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Population cluster data to 
assess the urban-rural split and 
electrification in Sub-Saharan Africa
Babak Khavari   1 ✉, Alexandros Korkovelos   1,2, Andreas Sahlberg   1, Mark Howells   3,4 & 
Francesco Fuso Nerini   1,5

Human settlements are usually nucleated around manmade central points or distinctive natural 
features, forming clusters that vary in shape and size. However, population distribution in geo-
sciences is often represented in the form of pixelated rasters. Rasters indicate population density at 
predefined spatial resolutions, but are unable to capture the actual shape or size of settlements. Here 
we suggest a methodology that translates high-resolution raster population data into vector-based 
population clusters. We use open-source data and develop an open-access algorithm tailored for low 
and middle-income countries with data scarcity issues. Each cluster includes unique characteristics 
indicating population, electrification rate and urban-rural categorization. Results are validated against 
national electrification rates provided by the World Bank and data from selected Demographic and 
Health Surveys (DHS). We find that our modeled national electrification rates are consistent with the 
rates reported by the World Bank, while the modeled urban/rural classification has 88% accuracy. By 
delineating settlements, this dataset can complement existing raster population data in studies such as 
energy planning, urban planning and disease response.

Background & Summary
The 2030 Agenda for Sustainable Development has set the target of universal energy access1 (SDG 7.1). 
Scholarly2–8 and policy literature9,10 has indicated that this is a significant challenge, especially for rural commu-
nities of industrializing countries. The increase in electrification rate is unevenly distributed, and more than half 
of the population in Sub-Saharan Africa (SSA) still do not have access to electricity10. Electricity access inequality 
is present within the countries of the region, as urban electrification rates tend to be significantly higher than the 
rural ones6,7,9–11. Extending the grid to rural communities might not be economically attractive and therefore (as 
budgets are limited) these settlements often remain un-electrified2,3.

Geographic Information Systems (GIS) can inform the planning of future energy systems and facilitate rural 
electrification12–15. Energy modelling tools utilizing GIS can tailor solutions and actions to different parts of a 
study area more heterogeneously than traditional modelling frameworks. This is possible due to the spatial and 
temporal dimensions of GIS, which describe how different characteristics change across a study area based on 
location and time16,17. Furthermore, GIS and new high resolution satellite imagery can mitigate data gaps that 
often hamper energy planning in industrializing countries16. One example of this is night-time lights (NTL). 
NTL maps detect mostly anthropogenic lights, hence providing valuable insight into where there is electricity 
consumption during night-time hours. Previous studies highlight the relationship between the presence of NTL 
and electricity access and consumption18–24.

Knowing the spatial characteristics of population distribution is important in many applications such as, 
electrification planning2,3,16,25–27, urban planning27–30 and risk management27,31–35. Falchetta et al. produced and 
published datasets to assess electrification in SSA. They use NTL and population maps in order to assess where 
electrified people live and what the electricity consumption of these people are36. Szabó et al. and Mentis et al. 
carry out least-cost electrification studies for Africa and SSA respectively15,25. Both studies reach the conclusion 
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that achieving universal electricity access requires large investments in off-grid systems. In both of the studies, 
demand is one of the main drivers behind the choice of technology and highly dependent on the population 
distribution.

Most of the available geospatial population datasets come in either raster format or as census data. Censuses 
have high level of accuracy if performed correctly, but the data collection is often time consuming and divided 
into different political units, leading to aggregated population counts37–39. When conducting spatial analysis it is 
often desirable to have population datasets in a uniform scale across the entire study area. Rasters can therefore 
be used in order to mitigate some of the shortcomings of census data. Furthermore, rasters have the ability to 
provide more timely estimates of population counts across larger areas in comparison to censuses38,40. However, 
rasters may fail to capture the area and shape that population settlements naturally have. Instead, they consist of 
pixelated areas, each pixel treated on its own, separated from adjacent cells17. This can have two implications; 1) 
different modelling results present themselves in the same settlement even in cases where these settlements are 
too small for this to be the actual case, and 2) the resolution of the population dataset can create biases (e.g., data 
represented at different spatial scales for the same study area might not generate consistent results41). This issue is 
labeled as the Modifiable Areal Unit Problem (MAUP)42–45. MAUP describes how statistical results change when 
geographical units change46. Gehlke and Biehl first discussed the importance of the choice of geographical units 
in spatial analysis in 1934 and Openshaw later expanded the concept in 198447,48.

