site initiates phagophore elongation. Nat. Struct. Mol. Biol. 32, 2319–2334 (2025).

  36. Zhao, Y. G., Codogno, P. & Zhang, H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat. Rev. Mol. Cell Biol. 22, 733–750 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kraft, C. & Reggiori, F. Phagophore closure, autophagosome maturation and autophagosome fusion during macroautophagy in the yeast Saccharomyces cerevisiae. FEBS Lett. 598, 73–83 (2024).

    Article  PubMed  CAS  Google Scholar 

  38. Rogov, V. V. et al. Atg8 family proteins, LIR/AIM motifs and other interaction modes. Autophagy Rep. 2, 2188523 (2023).

  39. Budovskaya, Y. V., Stephan, J. S., Deminoff, S. J. & Herman, P. K. An evolutionary proteomics approach identifies substrates of the cAMP-dependent protein kinase. Proc. Natl Acad. Sci. USA 102, 13933–13938 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Stephan, J. S., Yeh, Y.-Y., Ramachandran, V., Deminoff, S. J. & Herman, P. K. The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. Proc. Natl Acad. Sci. USA 106, 17049–17054 (2009).

    Article  PubMed Central  CAS  Google Scholar 

  41. Yi, C. et al. Formation of a Snf1–Mec1–Atg1 module on mitochondria governs energy deprivation-induced autophagy by regulating mitochondrial respiration. Dev. Cell 41, 59–71 (2017).

    Article  PubMed  CAS  Google Scholar 

  42. Yao, W. et al. Mec1 regulates PAS recruitment of Atg13 via direct binding with Atg13 during glucose starvation-induced autophagy. Proc. Natl Acad. Sci. USA 120, e2215126120 (2023).

    Article  PubMed  CAS  Google Scholar 

  43. Yao, W. et al. Ca2+-triggered Atg11–Bmh1/2–Snf1 complex assembly initiates autophagy upon glucose starvation. J. Cell Biol. 223, e202310049 (2024).

  44. Wei, Z. et al. Molecular mechanisms underlying initiation and activation of autophagy. Biomolecules 14, 1517 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685–701 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Itakura, E. & Mizushima, N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764–776 (2010).

    Article  PubMed Central  CAS  Google Scholar 

  47. Hara, T. et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181, 497–510 (2008).

    Article  PubMed Central  CAS  Google Scholar 

  48. Jung, C. H. et al. ULK–Atg13–FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992–2003 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ganley, I. G. et al. ULK1·ATG13·FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297–12305 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Mercer, C. A., Kaliappan, A. & Dennis, P. B. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5, 649–662 (2009).

    Article  PubMed  CAS  Google Scholar 

  52. Kim, J., Kundu, M., Viollet, B. & Guan, K.-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article  PubMed Central  CAS  Google Scholar 

  53. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    Article  PubMed  CAS  Google Scholar 

  54. Zhao, Y. G. et al. The ER contact proteins VAPA/B interact with multiple autophagy proteins to modulate autophagosome biogenesis. Curr. Biol. 28, 1234–1245 (2018).

    Article  PubMed  CAS  Google Scholar 

  55. Di Mattia, T. et al. FFAT motif phosphorylation controls formation and lipid transfer function of inter-organelle contacts. EMBO J. 39, e104369 (2020).

  56. Liu, N., Zhao, H., Zhao, Y. G., Hu, J. & Zhang, H. Atlastin 2/3 regulate ER targeting of the ULK1 complex to initiate autophagy. J. Cell Biol. 220, e202012091 (2021).

  57. Zheng, Q. et al. Calcium transients on the ER surface trigger liquid-liquid phase separation of FIP200 to specify autophagosome initiation sites. Cell 185, 4082–4098 (2022).

    Article  PubMed  CAS  Google Scholar 

  58. Banerjee, C. et al. ULK1 forms distinct oligomeric states and nanoscopic structures during autophagy initiation. Sci. Adv. 9, 4094 (2023).

    Article  Google Scholar 

  59. Zheng, Q. et al. Ca2+/calmodulin-dependent protein kinase II β decodes ER Ca2+ transients to trigger autophagosome formation. Mol. Cell 85, 620–637.e6 (2025).

