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Predicting skin permeability using 
HuskinDB
Laura J. Waters    ✉ & Xin Ling Quah

A freely accessible database has recently been released that provides measurements available in 
the literature on human skin permeation data, known as the ‘Human Skin Database – HuskinDB’. 
Although this database is extremely useful for sourcing permeation data to help with toxicity and 
efficacy determination, it cannot be beneficial when wishing to consider unlisted, or novel compounds. 
This study undertakes analysis of the data from within HuskinDB to create a model that predicts 
permeation for any compound (within the range of properties used to create the model). Using 
permeability coefficient (Kp) data from within this resource, several models were established for Kp 
values for compounds of interest by varying the experimental parameters chosen and using standard 
physicochemical data. Multiple regression analysis facilitated creation of one particularly successful 
model to predict Kp through human skin based only on three chemical properties. The model transforms 
the dataset from simply a resource of information to a more beneficial model that can be used to replace 
permeation testing for a wide range of compounds.

Introduction
Permeation of a compound through human skin is an increasingly important delivery route in pharmaceutical 
applications as well as being a vital property to consider in risk assessment analysis for any compound that may 
come in to contact with skin. In vivo analysis can be a good predictor of properties, such as bioavailability1,2, 
where human volunteers are used for stratum corneum (SC) sampling but often in vitro techniques are used 
instead. It is apparent that discrepancies often occur between the in vivo reality and in vitro based predicted 
data. One reason for this is the variety of experimental data, in terms of skin origin or age and experimental 
conditions. Even when SC sampling is used the situation can be complex3. In the vast majority of such published 
studies experimental data facilitates calculation of the permeability coefficient (Kp) whereby a compound per-
meates through skin under steady-state conditions from an aqueous vehicle. To minimise potential variability 
in data from the source of skin, alternatives have been investigated including work in our group using poly(di-
methylsiloxane) as a skin replacement4–6 and alternative analytical techniques including micellar liquid chroma-
tography7. However, all of these experimental systems require extensive laboratory work to allow measurement 
of Kp. To avoid this time-consuming process, predictive models are frequently used for modelling in drug devel-
opment, such as for pharmacokinetic applications8 and of relevance to this work, for skin permeability. These 
models utilise the calculated Kp value to formulate a quantitative structure-permeability relationship (QSPR) 
that relates permeability to identified physicochemical properties of the compound undergoing permeation, 
such as hydrogen bond activity9. With over thirty years of research in this area there are numerous datasets avail-
able for skin absorption modelling studies, ranging in many parameters including the number of compounds 
considered, the source and thickness of skin used, experimental temperature, pH and vehicle composition10–13. 
Prior to this study, the vast majority of data used in creating permeation models is based on animal skin studies 
which are renowned for being poor mimics for human skin, a phenomenon known as the inter-species trans-
lational gap14,15. One study in particular found that only four of the thirty three QSPRs available at the time of 
publication were deemed ‘acceptable’ according to their stated four criteria with only one of these providing 
‘reasonable’ predictions16. Since then, many QSPRs have been created varying in complexity with a particularly 
well-known model published in 1992 by Potts and Guy17 using a compounds partition coefficient (logP) and 
molecular weight (MW) to create the following (relatively simple) Eq. (1):
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Other, often more elaborate models have incorporated additional physicochemical properties to predict Kp 
including hydrogen bond acceptor/donor activity, solubility, charge, melting point, polarisability and vehicle 
formulation18. However, the variability in experimental conditions undertaken to create these datasets has been 
noted, such as if the solute is analysed under finite or infinite dosing conditions19 and the chosen experimental 
volume20. These effects can result in variability in dataset Kp values which will ultimately affect the suitability 
and success of the model created21–23. It has therefore been stated that ideally values should be obtained under 
the same experimental conditions24 yet this is difficult to achieve in reality. Over the years many datasets have 
been employed to predict percutaneous absorption and in some cases combined to create even more detailed 
datasets25.