Vector-based population clusters can complement existing raster datasets. The Reiner Lemoine Institut pre-
viously generated consumer-clusters for Nigeria49,50. In these studies, they generate clusters using population 
maps and different nucleation points. The polygon nature of the clusters enables easy delineation of population 
settlements. In this publication, we develop a methodology to identify and generate vector-based population 
clusters using open-source GIS-layers. We also open-source the supporting code for higher transparency, repro-
ducibility and replicability of the modelling process. The clustering methodology presented and published here 
has previously been used in Korkovelos et al. for application in Malawi17. Furthermore, it was previously used and 
developed as part of the Global Electrification Platform (https://electrifynow.energydata.info/) developed by the 
World Bank and in the World Energy Outlook of 20199. With this publication, we further describe, refine and 
automate the process, including new attributes in regards to the urban-rural divide and an NTL-based electrifica-
tion proxy for each cluster. As such, we generate, validate and publish open population “clusters” for 44 countries 
in SSA, for the first time.

Methods
Figure 1 presents a simplified overview of the methodology.

The implementation of the methodology presented in Fig. 1 is based on three initial datasets; a) gridded popu-
lation (raster), b) night-time light intensity (raster) and c) administrative boundaries (vector). These datasets are 
available with different spatial and temporal resolutions. In Table 1, we present indicative open access data that 
we have tested in this paper.

While the methodology described here is agnostic to input data it is important to note that certain datasets 
are not tested in this paper. Most notably, the CEISIN Gridded Population of the World version 4 (GPWv4)51 
and LandScan52. Althgouh these datasets can be used in order to generate the clusters they have been ommited 
from this study. LandScan has been shown to preform well in urban areas while it is less accurate in rural regions. 
Furthermore, LandScan models ambient population rather than nighttime population, which is what we model 
with the clusters presented here38. For GPWv4 areal weighting is used in order to populate the grid cells in the 
population rasters. Using population censuses and administartive maps the population in each administartive 
unit is evenly divided into the cells that make up that specific unit. This methodology risks reporting considerably 
higher population values for rural areas that fall into large administrative units38.

GIS data collection.  Administrative boundaries.  The administrative boundaries are used for two reasons; 
1) delimit the population layer, ensuring that the population dataset that is used is on a national level and 2) limit 
the spatial extent of each cluster. In this analysis the disaggregated administrative boundaries from GADM v. 3.6 
are used (level 1 or 2)53. The administrative units need to be in the form of polygons and in the WGS 84 coordi-
nate reference system (EPSG:4326).

Population.  The population density dataset is at the core of the clustering process and is in the form of a raster 
layer. By using a raster it is ensured that the clusters are all built by uniform cells with the same size and shape. 
Additionally, it is important for the raster to minimize the number of false positives. A false positive in this con-
text is a cell that appears populated in the dataset, while being uninhabited in reality. False positives will lead to 
population settlements appearing larger than they actually are, as well as indicating population clusters where 
there are none. Likewise, it is important to minimize false negatives, buildings not existing in the dataset while 
doing so in satellite imagery. We selected and assessed three different population datasets; the High Resolution 
Settlement Layer (HRSL)54, the Global Human Settlement Layer (GHS-POP)55 and WorldPop (the unconstrained 
version)56.

Facebook Connectivity Lab and the Center for International Earth Science Information Network generates 
the HRSL datasets. Their methodology makes use of high-resolution tiles of satellite imagery to identify built-up 
areas. The buildings are then populated using the latest available population survey. In the case of SSA, the years 
of these surveys range from between 2003 and 2015 (the years presented in the estimates are however 2015)38. A 
drawback of this dataset is that it does not distinguish between different types of buildings and instead it popu-
lates all the buildings found in the satellite imagery57. As of the time of writing, HRSL covers most of Africa (with 
the exception of Somalia, Sudan and South Sudan), as well as 144 countries outside of Africa54.

https://doi.org/10.1038/s41597-021-00897-9
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The GHS-POP layer utilizes a similar method as HRSL, first identifying built areas using satellite imagery and 
then populating these areas with the GPWv4.10. The resulting dataset is available at 250 m or 1 km spatial reso-
lution. The dataset covers four different epochs in time (1975, 1990, 2000 and 2015). An advantage of GHS-POP 
is the fact that the dataset has global coverage, well-documented methodologies and consistent time series that 
enables deeper temporal analysis58.