    Article  CAS  Google Scholar 

  60. Fujita, N. et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092–2100 (2008).

    Article  PubMed  CAS  Google Scholar 

  61. Velikkakath, A. K. G., Nishimura, T., Oita, E., Ishihara, N. & Mizushima, N. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol. Biol. Cell 23, 896–909 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Dooley, H. C. et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12–5-16L1. Mol. Cell 55, 238–252 (2014).

    Article  PubMed  CAS  Google Scholar 

  63. Kim, B.-W. et al. The C-terminal region of ATG101 bridges ULK1 and PtdIns3K complex in autophagy initiation. Autophagy 14, 2104–2116 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hama, Y., Kurikawa, Y., Matsui, T., Mizushima, N. & Yamamoto, H. TAX1BP1 recruits ATG9 vesicles through SCAMP3 binding. Preprint at bioRxiv https://doi.org/10.1101/2023.08.18.553817 (2023).

  65. Nishimura, T. et al. Autophagosome formation is initiated at phosphatidylinositol synthase-enriched ER subdomains. EMBO J. 36, 1719–1735 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Morita, K. et al. Genome-wide CRISPR screen identifies TMEM41B as a gene required for autophagosome formation. J. Cell Biol. 217, 3817–3828 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Moretti, F. et al. TMEM41B is a novel regulator of autophagy and lipid mobilization. EMBO Rep. 19, e45889 (2018).

  68. Shoemaker, C. J. et al. CRISPR screening using an expanded toolkit of autophagy reporters identifies TMEM41B as a novel autophagy factor. PLoS Biol. 17, e2007044 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Maeda, S. et al. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat. Struct. Mol. Biol. 27, 1194–1201 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ghanbarpour, A., Valverde, D. P., Melia, T. J. & Reinisch, K. M. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. Proc. Natl Acad. Sci. USA 118, e2101562118 (2021).

  71. Dorsey, F. C. et al. Mapping the phosphorylation sites of Ulk1. J. Proteome Res. 8, 5253–5263 (2009).

    Article  PubMed  CAS  Google Scholar 

  72. Cherra, S. J. et al. Regulation of the autophagy protein LC3 by phosphorylation. J. Cell Biol. 190, 533–539 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ragusa, M. J., Stanley, R. E. & Hurley, J. H. Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 151, 1501–1512 (2012).

    Article  PubMed Central  CAS  Google Scholar 

  74. Chew, L. H. et al. Molecular interactions of the Saccharomyces cerevisiae Atg1 complex provide insights into assembly and regulatory mechanisms. Autophagy 11, 891–905 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Shi, X. et al. ULK complex organization in autophagy by a C-shaped FIP200 N-terminal domain dimer. J. Cell Biol. 219, e201911047 (2020).

  76. Hama, Y., Fujioka, Y., Yamamoto, H., Mizushima, N. & Noda, N. N. The triad interaction of ULK1, ATG13, and FIP200 is required for ULK complex formation and autophagy. eLife 13, RP101531 (2025).

  77. Chen, M. et al. Structure and activation of the human autophagy-initiating ULK1C:PI3KC3-C1 supercomplex. Nat. Struct. Mol. Biol. 32, 1596–1605 (2025).

  78. Cook, A. S. I. et al. Structural pathway for PI3-kinase regulation by VPS15 in autophagy. Science 388, eadl3787 (2025).

  79. Vargas, J. N. S., Hamasaki, M., Kawabata, T., Youle, R. J. & Yoshimori, T. The mechanisms and roles of selective autophagy in mammals. Nat. Rev. Mol. Cell. Biol. 24, 167–185 (2023).

    Article  PubMed  CAS  Google Scholar 

  80. Lynch-Day, M. A. & Klionsky, D. J. The Cvt pathway as a model for selective autophagy. FEBS Lett. 584, 1359–1366 (2010).

    Article  PubMed Central  CAS  Google Scholar 

  81. Yamasaki, A. et al. Liquidity is a critical determinant for selective autophagy of protein condensates. Mol. Cell 77, 1163–1175 (2020).

    Article  PubMed  CAS  Google Scholar 

  82. Kamber, R. A., Shoemaker, C. J. & Denic, V. Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase. Mol. Cell 59, 372–381 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Torggler, R. et al. Two independent pathways within selective autophagy converge to activate Atg1 kinase at the vacuole. Mol. Cell 64, 221–235 (2016).

