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Shared metabolic shifts in 
endothelial cells in stroke and 
Alzheimer’s disease revealed by 
integrated analysis
Guangyu Guo1,2,3, Liyuan Fan1,4, Yingxue Yan3,4, Yunhao Xu3,4, Zhifen Deng3, Miaomiao Tian3, 
Yaoqi Geng3,5, Zongping Xia   1,2,3 ✉ & Yuming Xu1,2 ✉

Since metabolic dysregulation is a hallmark of both stroke and Alzheimer’s disease (AD), mining shared 
metabolic patterns in these diseases will help to identify their possible pathogenic mechanisms and 
potential intervention targets. However, a systematic integration analysis of the metabolic networks 
of the these diseases is still lacking. In this study, we integrated single-cell RNA sequencing datasets 
of ischemic stroke (IS), hemorrhagic stroke (HS) and AD models to construct metabolic flux profiles at 
the single-cell level. We discovered that the three disorders cause shared metabolic shifts in endothelial 
cells. These altered metabolic modules were mainly enriched in the transporter-related pathways and 
were predicted to potentially lead to a decrease in metabolites such as pyruvate and fumarate. We 
further found that Lef1, Elk3 and Fosl1 may be upstream transcriptional regulators causing metabolic 
shifts and may be possible targets for interventions that halt the course of neurodegeneration.

Introduction
Hemorrhagic stroke (HS), which occurs when intracerebral arterioles break, and ischemic stroke (IS), which 
occurs when a major cerebral artery is blocked, are the two main types of stroke1,2. As a type of neurological 
disease, stroke is the second major cause of death and a key contributor to disability-adjusted life years (DALYs). 
Approximately 101.47 million stroke events occurred globally in 2019, 12.2 million of which were new cases3. 
Studies have confirmed neurodegeneration secondary to stroke, which can cause progressive neuronal loss, 
cognitive and motor dysfunction, and ultimately dementia4–6.

Alzheimer’s disease (AD) is a dementia that is characterized by age-related declines in cognition and higher 
functions7. More than 40 million people worldwide are afflicted by this neurodegenerative illness8. The main 
biochemical indicator of AD is the development of intracellular neurofibrillary tangles and extracellular deposits 
of the peptide beta amyloid as senile plaques in subcortical areas of the brain9,10. Recent studies have shown that 
metabolic disturbances, oxidative stress, and bioenergetic deficits are associated with AD and might contribute 
to its progression11–13.

A growing number of studies have suggested that stroke and AD may have some underpinnings in com-
mon14,15. There is substantial evidence demonstrating a significant overlap between vascular risk factors and 
the pathogenesis of AD, as well as impaired cognition16–18. These vascular risk factors include insulin resistance, 
diabetes, obesity, hyperhomocystinemia, and high cholesterol levels, all of which have been linked to metabolic 
dysregulation19. Metabolic dysregulation refers to disturbances or imbalances in the normal metabolic processes 
of an organism. These disruptions can occur in the metabolism of carbohydrates, fats, and proteins, leading to a 
cascade of clinical symptoms. For instance, disorders in carbohydrate metabolism can result in impaired fasting 
blood glucose levels or even lead to the development of type 2 diabetes20. Moreover, it is well-established that 
cognitive impairments can be caused by declining brain metabolism21. Strikingly, impaired glucose metabolism 
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is one of the most frequently reported deficits in the AD brain given the widespread use of PET scanning in 
research22,23. Despite significant research into the metabolic disturbances associated with diseases like stroke 
and Alzheimer’s disease (AD), effectively intervening to address these risk factors remains challenging. One 
major obstacle is the complex metabolic heterogeneity and interplay between cells within the disease process. 
A systematic understanding of intra-tissue metabolic heterogeneity and cooperative mechanisms in stroke and 
AD is yet to be established24. Single-cell transcriptomic sequencing (scRNA-seq) has emerged as a powerful tool 
for investigating the intricate interplay between cell-specific transcriptional states and disease phenotypes25–27. 
Given the strong connection between transcriptomic and metabolomic profiles, scRNA-seq data enables a sys-
tematic assessment of the metabolic heterogeneity of cell subtypes and critical metabolic pathways during dis-
ease progression28,29. In this study, we comprehensively assessed metabolic shifts at the single-cell level across IS, 
HS and AD by merging single-cell datasets and utilizing a graphneural network-based method for evaluating 
metabolic fluxes (scFEA)24. The identification of metabolic process patterns that are shared by the three illnesses 
will assist in the understanding of the underlying mechanisms of neurodegenerative disorders.