For the unconstrained WorldPop dataset, population census data from GPWv4 is reallocated at a finer scale 
using random forest regression techniques together with a number of different geospatial correlates (e.g. NTL, 
roads, land cover, built infrastructure etc.). Source codes and assumption used for generating the WorldPop 
datasets are publicly available and open-source. The unconstrained version of the dataset does not exclude areas 
without built infrastructure and therefore non-zero values can be found in regions that could be assumed unin-
habited. The dataset is available on a global scale and on a yearly basis for the years of 2000-202038,59.

The unconstrained WorldPop dataset gives the largest number of false positives as the national datasets 
completely cover the selected area. In September of 2020 a constrained version of WorldPop was released for 
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Fig. 1  Simplified schematic of the clustering process and validation. Green: external data used in the process, 
these include GIS and non-GIS inputs. Blue: intermediate steps. Orange: Final output from the clustering 
algorithm.

Dataset Name and source Spatial resolution Temporal coverage Year used in analysis

Used for cluster generation

Administrative boundaries GADM Administrative Units v. 3.653 — 2018 2018

Population

High Resolution Settlement Layer54 30 m
2003–2015 (country 
dependent, adjusted to 
match UN-estimates)

2003–2015 (adjusted 
for population in 2015)

Global Human Settlement Layer55 250 m 1975, 1990, 2000, 2015 2015

Unconstrained WorldPop56 100 m 2000–2020 2018

Night-time light VIIRS DNB night-time lights63 450 m 2012–2020 2016

Table 1.  Data inputs selected and used in this paper for cluster generation and result validation.
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sub-Saharan African countries60. This dataset uses the same methods as the unconstrained WorldPop dataset but 
similarly to HRSL and GHS-POP it uses a built-up layer to remove all cells that do not coincide with building 
footprints. This new version of WorldPop would presumably result in less false positives than its predecessor, but 
the dataset has not been tested as it exclusivly represents population for the year of 2020. Using this dataset for the 
clustering process would lead to problems during validation as DHS results and electricity access data for 2020 is 
currently not available. The GHS-POP and HRSL also give rise to false positives due to natural formations seen 
on satellite imagery sometimes being mistaken for buildings in the classification process. In some instances, there 
are false positives where no buildings are detected at all. If the satellites fail to identify any buildings in an admin-
istrative unit, HRSL and GHS-POP give similar results to GPWv4 (using areal weighing). Due to the satellite used 
for HRSL being of higher resolution, these instances are more prevalent to occur for GHS-POP38.

False negatives should also be avoided. Both HRSL and GHS-POP are subject to false negatives. This is the 
result of buildings not being found in different parts of the study area. Several studies have been conducted com-
paring GHS-POP to HRSL in regards to the built-up areas they find respectively38,57,61,62. Tiecke et al. conducted 
case studies for 18 countries comparing the performance of different geospatial population layers, amongst them 
HRSL and GHS-POP. As part of their study they also assess the recall values for GHS-POP and HRSL in urban 
and rural settings against a manually labeled area in Malawi. In urban areas both datasets perform well (with 
recall values of 0.99 and 0.83 for HRSL and GHS-POP respectively), but for rural areas HRSL outperformed 
GHS-POP (recall values of 0.84 and 0.04 respectively). This suggests that HRSL is the better option in rural set-
tings57. Engstrom et al. propose a bottom-up approach to generate population estimates and apply it to the case of 
Sri Lanka in order to predict population counts in non-surveyed areas and in between survey years. As part of the 
study, they compare GHS, HRSL and WorldPop (the unconstrained 2015 version) to their bottom-up approach. 
Their analysis show that HRSL and WorldPop are the only two layers that correlate fairly well with the census data 
used. They attribute this to the satellite imagery used for HRSL and WorldPop being of higher resolution than for 
the other datasets62.

Based on the available literature and methodologies used to generate the different population layers, HRSL 
is chosen as the primary population map in this paper. In cases where HRSL is not available (for Sudan, South 
Sudan and Somalia), GHS-POP is used.