In 2020, a new dataset was created (HuskinDB26) that removed the uncertainty associated with previous 
models which was revolutionary in its approach27 and, since a recent update, has been expanded even further. 
The freely accessible database now lists skin permeation values (Kp values) for 253 compounds analysed with 
human skin yet it also includes experimental parameters such as skin source site, skin layer used, prepara-
tion technique, storage conditions along with experimental conditions such as temperature of the acceptor and 
donor solutions, pH and solution compositions (where available) for each Kp value quoted. Since its release this 
database has been used by regulatory agencies for dermal risk assessment28 and is becoming known as a useful 
resource to researchers29.

This study utilises this in-depth dataset to create unique models that take in to account this additional infor-
mation, highlighting the influence of experimental parameters on data analysis and leading to a highly specific 
and optimised model for use when investigating new compounds for permeability.

Results and Discussion
With 550 Kp values in total, HuskinDB is a significant source of data for those wishing to know the extent of 
skin permeation for any of the 253 compounds included. It has many benefits to those using the dataset, firstly 
that all included data was obtained using human skin thus variability is limited compared with other datasets 
that have included animal and other non-human membranes in the analysis. Furthermore, a variety of exper-
imental parameters are included for each Kp value allowing the researcher to obtain a specific Kp value under 
whatever specific conditions are of interest, such as temperature and donor concentration. However, this work 
takes the dataset much further and utilises the data to create models that then permit prediction of Kp for other 
compounds of interest rather than limited to only those in the dataset. This is particularly beneficial for several 
applications, including when considering compounds that currently exist (but are not already in the dataset) or, 
have not yet even been synthesised.

The 27 scenarios where data was available from the dataset were each analysed to create a QSPR model and 
are listed in Table 1.

With respect to skin source, i.e. anatomical site, it is known that the source can affect permeation30. Only five 
scenarios were analysed using breast skin and six with thigh skin, leaving the majority (sixteen) using abdomen 
skin. This is as expected as skin from the abdomen is frequently used in analysis for convenience reasons31. For 
permeation analysis, skin can be separated into layers to allow researchers to focus on permeation through only 
the epidermis or dermis, both epidermis and dermis combined or the stratum corneum. Nine of the scenarios 
analysed the epidermis only, three the dermis only, thirteen the epidermis and dermis and two the stratum cor-
neum. It could be argued that permeation through the stratum corneum is the most important layer to consider 
as this is the first stage of the process and will therefore dictate subsequent permeation. However, as permeation 
must also be achieved through the entire epidermis and then dermis it is also arguable that analysis should con-
sider both layers combined, as was the case for the majority of the scenarios. With respect to donor concentra-
tion, twenty two of the scenarios involved a diluted solute concentration in the donor phase with the remaining 
five as neat (saturated) solutions. This finding is particularly interesting as it is more usual in permeation analysis 
to apply saturated solutions to the skin to maintain sink conditions throughout the experiment32. Finally, exper-
imental donor solution temperature was particularly variable throughout the dataset thus a decision was made 
to divide the experimental data into four options to simplify analysis. Results appeared equally split in that seven 
scenarios involved an experimental donor solution temperature between 20 and 25 °C, six between 26 and 30 °C, 
seven between 31 and 35 °C, with seven between 36 and 40 °C. This finding was surprising if the data entered in 
the dataset was acquired for in vivo prediction as the surface of skin is usually approximately 33 °C, and internal 
body temperature 37 °C33,34. Therefore, the in vivo permeation process will occur between these temperatures 
and the latter two temperature options of the four listed would be the most suitable choices rather than the two 
lower temperature options.

Originally, 96 scenarios were considered using the four variables discussed yet a lack of data (where no 
compounds fit the criteria) for 69 scenarios reduced the number of models created to 27. Of these 27 remaining 
scenarios, 19 had a limited number of compounds (n = ≤15) which was deemed too low for consideration as a 
suitable QSPR model. The eight remaining scenarios therefore contained 16 or more compounds with a maxi-
mum number of 45 compounds.