Results
Data integration and profiling of single-cell data.  An overview of the data processing workflow is 
shown in Fig. 1A. In total, 51237 cortex cells from normal mice and three murine disease models of ischemic 
stroke, hemorrhagic stroke and Alzheimer’s disease were collected; Table 1 summarizes the sample information 
and cell numbers. After quality control and filtering, 49516 cells were utilized for further single-cell analysis. We 
then conducted dimensionality reduction and clustering analysis and identified nine cell types (Fig. 1B). The 
marker genes in Fig. 1D were chosen from published literature30,31. Compared to the WT_sc group, the pro-
portions of endothelial cells were decreased in the HS and IS groups (Fig. 1C,E). This finding can be attributed 
to the severe disruption of vascular structure that occurs under conditions of ischemic stroke and hemorrhagic 
stroke32,33. Furthermore, compared to the WT_sc group, the HS and IS groups showed a notable increase in the 
proportion of T cells, suggesting the presence of evident infiltration of adaptive immune cells in the pathological 
conditions of ischemic stroke and hemorrhagic stroke. Additionally, the WT_sn group had a higher proportion of 
neurons than the WT_sc group, indicating that a single nucleus sequencing can capture more neurons.

Application of scFEA analysis revealed distinct metabolic states across different cell 
types.  The interaction and heterogeneity of cell metabolism are recognized to have a crucial role in the devel-
opment of disease34,35, and discovering potential causes of neurodegenerative disease progression can be aided 
by the systematic investigation of metabolic heterogeneity and common characteristics across three disorders, 
IS, HS, and AD, which can result in neurodegenerative diseases. Therefore, we systematically evaluated 168 met-
abolic modules and 70 metabolites at the single-cell level using an integrated algorithm, called single-cell flux 
estimation analysis (scFEA)24. According to scFEA analysis, differences in cell types rather than disease situations 
were what primarily contributed to the heterogeneity of metabolic modules (Fig. 2A,B, Supplementary Table 
S1-236). Although the fluxes of some metabolic modules of astrocytes and oligodendrocytes were significantly 
elevated in AD, there were no similar changes in IS and HS. Conversely, fluxes of some other metabolic modules 
of OPCs were significantly elevated in HS and IS but not in AD. This may be related to disease differences among 
AD and IS and HS.

Interestingly, the fluxes of several endothelial cell metabolic modules revealed a simultaneous decline in 
AD, IS, and HS, including M-79 (serine_in → serine), M-89 (B-alanine_in → B-alanine), M-93 (GABA_
in → GABA), M-100 (arginine_in → arginine), M-103 (proline_in → proline), M-126 ((Gal)1 (GlcNAc)1 
(Man)1 (Ser/Thr)1 → (Gal)1 (GlcNAc)1 (Man)1 (Neu5Ac)1 (Ser/Thr)1), M-137 (IMP → XMP), M-144 (hypox-
anthine → xanthine) and M-146 (xanthine → uric acid), most of which belong to the transporter superfamily. 
Figure 2C shows the enzymes of the 168 metabolic modules with significantly altered expression levels in dif-
ferent disease models. The enzymes mediating M-79, M-89 and M-100 were significantly decreased in hem-
orrhagic stroke, further validating the results of metabolic flux. Although the expression of Slc6a6 catalysing 
M-89 was not significantly different between AD and IS, it showed a decreasing trend. Given that abnormalities 
in Slc6a6 can lead to metabolic syndrome37, this suggests that Slc6a6 may play a crucial role in neurodegener-
ative diseases. The above results collectively suggest that under the pathological conditions of stroke and AD, 
endothelial cells experience inhibition in transporter and amino acid transport pathways on their cell mem-
branes. To provide more robust validation for these findings, we conducted additional analyses using gene set 
enrichment analysis algorithms on the GO and REACTOME databases (Fig. S1). The results of these analyses 
unveiled significant downregulation of the REACTOME_Slc_Mediated_Transmembrane_Transport pathway 