Night-time lights.  There are multiple sources of night-time light imagery that can be used. The optimal results 
will however be achieved by using a dataset cleaned from noise. Noise in this context refers to light being seen 
on the maps without being emitted from a stable source (e.g. lights being emitted from boats, fires, gas-flaring 
etc. or because of blooming effects around large cities). The night-time light maps used for these clusters are the 
ones generated from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB). The VIIRS 
dataset is of global coverage and in the following study the yearly composite of 2016, the latest yearly composite 
available at the time of writing, has been used63.

Non-GIS inputs.  Apart from GIS data the population in the study year (used to do a simple calibration of 
the GIS population), the national urban ratio in the study year (used to determine urban, peri-urban and rural 
clusters), the name of the study area and the coordinate reference system used for projecting the clusters are 
needed. The calibration of population is important in order to ensure that the total population in the clusters is in 
line with the year chosen by the user. The calibration is done by multiplying the same factor to all clusters. For the 
clusters produced with this paper, we have chosen 2016 as the year (since this match the year of the NTL-map). 
Population values and urban ratios are from the United Nations Department of Economic and Social Affairs64,65.

The coordinate reference system used in order to project the clusters will determine the unit of the area 
measurements. Therefore, the unit of the coordinate reference system has to be linear. We use World Mercator 
(EPSG:3395) for the clusters produced with this paper.

Data transformation.  Pre-processing the GIS-layers is necessary before the clustering algorithm is used. 
The pre-processing steps are:

•	 Ensure that all datasets have the same coordinate system. Having different coordinate systems might lead to 
errors during the processing. Most GIS-data come in the coordinate system WGS 84 (EPSG:4326) and for 
the clusters produced with this paper all datasets have been projected to this coordinate system before the 
clustering process starts.

•	 Ensure all features in the polygon administrative map are valid. For example, this can be done using “Fix 
geometries” in QGIS or “Repair geometry” in ArcGIS. If the features of a vector dataset is not valid, certain 
operations such as clipping rasters will crash.

•	 The raster layers have to be in TIFF-format. This can be ensured by e.g. clipping the raster to the area of inter-
est in QGIS or ArcGIS and then export it as a.TIF-file.

Cluster generation.  The clustering process can be split into three separate workflows:

	 1)	 Generating the cluster base
	 2)	 Generating an indicative measurement of electrification rate in each cluster
	 3)	 Classifying clusters as either urban, peri-urban or rural

An open source repository for cluster generation is available at https://github.com/babakkhavari/Clustering. 
Below descriptions of the three separate workflows follow.

https://doi.org/10.1038/s41597-021-00897-9
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Generating population clusters.  In the first workflow the base of the clusters is generated. This is done by using 
two GIS-layers (population raster and administrative boundary polygons), a population threshold (integer entered 
by the user) and the population in the start year (integer entered by the user). The population layer is clipped by 
the administrative boundaries, upon which low-density cells are removed. Low-density cells are defined as all cells 
with lower population density than the threshold entered by the user. This enables the use of population layers 
with high number of false negatives such as the unconstrained WorldPop data. Following this step, the population 
is calibrated using the population in the start year by multiplying all remaining cells with the same factor.

After removal of low-density population cells and calibration, the resulting layer is polygonised. All cells that 
are adjacent to one-another (8-connected neighbors) are merged into one cluster. The last step in this workflow 
is to split the clusters based on the inner borders of the administrative boundaries. This is done in order to enable 
local leaders, policy makers and researchers to focus on the population in certain regions, departments and com-
munes. If one would wish to skip this step, admin boundaries of level 0 (national borders) can be used. Figure 2 
shows the framework used in this workflow.

Electrification rate.  We determine the electrification rate in each cluster by first delimiting areas with visible 
night-time lights. Then we sum the population in these areas and add them to their corresponding cluster. Every 
cluster also indicates the maximum night-time light intensity detected in it. This enables filtering of electrified 
population deemed to live in areas with too low night-time light intensities.

Urban distribution.  Historically, there has not been a globally accepted method for classifying population set-
tlements into urban and rural66. Some countries have used population density thresholds with densely populated 
areas defined as urban67. Other countries have used population size. By first defining what can be considered one 
single population settlement, each settlement can then be classified as either urban or rural based on the number 
of inhabitants67. Using nationally defined values may lead to certain countries having a far higher threshold than 
others, and comparing one country to another may therefore be problematic.