    Article  PubMed  CAS  Google Scholar 

  84. Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D. J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17, 98–109 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17, 87–97 (2009).

    Article  CAS  Google Scholar 

  86. Motley, A. M., Nuttall, J. M. & Hettema, E. H. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 31, 2852–2868 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Mochida, K. et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522, 359–362 (2015).

    Article  CAS  Google Scholar 

  88. Lu, K., Psakhye, I. & Jentsch, S. Autophagic clearance of PolyQ proteins mediated by ubiquitin–Atg8 adaptors of the conserved CUET protein family. Cell 158, 549–563 (2014).

    Article  PubMed  CAS  Google Scholar 

  89. Ma, X. et al. CCT2 is an aggrephagy receptor for clearance of solid protein aggregates. Cell 185, 1325–1345 (2022).

    Article  PubMed  CAS  Google Scholar 

  90. Chen, Y. et al. Two distinct regulatory pathways govern Cct2–Atg8 binding in the process of solid aggrephagy. EMBO Rep. 25, 4749–4776 (2024).

    Article  PubMed Central  CAS  Google Scholar 

  91. Marshall, R. S., McLoughlin, F. & Vierstra, R. D. Autophagic turnover of inactive 26S proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone. Cell Rep. 16, 1717–1732 (2016).

    Article  PubMed  CAS  Google Scholar 

  92. Chen, Y. et al. Rpl12 is a conserved ribophagy receptor. Nat. Cell Biol. 27, 477–492 (2025).

    Article  PubMed  CAS  Google Scholar 

  93. Minami, A. et al. The ribonuclease RNase T2 mediates selective autophagy of ribosomes induced by starvation in Saccharomyces cerevisiae. J. Biol. Chem. 301, 108554 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Isoda, T., Takeda, E., Hosokawa, S., Hotta-Ren, S. & Ohsumi, Y. Atg45 is an autophagy receptor for glycogen, a non-preferred cargo of bulk autophagy in yeast. iScience 27, 109810 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Takeda, E. et al. Receptor-mediated cargo hitchhiking on bulk autophagy. EMBO J. 43, 3116–3140 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sandoval, H. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008).

    Article  CAS  Google Scholar 

  97. Bellot, G. et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell Biol. 29, 2570–2581 (2009).

    Article  PubMed  CAS  Google Scholar 

  98. Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177–185 (2012).

    Article  Google Scholar 

  99. Strappazzon, F. et al. AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Diff. 22, 419–432 (2014).

    Article  Google Scholar 

  100. Murakawa, T. et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat. Commun. 6, 1–14 (2015).

    Article  Google Scholar 

  101. Wei, Y., Chiang, W. C., Sumpter, R., Mishra, P. & Levine, B. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168, 224–238 (2017).

    Article  PubMed  CAS  Google Scholar 

  102. Bhujabal, Z. et al. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep. 18, 947–961 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Zhang, Y. et al. Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing. Nat. Immunol. 20, 433–446 (2019).

    Article  PubMed  CAS  Google Scholar 

  104. Princely Abudu, Y. et al. NIPSNAP1 and NIPSNAP2 act as “eat me” signals for mitophagy. Dev. Cell 49, 509–525.e12 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Adriaenssens, E. et al. Reconstitution of BNIP3/NIX-mitophagy initiation reveals hierarchical flexibility of the autophagy machinery. Nat. Cell Biol. 27, 1272–1287 (2025).

    Article  CAS  Google Scholar 

  106. Khaminets, A. et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354–358 (2015).

    Article  PubMed  CAS  Google Scholar 

  107. Fumagalli, F. et al. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat. Cell Biol. 18, 1173–1184 (2016).

    Article  PubMed  CAS  Google Scholar 

  108. Grumati, P. et al. Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. eLife 6, e25555 (2017).

  109. Smith, M. D. et al. CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis. Dev. Cell 44, 217–232 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Chen, Q. et al. ATL3 Is a tubular ER-phagy receptor for GABARAP-mediated selective autophagy. Curr. Biol. 29, 846–855 (2019).