Along with ensuring a suitable number of compounds had Kp values available to create the QSPR model, the 
coefficient of determination (R2) was an important factor for consideration with a value approaching 1 sought. 
This concept, whereby the value is as close to 1 as possible, has often been the focus of discussions surrounding 
the suitability of models for permeability prediction. Although absolute limits on what can be classed as an 
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‘acceptable threshold’ do not exist, researchers have previously described values below 0.3 as poor16, around 0.6 
as significant32 and above 0.8 as good25. Values in this study for R2 ranged from 0.1422 (i.e. very little correlation) 
up to 0.8545 (i.e. an acceptable correlation). An ideal model would combine the greatest number of compounds 
possible with the highest R2 value yet in reality this is not always possible. As a consequence, a compromise 
between these two factors was applied and the most suitable model from those available deemed to be that which 
included 36 compounds with an R2 value of 0.8545. For further confirmation of the performance of this model, 
the total dataset (n = 36) was subdivided into two groups: a training set (n = 29) and a test set (n = 7) with the 
latter chosen at random then checked to ensure it included a range of logP, TPSA and MV values. Equation (2) 
displays the equation created as a result of this process with the training and test set coefficients of determination 
(R2) and root mean square error values (RMSE) specified.

Klog 6 136 0 818 logP 0 005 TPSA 0 007 MV

Training set: n 29, R 0 8428, RMSE 0 30
Test set: n 7, R 0 8949, RMSE 0 35 (2)

p
2

2

= − . + . − . − .

= = . = .

= = . = .

Interestingly, this particular scenario was not for full thickness skin but epidermis only, with a diluted donor 
phase and at the lowest of the four donor solution temperature ranges considered. Why this particular model 
achieved the best performance of all the models created is unclear at this time. However, the high level of control 
over skin choice, anatomical site, skin thickness, donor phase concentration and experimental temperature do 
prove that removing variability in data can lead to a model with high predictive ability.

Although the derived R2 value is deemed adequate, it could be argued that the comparatively small dataset 
utilised may reduce the acceptability of the model for permeation prediction in a more general context. To 
consider an alternative approach (whereby a larger dataset was used) an additional QSPR model was created to 
investigate how this compares with Eq. (2). In this additional model any compound with a Kp value was included 
although if multiple values were available for a compound, four experimental variables were used to reduce the 
number to one. These were set as: abdomen site, epidermis and dermis layers, concentrated solute, experimen-
tal donor solution temperature 30–35 °C, as well as an experimental pH between 7 and 7.5. Using these crite-
ria all 253 compounds were analysed and found to have a low coefficient of determination where R2 = 0.2308. 
This could be improved somewhat by removing any predicted logKp values that were more than ± 1.5 from 

Skin Souce Skin Type Donor Conc. Exp. Temp (°C) No. of cmpds R2 Equation

Breast Epidermis Diluted 36–40 9 0.9839 LogKp = −2.869 - 0.406 LogP - 0.143 TPSA + 0.021 MV

Breast Epidermis + Dermis Saturated 36–40 6 0.8321 LogKp = −3.083 - 0.728 LogP - 0.168 TPSA + 0.043 MV

Breast Epidermis + Dermis Diluted 20–25 4 0.9703 LogKp = −4.993 - 0.808 LogP - 0.168 TPSA + 0.033 MV

Breast Epidermis + Dermis Diluted 31–35 20 0.5464 LogKp = −4.406 - 0.514 LogP - 0.004 TPSA - 0.006 MV

Breast Epidermis + Dermis Diluted 36–40 5 0.8747 LogKp = −6.297 - 3.151 LogP - 0.424 TPSA + 0.128 MV

Abdomen Epidermis Saturated 20–25 10 0.9595 LogKp = −5.203 + 7.125 LogP + 0.525 TPSA - 0.236 MV

Abdomen Epidermis Saturated 26–30 8 0.9772 LogKp = −6.875 + 1.410 LogP + 0.206 TPSA - 0.059 MV

Abdomen Epidermis Diluted 20–25 36 0.8545 LogKp = −6.052 + 0.777 LogP - 0.004 TPSA - 0.008 MV

Abdomen Epidermis Diluted 26–30 2 N/A LogKp = −6.477 + 1.467 LogP + 0.220 TPSA - 0.051 MV

Abdomen Epidermis Diluted 31–35 36 0.7102 LogKp = −5.788 + 0.099 LogP - 0.028 TPSA + 0.008 MV

Abdomen Epidermis Diluted 36–40 43 0.1619 LogKp = −6.231 + 0.211 LogP - 0.006 TPSA - 0.001 MV