Sample GEO ID Cell count before QC Cell count after QC Library Building Kit

WT_sc GSM5111158 10636 10262 scRNA

WT_sn GSM4160645 10548 10398 snRNA

AD GSM4160643 4811 4767 snRNA

IS GSM5111159 15136 14398 scRNA

HS GSM5111160 10106 9691 scRNA

Table 1.  Basic characteristics of single-cell datasets. WT: wild type; AD: Alzheimer’s disease; IS: ischemic 
stroke; HS: hemorrhagic stroke; scRNA: single-cell RNA sequencing; snRNA: single-nucleus RNA sequencing; 
QC: quality control.
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and amino acid transport-related pathways in the endothelial cells of both HS and IS groups. Moreover, the AD 
group displayed a similar downward trend in the GO_Regulation_Of_Amino_Acide_Transport pathway. These 
outcomes further corroborate the reliability of the insights gained from the scFEA analysis.

In addition, we also assessed the alterations in metabolite levels, and certain metabolites displayed a sim-
ilar pattern in endothelial cells from AD, IS, and HS (Fig. 3, Supplementary Table S3–5). For instance, in all 
three groups, the product B-alanine of the M-89 module was reduced, and the levels of B-alanine have been 
demonstrated to have an inverse relationship with dementia38. Moreover, the concurrent decrease in pyruvate 
and fumarate, which are components of the tricarboxylic acid (TCA) cycle of glycolysis, aligns with previous 

Fig. 1  Single cell expression atlas of IS, HS and AD. (A) The overall analysis workflow of this study. (B,C) 
Uniform manifold approximation and projection (UMAP) plot for cell types and sample groups. WT_sc, Wild 
type with single cell sequencing. WT_sn, Wild type with single nucleus sequencing. (D) Dot plot displaying the 
average scRNA-seq expression of selected marker genes across all detected cell types (normalized to a scale of 
0–2). E. Proportion of cells of each cell type (x axis) detected with different groups (y axis).
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research indicating the significance of glycolytic dysregulation in neurodegenerative diseases39. This, to some 
extent, validates the accuracy of the metabolic predictions made in this study. Given the consistency of endothe-
lial cell metabolic dysregulation across the disease progression of HS, IS, and AD, and the fact that all three 

Fig. 2  Single-cell metabolic flux mapping reveals the heterogeneity of metabolism between cell types and 
diseases. (A,B) Profile of the predicted fluxome of 168 metabolic modules. On the y-axis, each row displays the 
flux of a particular metabolic module for all the cells under various group cell type conditions (shown on the 
x-axis). The color scale bar represents the size and direction of metabolic fluxes. (C) Volcano map revealing 
differences in enzyme expression in endothelial cells in different diseases. The vertical axis provides average 
log2FC values, and the horizontal axis presents the difference between proportions. The color of each dot 
represents the direction of change. Enzymes that differ significantly are highlighted on the figure, and coloured 
annotations are added to the metabolic modules that they participate in.
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conditions lead to neurodegenerative outcomes4,7, the downregulation of endothelial cell metabolism may play 
a crucial role in neurodegeneration.

Identification of perturbed coexpression module associated with altered endothelial cell 
metabolism in HS, IS, and AD.  In our quest to uncover the underlying metabolic alterations in endothe-
lial cells across HS, IS, and AD, we performed scWGCNA40 using 3000 highly variable genes obtained through 

Fig. 3  Endothelial cell metabolites accumulated and were depleted with great overlap in AD, IS and HS. (A–C) 
Top 20 metabolites predicted to accrue and deplete in the AD, IS, and HS groups when compared to the WT 
group. Metabolites are arranged on the x-axis in decreasing order of accumulation level. The metabolic stress 
level is represented on the y-axis, where a positive number indicates accumulation and a negative value indicates 
depletion. (D) Venn diagram showing the overlap of accumulated and depleted metabolites in the three diseases.
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the Findmarkers function from the Seurat Package41. This approach led to the identification of eleven distinct 
coexpression modules (Fig. 4A,B). The majority of the enzyme modules for the nine enzymes in Fig. 2D that 
had substantial changes belonged to the MEbrown module. Our subsequent comparison of the levels of various 
expression modules across different endothelial cell groups revealed that the expression levels of the MEbrown 
module in IS, HS, and AD were all lower than what in the WT group (Fig. 4C). To gain deeper insights into the 
biological implications of this coexpression module, we subjected its genes to GO enrichment analysis (Fig. 5). 
The results highlighted a prominent enrichment of genes associated with critical cellular processes, including 
signaling receptor activator activity, receptor ligand activity, and growth factor binding. Additionally, we observed 

