Table 9 Boundary conditions for the flat developing flow case, used to generate an inlet profile for the converging-diverging channel cases.

From: A curated dataset for data-driven turbulence modelling

 

Inlet

Outlet

Top

Bottom

\(\overrightarrow{U}\)

\(\overrightarrow{U}\) = (0.845, 0, 0)

Zero-gradient

\(\overrightarrow{U}\) = 0

\(\overrightarrow{U}\) = 0

p

Zero-gradient

p = 0

Zero-gradient

Zero-gradient

k

\(k=4.28421{(10)}^{-4}\,(I=2{\rm{ \% }})\)

Zero-gradient

k = 0

k = 0

ε

\(\varepsilon =1.0408{(10)}^{-5}\) (\({L}_{t}=0.07{H}_{{\rm{chan}}}\))

Zero-gradient

\(\varepsilon ={\varepsilon }_{vis}=2wk\nu /{y}^{2}\)

\(\varepsilon ={\varepsilon }_{vis}=2wk\nu /{y}^{2}\)

ω

ω = 0.26993

Zero-gradient

\(\omega =6\nu /({\beta }_{1}{y}^{2})\)

\(\omega =6\nu /({\beta }_{1}{y}^{2})\)

ϕt

Zero-gradient

Zero-gradient

ϕt = 0

ϕt = 0

f

Zero-gradient

Zero-gradient

f = 0

f = 0