    Article  PubMed  CAS  Google Scholar 

  111. Chino, H., Hatta, T., Natsume, T. & Mizushima, N. Intrinsically disordered protein TEX264 mediates ER-phagy. Mol. Cell 74, 909–921.e6 (2019).

    Article  CAS  Google Scholar 

  112. An, H. et al. TEX264 is an endoplasmic reticulum-resident ATG8-interacting protein critical for ER remodeling during nutrient stress. Mol. Cell 74, 891–908 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Nthiga, T. M. et al. CALCOCO 1 acts with VAMP -associated proteins to mediate ER-phagy. EMBO J. 39, e103649 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Stephani, M. et al. A cross-kingdom conserved er-phagy receptor maintains endoplasmic reticulum homeostasis during stress. eLife 9, 1–105 (2020).

    Article  Google Scholar 

  115. Lu, L.-Q. et al. Regulation of the Golgi apparatus via GOLPH3-mediated new selective autophagy. Life Sci. 253, 117700 (2020).

    Article  CAS  Google Scholar 

  116. Nthiga, T. M. et al. Regulation of golgi turnover by CALCOCO1-mediated selective autophagy. J. Cell Biol. 220, e202006128 (2021).

  117. Hickey, K. L. et al. Proteome census upon nutrient stress reveals Golgiphagy membrane receptors. Nature 623, 167–174 (2023).

    Article  CAS  Google Scholar 

  118. Kitta, S. et al. YIPF3 and YIPF4 regulate autophagic turnover of the Golgi apparatus. EMBO J. 43, 2954–2978 (2024).

    Article  CAS  Google Scholar 

  119. Yang, J. et al. TM9SF3 is a Golgi-resident ATG8-binding protein essential for Golgi-selective autophagy. Dev. Cell 60, 2862–2879 (2025).

    Article  CAS  Google Scholar 

  120. Wyant, G. A. et al. Nufip1 is a ribosome receptor for starvation-induced ribophagy. Science 360, 751–758 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Zhang, Y. et al. Decoding the molecular mechanism of selective autophagy of glycogen mediated by autophagy receptor STBD1. Proc. Natl Acad. Sci. USA 121, e2402817121 (2024).

    Article  PubMed  Google Scholar 

  122. Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109 (2014).

    Article  CAS  Google Scholar 

  123. Dowdle, W. E. et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16, 1069–1079 (2014).

    Article  CAS  Google Scholar 

  124. Zhao, D. et al. A UPR-induced soluble ER-phagy receptor acts with VAPs to confer ER stress resistance. Mol Cell 79, 963–977 (2020).

    Article  PubMed  CAS  Google Scholar 

  125. Fukuda, T. et al. Atg43 tethers isolation membranes to mitochondria to promote starvation-induced mitophagy in fission yeast. eLife 9, e61245 (2020).

  126. Ma, Z.-H. et al. Nucleophagy is promoted by two autophagy receptors and inhibited by chromatin-nuclear envelope tethering in fission yeast. Preprint at bioRxiv https://doi.org/10.1101/2025.04.09.648038 (2025).

  127. Bjørkøy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

    Article  PubMed Central  Google Scholar 

  128. Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505–516 (2009).

    Article  CAS  Google Scholar 

  129. Thurston, T. L. M. The tbk1 adaptor and autophagy receptor ndp52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10, 1215–1222 (2009).

    Article  PubMed  CAS  Google Scholar 

  130. Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011).

    Article  CAS  Google Scholar 

  131. Newman, A. C. et al. TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-κB signalling. PLoS ONE 7, e50672 (2012).

    Article  PubMed  CAS  Google Scholar 

  132. Johansen, T. & Lamark, T. Selective autophagy: ATG8 family proteins, LIR motifs and cargo receptors. J. Mol. Biol. 432, 80–103 (2020).

    Article  PubMed  CAS  Google Scholar 

  133. Matsuda, N. & Yamano, K. Two sides of a coin: physiological significance and molecular mechanisms for damage-induced mitochondrial localization of PINK1 and Parkin. Neurosci. Res. 159, 16–24 (2020).

    Article  PubMed  CAS  Google Scholar 

  134. Narendra, D. P. & Youle, R. J. The role of PINK1–Parkin in mitochondrial quality control. Nat. Cell Biol. 26, 1639–1651 (2024).