Fig. 4  WGCNA identified a particular module associated with metabolic shift. (A) WGCNA modules and the 
clustering dendrogram. On the basis of the pattern of gene expression, the clustering diagram and 11 modules are 
shown. (B) Distribution of differential enzymes identified by the metabolic profile in the WGCNA module.  
(C) Box plot visualization of the eigengenes of various modules in different groups. The x-axis shows different gene 
coexpression modules, and the box colour represents the group. The y-axis shows the expression of the eigengene.
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an enrichment of genes involved in transmembrane transporter channel activity-related pathways, such as car-
boxylic acid transmembrane transporter activity and organic acid transmembrane transporter activity. This 
intriguing finding suggests that the metabolic shift observed in endothelial cells across these neurodegenerative 
conditions may be intricately linked to the dysregulation of specific pathways mediated by the MEbrown coex-
pression modules. The downregulation of these pathways in HS, IS, and AD could potentially play a pivotal role 
in the development and progression of neurodegenerative diseases.

Transcriptional regulatory network analysis revealed key transcriptional regulators that cause 
metabolic shifts in endothelial cells.  Additional research into upstream transcriptional regulators that 
lead to altered metabolic changes may yield potential targets for therapeutic interventions to curtail the course 
of neurodegenerative disorders. To achieve this goal, we performed single-cell transcriptional regulatory fac-
tor analysis (SCENIC). Four modules comprising a total of 119 transcriptional regulators were found (Fig. 6A, 
Supplementary Table S636). Figure 6B and Fig. S2 depict the sequencing of the activity score of these modules 
in various cells. Endothelial cells were found to have the most active form of M4, and IS, HS, and AD were all 
reduced relative to WT. To further clarify the transcription factors regulating the MEbrown module in Fig. 4, we 
examined the extent to which the genes of the MEbrown module were enriched in transcription factor targets 
using a hypergeometric test algorithm. The top 5 enriched transcriptional regulators were Lef1, Sox13, Elk3, Fosl1 
and Erg (Fig. 6C). Among them, Lef1, Sox13 and Erg belong to M4 module, and Elk3 and Fosl1 are also related to 
transcriptional regulators in M4 module. Additionally, Fig. 6D verified the changes in these transcription factors 
based on their expression levels, further supporting their pivotal roles in the regulatory network. The transcrip-
tional regulatory network in endothelial cells is demonstrated in Fig. 6E, where some targets of the network such 
as Slc7a1 and Slc38a5 are involved in the metabolism of transmembrane channels. Our findings elucidate the crit-
ical involvement of specific transcriptional regulators, particularly those within the M4 module, in orchestrating 
the metabolic shifts observed in endothelial cells.

Discussion
In the current study, we integrated and constructed single-cell metabolic flux profiles of ischemic stroke, hem-
orrhagic stroke and Alzheimer’s disease for the first time. Our study revealed a simultaneous decline in specific 
metabolic modules in endothelial cells across ischemic stroke (IS), hemorrhagic stroke (HS), and Alzheimer’s 
disease (AD). The downregulation of B-alanine and intermediates of glycolysis and the tricarboxylic acid (TCA) 
cycle in these conditions suggests that dysregulation of transporter-related pathways may play a significant role 
in the onset and progression of neurodegeneration.

The finding that B-alanine levels were reduced across all three conditions is particularly intriguing, given 
its demonstrated inverse relationship with dementia38. B-alanine is a non-essential amino acid known to be 
involved in various physiological processes, including neurotransmission and the synthesis of carnosine, an 

Fig. 5  The specific module discovered by WGCNA was highly enriched in cell surface receptor- and ion channel-
related pathways. Network of enriched pathways and genes. The colour of the dot represents p.adjust, and the size 
of the dot represents the number of genes enriched in the specific module of the pathway where the dot is located.
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antioxidant with neuroprotective properties42,43. Therefore, targeting B-alanine metabolism and its related path-
ways may represent a promising avenue for therapeutic intervention in neurodegenerative diseases.