In recent times, official efforts have been made towards finding a unified way of representing urbanization. 
One of the more widely used methods is the Degree of Urbanisation by Eurostat. Using population datasets, 
settlements globally are classified as either urban centres (urban), urban clusters (peri-urban) or rural. These 
settlements are defined using one threshold for settlement size and one for population density. We present these 
thresholds in Table 2 67.

These thresholds generate a global dataset classifying all regions of all countries. However, the split between 
urban and rural using this methodology does not fit with the national splits presented by different countries. 
Densely populated countries tend to have higher thresholds while sparsely populated countries have lower ones67.

When generating the national population clusters we want the national urban ratio to be equivalent to official 
statistics. Therefore, we use the values above only as common starting values for the classification. Through an 
iterative process (Fig. 3), we sum the urban population and determine the urban ratio. If the urban ratio is too 
large compared to the value entered by the user, the thresholds are increased. Similarly, if the urban ratio is lower 
than the national value we decrease the thresholds. Peri-urban settlements are defined as the transition zones 
between urban and rural areas.

Limitations.  The methods used to generate the population clusters are agnostic to the datasets used. Since 
the population dataset provides the base for the population clusters future research should test and validate the 
methods presented here with other population datasets e.g. the GPWv451, the LandScan Global Population52 and 
the constrained version of WorldPop60.
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Fig. 2  Flowchart describing the process used for generating the cluster base.

Urban Peri-urban Rural

Density threshold 1,500 people per 
sq. km

300 people per 
sq. km

 < 300 people per 
sq. km

Size threshold 50,000 inhabitants 
in settlement

5,000 inhabitants 
in settlement

 < 5,000 people in 
settlement

Table 2.  Thresholds used by Eurostat when classifying settlements.
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Raster population data is based on statistical downscaling of census data39,68,69 This process by itself induces 
uncertainty to the final raster products. Also, national censuses may follow certain protocols that can lead to 
inconsistencies. For example, omitting certain groups of the population e.g. nomads, homeless and displaced 
people due to them not having a permanent residence, people in institutions and people living in areas consid-
ered security risks. Carr-Hill estimates that globally between 300 and 350 million people are affected by this68. 
The above can induce compounding uncertainty to the input population rasters, which is ultimately propagated 
to our clustering result.

Moreover, raster datasets can store unique information in each pixel. This creates the ability to generate 
heterogeneous maps with high levels of detail. However, when the raster datasets are aggregated to population 
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Fig. 3  Flowchart describing the process used for urban classification of clusters.
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clusters, this detail can get lost due to multiple cells being merged into single units. This complicates analysis 
on sub-settlement level and may give rise to modifiable areal unit problems (MAUP). MAUP is a well-known 
phenomenon in spatial analysis related to the scale at which geographical data is represented. Data represented 
at different scales might produce inconsistent modelling results for the same study area41. This is an issue for 
rasters when changing resolutions, but also when aggregating raster cells to polygon clusters. An example of this 
is renewable energy resources. In a raster-based analysis the resources in each pixel are treated cell by cell, but 
in vector settlements the data will have to be generalised, sometimes across large areas (e.g. instead of extracting 
wind velocity to each cell, the average value across the cluster is used). As the clusters get larger, these issues 
become more prominent. Future research should examine the effects that MAUP has on the clusters presented 
here as well as how this may impact subsequent analyses based on our clusters e.g. electrification planning. This 
is important to asses, as the effects of MAUP can potentially lead to compounding errors such as propagation and 
cascading. These types of errors can lead to the results of the GIS analysis becoming inaccurate.

Data Records
The clusters are available through a permanent Mendeley database (https://data.mendeley.com/datasets/z9zf-
hzk8cr/6)70. The data files are in the form of GIS-compatible vector polygons (ESRI Shapefiles). The datasets are 
available on national level representing 44 countries (mainland SSA and Madagascar). Each dataset contain the 
following information:

	 1.	 id – A unique identifier for the cluster.
	 2.	 Country
	 3.	 Population – Headcount of people in each cluster for the base year
	 4.	 NightLight – Maximum luminance detected in each cluster
	 5.	 ElecPop – The number of people in the cluster who live in areas with visible night-time light, used as a 

proxy for electrification rate
	 6.	 Area – Area of the cluster in sq.km.
	 7.	 IsUrban – Discrete identifier, signifying whether a settlement is urban (2), peri-urban (1) or rural (0).