Abdomen Dermis Saturated 20–25 8 0.9737 LogKp = −6.277 + 1.778 LogP + 0.226 TPSA - 0.077 MV

Abdomen Dermis Diluted 20–25 16 0.8334 LogKp = −4.584 + 0.931 LogP + 0.019 TPSA - 0.020 MV

Abdomen Dermis Diluted 31–35 6 0.9393 LogKp = −1.784 + 2.499 LogP + 0.040 TPSA - 0.081 MV

Abdomen Epidermis + Dermis Saturated 26–30 4 0.5268 LogKp = −7.599 - 1.743 LogP - 0.113 TPSA + 0.045 MV

Abdomen Epidermis + Dermis Diluted 20–25 4 0.9916 LogKp = −2.586 + 2.453 LogP - 0.082 TPSA - 0.053 MV

Abdomen Epidermis + Dermis Diluted 26–30 8 0.8166 LogKp = −5.361 + 0.400 LogP - 0.025 TPSA - 0.001 MV

Abdomen Epidermis + Dermis Diluted 31–35 45 0.1422 LogKp = −6.129 + 0.193 LogP + 0.004 TPSA - 0.006 MV

Abdomen Epidermis + Dermis Diluted 36–40 14 0.9734 LogKp = −6.960 + 0.975 LogP - 0.004 TPSA - 0.005 MV

Abdomen Stratum corneum Diluted 26–30 3 1 LogKp = −5.695 - 1.147 LogP - 0.137 TPSA + 0.047 MV

Abdomen Stratum corneum Diluted 31–35 3 1 LogKp = −6.009 - 0.043 LogP - 0.036 TPSA + 0.008 MV

Thigh Epidermis Diluted 31–35 3 1 LogKp = −13.211 - 1.366 LogP + 0.031 TPSA + 0.031 MV

Thigh Epidermis Diluted 36–40 3 1 LogKp = −11.084 - 1.472 LogP - 0.144 TPSA + 0.043 MV

Thigh Epidermis + Dermis Diluted 20–25 5 0.9344 LogKp = 2.734 + 3.503 LogP + 0.007 TPSA - 0.088 MV

Thigh Epidermis + Dermis Diluted 26–30 17 0.6139 LogKp = −6.826 + 0.656 LogP + 0.006 TPSA - 0.006 MV

Thigh Epidermis + Dermis Diluted 31–35 3 1 LogKp = −4.001 + 0.309 LogP - 0.085 TPSA + 0.031 MV

Thigh Epidermis + Dermis Diluted 36–40 21 0.3329 LogKp = −6.876 + 0.566 LogP - 0.002 TPSA - 0.002 MV

Table 1.  QSPR models for skin permeability (Kp) coefficient prediction using data extracted from HuskinDB, as 
related to a compound’s partition coefficient (logP), topological surface area (TPSA) and molecular volume (MV).
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the dataset value, i.e. the extreme outliers, to produce a more acceptable model (Eq. (3)) with 214 compounds 
included and a coefficient of determination of R2 = 0.5044. The vast majority of the 39 compounds that were 
deemed ‘outliers’, and therefore removed to create Eq. (3), were at the extremities of the Kp values considered. As 
before, the total dataset (n = 214) was subdivided into two groups: a training set (n = 171) and a test set (n = 43) 
with the latter chosen at random and then checked to ensure it included a range of logP, TPSA and MV values. 
Equation (3) displays the equation created as a result of this process with the training and test set coefficients of 
determination (R2) and root mean square error values (RMSE) specified.

= − . + . − . − .

= = . = .

= = . = .

Klog 5 820 0 319 logP 0 001 TPSA 0 005 MV

Training set: n 171, R 0 5042, RMSE 0 73
Test set: n 43, R 0 5057, RMSE 0 84 (3)

p
2

2

Figure (1) displays the relationship between the predicted and experimental logKp values for the 214 com-
pounds analysed using Eq. (3) based upon HuskinDB logarithmic Kp values expressed in cm/s.

Although Eq. (3) is superior in that a far larger dataset was included, the lower coefficient of determination 
(and higher RMSE) indicates that it would be better to use Eq. (2) rather than Eq. (3) when attempting to predict 
permeability coefficients.