    Article  PubMed  CAS  Google Scholar 

  135. Papadopoulos, C., Kravic, B. & Meyer, H. Repair or lysophagy: dealing with damaged lysosomes. J. Mol. Biol. 432, 231–239 (2020).

    Article  PubMed  CAS  Google Scholar 

  136. Huang, J. & Brumell, J. H. Bacteria—autophagy interplay: a battle for survival. Nat. Rev. Microbiol. 12, 101–114 (2014).

    Article  PubMed  CAS  Google Scholar 

  137. Zhao, P. et al. Rab GTPases are evolutionarily conserved signals mediating selective autophagy. J. Cell Biol. 224, e202410150 (2025).

  138. Mizuno, T., Muroi, K. & Irie, K. Snf1 AMPK positively regulates ER-phagy via expression control of Atg39 autophagy receptor in yeast ER stress response. PLoS Genet. 16, e1009053 (2020).

    Article  PubMed  CAS  Google Scholar 

  139. Hutchins, M. U., Veenhuis, M. & Klionsky, D. J. Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J. Cell Sci. 112, 4079–4087 (1999).

    Article  PubMed  CAS  Google Scholar 

  140. Aihara, M. et al. The Tor and Sin3-Rpd3 complex regulate expression of the mitophagy receptor protein Atg32. J. Cell Sci. 127, 3184–3196 (2014).

  141. Cui, Y. et al. A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation. Science 365, 53–60 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Mizuno, T. & Irie, K. Msn2/4 transcription factors positively regulate expression of Atg39 ER-phagy receptor. Sci. Rep. 11, 11919 (2021).

    Article  PubMed  CAS  Google Scholar 

  143. Kanki, T. et al. Casein kinase 2 is essential for mitophagy. EMBO Rep. 14, 788–794 (2013).

    Article  PubMed Central  CAS  Google Scholar 

  144. Farré, J., Burkenroad, A., Burnett, S. F. & Subramani, S. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep. 14, 441–449 (2013).

    Article  PubMed Central  Google Scholar 

  145. Furukawa, K. et al. The PP2A-like protein phosphatase Ppg1 and the far complex cooperatively counteract CK2-mediated phosphorylation of Atg32 to inhibit mitophagy. Cell Rep. 23, 3579–3590 (2018).

    Article  PubMed  CAS  Google Scholar 

  146. Tanaka, C. et al. Hrr25 triggers selective autophagy–related pathways by phosphorylating receptor proteins. J. Cell Biol. 207, 91–105 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  147. Meguro, S., Zhuang, X., Kirisako, H. & Nakatogawa, H. Pex3 confines pexophagy receptor activity of Atg36 to peroxisomes by regulating Hrr25-mediated phosphorylation and proteasomal degradation. J. Biol. Chem. 295, 16292–16298 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Till, A., Lakhani, R., Burnett, S. F. & Subramani, S. Pexophagy: the selective degradation of peroxisomes. Int. J. Cell Biol. 2012, 1–18 (2012).

    Article  Google Scholar 

  149. Oku, M. & Sakai, Y. Pexophagy in yeasts. Biochim. Biophys. Acta 1863, 992–998 (2016).

    Article  PubMed  CAS  Google Scholar 

  150. Zientara-Rytter, K., Ozeki, K., Nazarko, T. Y. & Subramani, S. Pex3 and Atg37 compete to regulate the interaction between the pexophagy receptor, Atg30, and the Hrr25 kinase. Autophagy 14, 368–384 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Yao, W. et al. Atg1-mediated Atg11 phosphorylation is required for selective autophagy by regulating its association with receptor proteins. Autophagy 19, 180–188 (2023).

    Article  PubMed  CAS  Google Scholar 

  152. Gross, A. S. et al. A metabolite sensor subunit of the Atg1/ULK complex regulates selective autophagy. Nat. Cell Biol. 26, 366–377 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Vargas, J. N. S. et al. Spatiotemporal control of ULK1 activation by NDP52 and TBK1 during selective autophagy. Mol. Cell 74, 347–362 (2019).

    Article  PubMed  CAS  Google Scholar 

  154. Ravenhill, B. J. et al. The cargo receptor NDP52 initiates selective autophagy by recruiting the ULK complex to cytosol-invading bacteria. Mol. Cell 74, 320–329 (2019).