The datasets are available with a Creative Commons Attribution 4.0 International license (CC BY 4.0).

Technical Validation
Urban distribution.  To determine the validity of the urban classification, we use the Demographic and 
Health Surveys (DHS) for 22 countries conducted between 2014 and 201871. The surveys include coordinates 
of settlements as well as their urban/rural status. These surveys are developed to be representative on a national 
scale and usually have a sample size of between 5,000 and 30,000 households. Processing of survey data across 
all countries indicate 3,406 urban and 6,513 rural settlements. Our analysis identifies 6,142 urban settlements 
across these 22 countries. Supplementary Fig. 1 shows urban, peri-urban and rural settlements in coastal regions 
of Ghana, Togo, Benin and western Nigeria in red, orange and green respectively. Note that certain urban regions 
in our analysis are split into more than one cluster due to us using disaggregated administrative maps. If admin-
istrative level 0 is used instead the number of urban settlements are 4,557. To evaluate our methodology we use a 
set of performance diagnostics, as presented in the following paragraphs.

We conduct the evaluation using a confusion matrix, as this is a powerful tool when assessing the results of 
classification problems such as our urban-rural classification. A confusion matrix consists of true positives (TP), 
true negatives (TN), false positives (FP) and false negatives (FN). We get a TP every time a cluster is correctly 
predicting an urban settlement from the DHS data, while a TN is correctly identifying rural settlements from the 
DHS data. An FP occurs when the clusters misclassifies a rural DHS-settlement as urban and an FN is the oppo-
site, an urban DHS-settlement misclassified as rural.

To assess the success of the classification method we use accuracy as determined based on Eq. 1.

+
+ + +

=
TP TN

TP FP TN FN
Accuracy

(1)

This gives a measurement for how often the classification is correct. Across all countries, 27% of the observa-
tions are TP, 61% are TN. This puts the total accuracy at 88%. On a national level, Burkina Faso has the highest 
accuracy (95%), while Kenya has the lowest (71%). Accuracy is a good measurement when avoiding false posi-
tives and negatives are of equal importance. There is however a risk that accuracy gets skewed by class imbalances. 
Due to class imbalance existing in the survey data (only 33% of all DHS observations are urban), we also use recall 
and precision to assess the results of our urban classification.

Recall, in this case, is a measurement of how often we correctly manage to identify urban areas when dealing 
with urban areas (Eq. 2). Precision is a measurement of how large portion of our urban areas that are actual urban 
areas (Eq. 3).

TP
TP FN

Recall
(2)+

=

TP
TP FP

Precision
(3)+

=
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For the 22 cases, recall runs between 0.47 and 0.98, while precision runs between 0.57 and 1. Due to the defi-
nition of these two measurements, they cannot be maximized simultaneously. Due to us valuing FPs and FNs as 
equally bad, we want a balance between recall and precision. Therefore, we use the Jaccard Index (IoU) (Eq. 4).

+ +
=

TP
TP FN FP

Jaccard Index
(4)

The IoU can provide a more accurate performance metric than accuracy in datasets with class imbalances 
by omitting the TN. If a classification algorithm gives an IoU above 0.5 the results are considered to be of good 
quality. This score ranges from 0.44 for Kenya to 0.85 for Angola.

Two countries, Rwanda and Kenya, have an IoU lower than 0.5 (0.48 and 0.44 respectively). This is due to a 
disproportionately large numbers of false negatives. Using population density and population size for the urban 
classification in Kenya gives 54 true positives and 57 false negatives, while in Rwanda the same numbers are 69 
and 44. Rwanda is one of the most densely populated countries in SSA and Kenya – even though nationally not 
densely populated – has a large majority of its population living in the southern regions of the country72. This 
implies that when population density increase, so does the risk of the density based urban-rural classification 
faltering. See detailed results for all countries in Supplementary Table 1.

Electrification rate.  For validating the electrification rates on national and sub-national levels, the linear 
fit between survey and modelled data is examined. National data is from the World Bank while the sub-national 
electrification rates are from DHS STATcompiler. For the World Bank data we use the reference year of 2016 
as this matches the year of our NTL data. The DHS data we use is from between 2014 and 2018 depending 
on country. All settlements with visible night-time lights are considered electrified. The linear fit model indi-
cates a coefficient of determination of R2 = 0.68 on the national level and 0.66 on sub-national level (see Fig. 4). 
See Supplementary Tables 2 and 3 for all countries’ electrification rates according to the World Bank and the 
sub-national rates as reported by DHS STATcompiler respectively.