Fig. 6  SCENIC analysis identified transcriptional regulatory networks that could lead to changes in metabolism. 
(A) Hierarchical clustering heatmap of the discovered regulons. Different modules are represented by various 
colors. (B) Scatter plot of M4 module transcriptional regulon activity scores ranked by different cell types.  
(C) Dot plot showing the top 5 regulons specifically enriched by genes in the MEbrown module identified by 
WGCNA. The color of the dot represents p.adjust. The size of the dot represents the count of genes enriched in 
regulons. (D) Dot plot displaying the average expression of identified transcriptional regulators across all detected 
cell types (normalized to a scale of 0–2). (E) Network of the top 5 regulons. Each line connects an upstream 
transcriptional regulator to a downstream target, and the colors of the lines correspond to different regulons.
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Furthermore, a notable observation from our study is that the reduction in pyruvate and fumarate, crucial 
intermediates of glycolysis and the TCA cycle, was consistently observed specifically in endothelial cells across 
the three neurodegenerative conditions: IS, HS, and AD (Fig. 3). This intriguing finding highlights the unique 
role of endothelial cell metabolism in the pathogenesis of neurodegeneration. Endothelial cells form an essential 
component of the blood-brain barrier (BBB) and play a critical role in maintaining brain homeostasis44. Their 
metabolic state is tightly linked to their regulatory function in providing essential nutrients and energy sub-
strates to neurons and glial cells45. Impaired endothelial cell metabolism can compromise BBB integrity, leading 
to increased permeability and subsequent infiltration of immune cells and inflammatory mediators into the 
brain, which can contribute to the progression of neurodegeneration46.

Glycolysis is not only a central pathway for energy production but also a critical source of precursors for 
biosynthetic processes essential for cell survival and function47. Previous studies have shown that metabolic 
dysregulation of glucose metabolism is present in both Alzheimer’s disease (AD) and stroke patients48–51. Our 
finding of reduced glycolysis specifically in endothelial cells in the context of IS, HS, and AD underscores the 
importance of studying cell-specific metabolic alterations to gain a comprehensive understanding of neurode-
generative disease mechanisms. Targeting endothelial cell metabolism, particularly glycolysis and related met-
abolic pathways, may hold promise as a potential therapeutic strategy to restore cellular energy balance, bolster 
BBB integrity, and mitigate neurodegeneration.

We also explored the upstream transcriptional regulators whose targets were significantly enriched in coex-
pression modules associated with metabolic shifts in endothelial cells (Figs. 4, 6), and by analysis of their gene 
expression levels we found that Lef1, Elk3 and Fosl1 were significantly decreased in stroke and AD. Lymphoid 
enhancer-binding factor 1 (Lef1) is a member of the Lef/Tcf transcriptional regulator family that mediates 
beta-catenin-dependent transcription in the Wnt-beta-catenin pathway and promotes endothelial cell prolifer-
ation and migration52,53. Studies have shown aged animals failed to initiate the expression of this EC migration 
pathway by day 14 post-stroke54. Additionally, Lef1 is involved in driving the expression of glucose-dependent 
insulinotropic peptide, which regulates glucose and energy homeostasis55. Therefore, Lef1 may play a cru-
cial role in metabolic dysregulation in endothelial cells. Similarly, Elk3 and Fols1 have also been shown to be 
involved in endothelial adhesion and migration56–58. Moreover, the direct targets of the above transcription fac-
tors all involve enzymes such as Slc7a1 and Slc38a5 that underlie metabolic shifts in endothelial cells; therefore, 
the reduced transcriptional activity of Lef1, Elk3 and Fosl1 in endothelial cells may be the main cause of meta-
bolic shifts. Intervention with these upstream regulators may be a potential approach to mitigate the process of 
neurodegeneration.

There are several unique aspects of this study. First, it systematically creates metabolic flow profiles at the 
single-cell levels for IS, HS, and AD. A focus on the same metabolic change during the disease process will 
assist in elucidating the potential metabolic pathways during neurodegeneration because neurodegeneration 
is implicated in all three disease pathologies. To identify potential targets for intervention to halt the course of 
neurodegeneration, this study also investigated the transcriptional regulatory networks that lead to metabolic 
alterations. However, this study still has several shortcomings. First, since all of the disease models in this study 
were based on mice, they do not accurately reflect the reality of the disease. Second, the transcriptional regula-
tory targets identified in this work were not further confirmed. Future research will broaden the types of diseases 
and construct more spectral single-cell metabolic profiles of neurodegenerative diseases and experimentally 
validate potential targets for intervention.