    Article  PubMed  CAS  Google Scholar 

  155. Turco, E. et al. FIP200 claw domain binding to p62 promotes autophagosome formation at ubiquitin condensates. Mol. Cell 74, 330–346 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Chino, H. et al. Phosphorylation by casein kinase 2 enhances the interaction between ER-phagy receptor TEX264 and ATG8 proteins. EMBO Rep. 23, e54801 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Chen, G. et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 54, 362–377 (2014).

    Article  PubMed  CAS  Google Scholar 

  158. Matsumoto, G., Wada, K., Okuno, M., Kurosawa, M. & Nukina, N. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell 44, 279–289 (2011).

    Article  PubMed  CAS  Google Scholar 

  159. Pilli, M. et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223–234 (2012).

    Article  PubMed Central  CAS  Google Scholar 

  160. Heo, J. M., Ordureau, A., Paulo, J. A., Rinehart, J. & Harper, J. W. The PINK1–PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7–20 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Lim, J. et al. Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet. 11, e1004987 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Richter, B. et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl Acad. Sci. USA 113, 4039–4044 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  163. Schlütermann, D. et al. FIP200 controls the TBK1 activation threshold at SQSTM1/p62-positive condensates. Sci. Rep. 11, 13863 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Yamano, K. et al. Optineurin provides a mitophagy contact site for TBK1 activation. EMBO J. 43, 754–779 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Liang, J. R. et al. A genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation. Cell 180, 1160–1177.e20 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Ishimura, R. et al. The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3. Nat. Commun. 13, 7857 (2022).

    Article  PubMed  CAS  Google Scholar 

  167. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  PubMed  CAS  Google Scholar 

  168. Komatsu, M. p62 bodies: phase separation, NRF2 activation, and selective autophagic degradation. IUBMB Life 74, 1200–1208 (2022).

    Article  PubMed  CAS  Google Scholar 

  169. Zaffagnini, G. et al. p62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J. 37, e98308 (2018).

  170. Sánchez-Martín, P. et al. NBR 1-mediated p62-liquid droplets enhance the Keap1-Nrf2 system. EMBO Rep. 21, e48902 (2020).

  171. Lau, A. et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol. Cell Biol. 30, 3275–3285 (2010).

    Article  PubMed Central  CAS  Google Scholar 

  172. Fan, W. et al. Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy 6, 614–621 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Komatsu, M. et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213–223 (2010).

    Article  PubMed  CAS  Google Scholar 

  174. Jain, A. et al. p62/SQSTM1 is a target gene for transcription factor nrf2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285, 22576–22591 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Kurusu, R. et al. Integrated proteomics identifies p62-dependent selective autophagy of the supramolecular vault complex. Dev. Cell 58, 1189–1205 (2023).

    Article  PubMed  CAS  Google Scholar 

  176. Ohshima, T., Yamamoto, H., Sakamaki, Y., Saito, C. & Mizushima, N. NCOA4 drives ferritin phase separation to facilitate macroferritinophagy and microferritinophagy. J. Cell Biol. 221, e202203102 (2022).

  177. Goodwin, J. M. et al. Autophagy-independent lysosomal targeting regulated by ULK1/2-FIP200 and ATG9. Cell Rep. 20, 2341–2356 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Agudo-Canalejo, J. et al. Wetting regulates autophagy of phase-separated compartments and the cytosol. Nature 591, 142–146 (2021).

    Article  PubMed  CAS  Google Scholar 

  179. Licheva, M. et al. Phase separation of initiation hubs on cargo is a trigger switch for selective autophagy. Nat. Cell Biol. 27, 283–297 (2025).

    Article  PubMed Central  CAS  Google Scholar 

  180. Zhang, G., Wang, Z., Du, Z. & Zhang, H. mTOR regulates phase separation of PGL granules to modulate their autophagic degradation. Cell 174, 1492–1506 (2018).

    Article  CAS  Google Scholar 

  181. Yang, Z. et al. Autophagy adaptors mediate Parkin-dependent mitophagy by forming sheet-like liquid condensates. EMBO J. 43, 5613–5634 (2024).