Many models already exist for predicting skin permeation, including the DERMWIN™ model (https://www.
epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface). This model is based on an equation 
similar to that proposed by Potts and Guy17 in that it uses the same physicochemical properties to predict logKp 
values and is often used by researchers for comparison with newly proposed models21,35,36. For comparative 
analysis in this work, logKp values for the 214 compounds were analysed using DERMWIN™ and the val-
ues obtained compared with those from HuskinDB (as selected for Eq. 3). It was found that the coefficient of 
determination between these two sets of logKp values was lower than both the training and test set values pre-
sented in Eq. 3 (0.4351 for DERMWIN™ vs. HuskinDB and 0.5042 then 0.5057 for Eq. 3 vs. HuskinDB), along 
with a higher RMSE (1.04 for the former and 0.73 then 0.84 for the latter). It can therefore be concluded that 
Eq. 3 provides a superior model when predicting logKp values for human skin permeation compared with the 
DERMWIN™ model.

In summary, HuskinDB is an exciting and useful new database providing permeability data for a large range 
of compounds. This extensive dataset can be of even more use by creating models using the plethora of experi-
mental information available about each Kp value. It would appear that the most successful QSPR model utilised 
a total of 36 compounds with four specified experimental conditions to create an in silico method for predicting 
permeation for any compound of interest. In comparison, a larger dataset can be considered with less focus on 
experimental variable selection to create an alternative model yet with a lower degree of correlation achievable. 
In both cases, this expansion of HuskinDB to allow prediction of permeation for compounds not included in 
the dataset is an exciting development in permeation prediction. This takes the database from being a limited 
resource only for included compounds to a way of predicting permeation for any compound of interest. As fur-
ther experimental data becomes available in literature over the following years (with the required experimental 
parameters listed) then it will be possible to expand the dataset even further, thus potentially creating an even 
more successful model for prediction of permeation than that proposed in this study.

Fig. 1  Predicted (from Eq. (3)) and experimental (HuskinDB) logKp values for the training and test sets.
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Methods
All Kp values included in this study were extracted from HuskinDB27, expressed as logarithmic Kp values meas-
ured in cm/s. Four experimental variables were selected that were deemed particularly influential on the Kp value 
obtained (and encompassed a comparatively large total quantity of compounds), namely: skin source (breast/
abdomen/thigh), skin layer used (epidermis/dermis/epidermis + dermis/stratum corneum), concentration of 
donor solution (neat/diluted) and donor solution temperature (divided in to 20–25/26–30/31–35/36–40 °C). 
This created a total of 96 experimental scenarios with associated Kp values encompassing all possible combina-
tions (3 for skin source × 4 for skin layer × 2 for concentration and × 4 for temperature). However, of the 253 
compounds in the dataset, 71 were excluded as they did not have specified experimental conditions for at least 
one of the four variables under investigation. Furthermore, of the 96 scenarios only 27 included one or more 
Kp values (i.e. n ≠ 0) reducing the dataset further. When more than one Kp value remained (even after applying 
the four variables) then all values were included in the analysis. These Kp values were then analysed against 
three physicochemical properties for each compound: partition coefficient (logP), topological polar surface 
area (TPSA) and molecular volume (MV) as these are known to be influential properties when determining 
Kp values37, particularly logP and MV as discussed by Tsakovska et al.11. Data for these three properties was 
extracted from Molinspiration (www.molinspiration.com, Molinspiration Cheminformatics, 2022). Multiple 
linear regression analysis (using Excel Solver) for each scenario created a series of unique QSPR equations with 
associated coefficients of determination (R2). Two equations in particular were then analysed in more detail 
whereby the data was divided into a training and test set for further validation of their performance. In both 
cases the total number of Kp values were randomly divided into two groups with ~ 80% in the training set and 
the remaining ~ 20% as a test set, ensuring a range of logP, TPSA and MV values were included in all cases.

Data availability
The datasets analysed during the current study are freely accessible from https://huskindb.drug350 design.de or 
https://doi.org/10.7303/syn2199888126.

Code availability
No custom code was used to generate or process the data described in this manuscript.
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