The method provides satisfactory results for Mali, Equatorial Guinea, Gambia, Mauritania, Namibia, 
Zimbabwe and Eswatini. This is in-line with what Falchetta et al. reports, as their method also performs well in 
the aforementioned countries36. The largest underestimations can be seen in Nigeria (−20%), Ethiopia (−20%), 
Eritrea (−19%) and Kenya (−17%). The methodology used by Falchetta et al. gives an underestimation of 26.8% 
for Ethiopia, for Nigeria and Kenya their predictions are closer to the national statistics36.

Underestimations could be due to the night-time lights being best suited for detection of outdoor lighting. 
In order for indoor lighting to be detected on night-time light maps it would require considerable light leakage 
or high-intensity lighting18,22. This could lead to large underestimations of electrification rates in rural areas as 
the electricity consumption in these households may be smaller than what the satellites can detect. Many house-
holds that consume small quantities of electricity rely on off-grid systems, as they are more cost-effective in these 
settings9,10. An estimated 8.7 million people in Kenya get electricity from off-grid solar solutions72 and off-grid 
electrification options in Ethiopia powers 12% of the population73. This points towards the population living in 
areas with visible night-time lights being more reflective of population electrified by the national grid as these 
areas tend to have higher consumption36,74. Additionally, the VIIRS satellite has an overpass at around 1:30 am75. 
During this time most households have less light sources on, which further decreases the chance of light leakage.

Cases of considerable overestimation can be seen in Djibouti (+30%), Zambia (+27%) and Guinea Bissau 
(+26%). Overestimations of this magnitude could be due to the NTL maps detecting outdoor lights in areas 
where there is no residential electricity consumption76,77. The presence of outdoor lighting does not necessarily 
entail the existence of electrified households. It is also important to note that we assume that every person living 
in the entire lit area is electrified which is most likely not the case. Furthermore, we do not use any threshold in 
the NTL maps for these results (this option is however available in the algorithm published with this paper). Every 
cluster includes a column for the maximum luminosity and the user can utilize this column to filter out clusters 
deemed to have too low NTL values. The discrepancies in results between this study and the study conducted 
by Falchetta et al. most likely stem from the threshold of 0.25 μW · cm−2 · sr−1 that they apply to the NTL maps 
of 201636. The stable light maps have values lower than this, which would entail our study finding more people 
living in areas with visible night-time lights. To estimate electrification rates more precisely, the authors recom-
mend combining these clusters with information regarding electricity infrastructure. Supplementary Fig. 2 shows 
binary electrification status in coastal regions of Ghana, Togo, Benin and western Nigeria. Blue represents clusters 
with electricity accesses and yellow represents clusters that are not electrified.

Usage Notes
The following data repository https://data.mendeley.com/datasets/z9zfhzk8cr/670 includes ESRI Shapefiles in the 
EPSG:4326 coordinate reference system. All datasets are available on national scale. The information included in 
these clusters are id, country name, population, urban-rural classification, maximum nighttime light intensity 
and population living in areas with visible night-time lights.

As noted previously the data describes population settlements, which are key in many applications such as, but 
not limited to, electrification planning, urban planning and disaster response. In disaster response, the dataset can 
help researchers and policy makers to better understand the effects seen on different population settlements after 
a disaster, which can assist in mitigation and response efforts. Together with the data regarding electrification 
rate and urban-rural divide, these datasets can provide a starting point in electrification studies and electrifica-
tion inequality assessments. These vector-based population clusters capture the geometries of settlements more 
detailed than raster cells, which helps in electrification planning by e.g. enabling assessments of power network 
designs or determining distances to different types of infrastructure more accurately. These clusters are not meant 
to substitute existing raster data, but rather complement them.
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Code availability
The latest version of the code is available at https://github.com/babakkhavari/Clustering (GNU General Public 
License v3.0). The code is Python-based and runs in Jupyter Notebook. The code repository includes instructions 
for how to install and run the algorithm as well as a country example displaying the necessary inputs and expected 
outputs. The datasets published with this paper were ran using Python 3.6 and the packages listed in the full_
project.yml file uploaded to the repository.
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