In conclusion, our investigation has provided novel insights into the shared metabolic shifts in endothelial 
cells across ischemic stroke, hemorrhagic stroke, and Alzheimer’s disease. Additionally, we have identified Lef1, 
Elk3, and Fosl1 as prospective targets for reversing the development of neurodegeneration. These findings hold 
promise for advancing our understanding of neurodegenerative disorders and may pave the way for future ther-
apeutic strategies aimed at combating these debilitating conditions.

Methods
Data collection.  The single-cell data of ischemic and hemorrhagic strokes59 was acquired from the Gene 
Expression Omnibus database (GEO; https://www.ncbi.nlm.nih.gov/geo/) via accession number GSE16759360. 
The single-cell transcriptome profiles of Alzheimer’s disease were retrieved using the accession numbers 
GSE140399 from GEO61. In these data, 5XFAD mice were used to simulate the disease state of AD30.

Single cell data processing.  After obtaining the raw single-cell count matrices, we merged and processed 
the data using the R package Seurat (version 4.0; https://satijalab.org/seurat/). To eliminate potentially low-quality 
or compromised cells, we filtered out those with UMI counts below 200 and a mitochondrial gene expression ratio 
exceeding 20%. Additionally, we removed genes expressed in fewer than three cells to address potential artifacts 
and reduce noise. The harmony package (https://github.com/immunogenomics/harmony) was utilized to remove 
batch variations between samples. Next, we conducted data normalization using standard procedures. The raw 
gene counts of each cell were adjusted by dividing them by the total number of reads in that particular cell, 
accounting for sequencing depth variations. Subsequently, a logarithmic transformation was applied to the nor-
malized gene expression data to stabilize variance across the dataset and mitigate the impact of highly expressed 
genes. Next, we proceeded with dimensionality reduction, clustering, cell type annotation, and visualization steps 
to obtain unsupervised clustering of cells and their spatial distribution, following the guidelines provided on the 
Satija Lab website (https://satijalab.org/). The identification and annotation of clusters was performed using data 
that had already been published30,31.
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Construction of a single-cell metabolic flux profile.  The acquisition of single-cell metabolic flux pro-
files mainly utilized a graph neural network algorithm called single-cell flux estimation analysis (scFEA)24. The 
168 metabolic modules whose data were utilized in the research were directly downloaded from the algorithm’s 
official Github page (https://github.com/changwn/scFEA).

Differential expression analysis and functional enrichment analysis.  The genes that were upreg-
ulated in the AD, IS, and HS groups relative to the wild-type (WT) group across different cell types were deter-
mined using Seurat’s FindMarker function. Gene Ontology (GO) enrichment analysis and Gene Set Enrichment 
Analysis (GSEA) were carried out using the hypergeometric test and the clusterProfiler R package.

Weighted gene coexpression network analysis (WGCNA).  Using the scWGCNA program41, we con-
ducted WGCNA on endothelial cells. In this research, the top 3000 variable genes were taken into account. The 
signed adjacency matrix was generated for the purpose of identifying the gene module with SoftPower set to 10. 
Average hierarchical clustering served as the foundation for both genetree clustering and eigengene clustering.

Network analysis for transcriptional regulators.  Based on mm10 refseq-r80 500 bp up and 100 bp 
down tss.mc9nr.feather, single-cell regulatory network inference and clustering (SCENIC) analysis was carried 
out62. The SCENIC procedure was run with default settings, and the raw count matrix from all of the samples was 
utilized as input. The analysis was conducted in three steps. Prior to identifying the transcription factors (TFs) 
with direct targets (regulon), we calculated the coexpression modules and assessed the weight between the TFs 
and their target genes. AUCell was used to assess each regulon’s activity within each cell. The enricher function of 
the clusterprofiler package was used to run a hypergeometric test to identify regulons enriched in a certain mod-
ule. For visualization, ggplot2 was used to calculate the average regulon activity scores of the regulon modules for 
each cell type and to create a rank plot of the regulons.

Data availability
In this study, publicly accessible datasets were analyzed. These links will take you to the information: https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140399(ref. 61), https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE167593(ref. 60). We release our supplemental data at https://doi.org/10.5281/zenodo.8162047 (ref. 36).

Code availability
The source codes used in this work are accessible on GitHub (https://github.com/GuangyuGuoer/scMF-across-
AD-and-stroke).
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