    Article  PubMed  Google Scholar 

  182. Gallagher, E. R. & Holzbaur, E. L. F. The selective autophagy adaptor p62/SQSTM1 forms phase condensates regulated by HSP27 that facilitate the clearance of damaged lysosomes via lysophagy. Cell Rep. 42, 112037 (2023).

    Article  PubMed  CAS  Google Scholar 

  183. Zhang, S., Hama, Y. & Mizushima, N. The evolution of autophagy proteins – diversification in eukaryotes and potential ancestors in prokaryotes. J. Cell Sci. 134, jcs233742 (2021).

  184. Rasmussen, N. L., Kournoutis, A., Lamark, T. & Johansen, T. NBR1: the archetypal selective autophagy receptor. J. Cell Biol. 134, jcs233742 (2022).

  185. Liu, X. M. et al. ESCRTs cooperate with a selective autophagy receptor to mediate vacuolar targeting of soluble cargos. Mol. Cell 59, 1035–1042 (2015).

    Article  PubMed  CAS  Google Scholar 

  186. He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009).

    Article  PubMed  CAS  Google Scholar 

  187. Velazquez, A. F. C. & Jackson, W. T. So many roads: the multifaceted regulation of autophagy induction. Mol. Cell Biol. 38, 303–321 (2018).

    Google Scholar 

  188. Vevea, J. D. et al. Role for lipid droplet biogenesis and microlipophagy in adaptation to lipid imbalance in yeast. Dev. Cell 35, 584–599 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Bhaskara, R. M. et al. Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy. Nat. Commun. 10, 1–13 (2019).

    Article  CAS  Google Scholar 

  190. Mochida, K. et al. Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes. Nat. Commun. 11, 3306 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Jiang, X. et al. FAM 134B oligomerization drives endoplasmic reticulum membrane scission for ER -phagy. EMBO J. 39, e102608 (2020).

  192. Chandra, S. et al. Atg39 selectively captures inner nuclear membrane into lumenal vesicles for delivery to the autophagosome. J. Cell Biol. 220, e202103030 (2021).

  193. Mochida, K. et al. Atg39 links and deforms the outer and inner nuclear membranes in selective autophagy of the nucleus. J. Cell Biol. 221, e202103178 (2022).

  194. González, A. et al. Ubiquitination regulates ER-phagy and remodelling of endoplasmic reticulum. Nature 618, 394–401 (2023).

  195. Wang, N., Shibata, Y., Paulo, J. A., Gygi, S. P. & Rapoport, T. A. A conserved membrane curvature-generating protein is crucial for autophagosome formation in fission yeast. Nat. Commun. 14, 4765 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Fukuda, T. et al. The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy. Mol. Cell 83, 2045–2058 (2023).

    Article  CAS  Google Scholar 

  197. Fukuda, T. et al. Hva22, a REEP family protein in fission sssyeast, promotes reticulophagy in collaboration with a receptor protein. Autophagy 19, 2657–2667 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Zou, C. X. et al. The ortholog of human REEP1-4 is required for autophagosomal enclosure of ER-phagy/nucleophagy cargos in fission yeast. PLoS Biol. 21, e3002372 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Rudinskiy, M., Galli, C., Raimondi, A. & Molinari, M. The intrinsically disordered regions of organellophagy receptors are interchangeable and control organelle fragmentation, ER-phagy and mitophagy flux. Nat. Cell Biol. 27, 1431–1447 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Germain, K. et al. Upregulated pexophagy limits the capacity of selective autophagy. Nat. Commun. 15, 375 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by KAKENHI Grants-in-Aid for Scientific Research JP23K20044, JP24H00553 and JP25H01322 (to H.N.) and JP25K09544 (to T.K.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan; AMED grant number JP21gm1410004 (to H.N.); and grants from the Takeda Science Foundation (to H.N.). We thank H. Zhang for critical reading of the manuscript and helpful comments. We also thank N. Matsuda for valuable discussions. We apologize to those whose relevant work could not be mentioned or included in the references because of space limitations.

Author information

Authors and Affiliations

Authors

Contributions

T.K. and H.N. wrote the Review.

Corresponding author

Correspondence to Hitoshi Nakatogawa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Terje Johansen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotani, T., Nakatogawa, H. Core principles of autophagy initiation mechanisms. Nat Struct Mol Biol (2026). https://doi.org/10.1038/s41594-026-01752-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41594-026-01752-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing