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CLSoilMaps: A national soil gridded 
database of physical and hydraulic 
soil properties for Chile
Diego I. Dinamarca   1,2, Mauricio Galleguillos   1,2,3 ✉, Oscar Seguel4 & Carlos Faúndez Urbina5

Spatially explicit soil information is crucial for comprehending and managing many of Earth´s processes 
related to carbon, water, and other biogeochemical cycles. We introduced a gridded database of soil 
physical properties and hydraulic parameters at 100 meters spatial resolution. It covers the continental 
area of Chile and binational basins shared with Argentina for six standardized depths following the 
specifications of the GlobalSoilMap project. We generated soil maps based on digital soil mapping 
techniques based on more than 4000 observations, including unpublished data from remote areas. 
These maps were used as input for the pedotransfer function Rosetta V3 to obtain predictions of soil 
hydraulic properties, such as field capacity, permanent wilting point, total available water capacity, 
and other parameters of the water retention curve. The trained models outperformed several other 
DSM studies applied at the national and regional scale for soil physical properties (nRMSE ranging from 
6.93% to 15.7%) and delivered acceptable predictions (nRMSE ranging from 10.4% to 15.6%) for soil 
hydraulic properties, making them suitable for countless environmental studies.

Background & Summary
Soil is a vital element of the functioning of the biosphere, being the structural base for the exchanges of matter 
and energy between the atmosphere, lithosphere, and hydrosphere1. Soils sustain life by being at the center of 
carbon, water, and other biogeochemical cycles. Therefore, soils are recognized for providing different services 
to humanity, which need to be guaranteed to achieve sustainable development. The international community 
has recognized the importance of soils by including them in at least twelve of the seventeen United Nations 
Sustainable Development Goals2.

Soil’s capacity to provide ecosystem services is tightly linked to its physical and chemical properties, bio-
diversity, and the interactions between these components, which can be modified mainly by anthropic use 
and management practices, especially in critical development areas like the agricultural and forestry sectors3.  
Of great relevance are those services related to water provision and regulation where soil physical properties play 
a fundamental role, given that they represent the interface where the atmosphere meets the Earth and modulates 
fluxes of matter and energy within the continuum that ranges from substrate underlying soils to the top of the 
atmosphere4. Indeed, soil physical properties and their soil hydraulic parameters may be relevant in ecosystem and 
hydrological modeling since many processes implemented in such tools directly depend on those properties5,6.  
Since soil texture and bulk density determine the capacity of soil to store and infiltrate water, both properties are 
linked to runoff control7,8, CO2 efflux9, and organic matter mineralization10–12, among other natural processes. In 
many situations, this information is extrapolated from a global database or obscured by calibration procedures 
introducing more considerable uncertainties into simulations of carbon and water fluxes variables. These issues 
justify the need for high-quality soil information to support management strategies13, especially those related to 
water management.

A few years ago, soil spatial information was limited to soil class maps, where different types of soils are 
depicted as polygons14, created using conventional mapping methods. These models assumed that soils within 
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the same class had low variability and that the changes between classes were discrete, separated by polygon 
borders. Consequently, this type of map failed to reveal details about intrapolygonal variation within each class, 
leading to a lack of precision regarding soil attributes15.

Given the limitations of conventional mapping methods, another geospatial technique has been developed 
to estimate the continuous variations of soils in space, at finer scales, which can more adequately represent soils 
processes known as digital soil mapping (DSM). Most DSM approaches apply the SCORPAN model16, formal-
ized in the equation S = f(scorpan), where S is a soil class or attribute, each letter of the SCORPAN acronym 
represents a soil-forming factor (s: soil, c: climate, o: organisms, r: relief, p: parent material, a: age/time, n: space/
spatial position) and f() is a quantitative empiric function that relates soil properties to their soil forming factors.

There is a rich offer in geospatial data that can nourish prediction models and from which thousands of 
soil-forming factors-related covariates can be derived. Among the most utilized predictors are maps of existing 
soil properties, mean annual temperature and precipitation, remote sensing images, elevation, land attributes, 
and geological maps17. The covariates used in the predictive models vary among studies, and there is no con-
sensus about the optimal quantity. However, it is assumed that more covariates imply more precise results, even 
when the method selects only a subset to obtain the predictions18.

Naturally, the availability of soil observations is an important limiting factor to applying DSM, given that a 
soil survey and subsequent laboratory analysis is a costly and time-consuming task19. This issue, added to the 
fact that some soil attributes are more challenging to measure than others, results in soil databases that often 
lack valuable information like water retention properties. They are usually obtained from pedotransfer functions 
(PTF) to predict soil attributes such as field capacity, permanent wilting point, or total available water capacity 
from other soil attributes that are more easily measured or that demand fewer resources to obtain like soil par-
ticle size fractions or bulk density.

Soil physical properties and hydropedological properties gridded products are now available for the entire 
world, usually at 250 m (“https://soilgrids.com”, last access Oct-28; “https://openlandmap.org”, last access Oct-28);  
however, only a limited set of local observations were considered for Chile (e.g., 26 soil profiles for bulk density 
and 69 for textures in the WoSIS database used for SoilGrids20), thus introducing possible uncertainties. In 
Chile, the widely used soil spatial information pertains to soil class maps prepared on a 1:20000 and 1:50000 
scale, developed by the Center of Natural Resources Information (CIREN) by conventional soil mapping tech-
niques based on more than six hundred soil samples located mainly in agricultural and grassland systems21. 
These data and other compiled soil information were used to develop gridded soil maps for different phys-
icochemical properties (organic carbon, field capacity, permanent wilting point, bulk density, clay and sand 
particle size fraction, and pH) with a resolution of 100 m at the national level as an input to the GlobalSoilMap 
project21,22 although with moderate precision and not publicly available. Despite its inherent value as a pioneer 
study devoted to Chile only, more significant uncertainties are expected since it was based on data that were 
mainly sampled in agricultural lands primarily located in flat areas under gentle climate conditions, all of which 
is far from the reality of the country’s natural variability characterized by mountainous topography and harsh 
weather ranging from extreme desert, rainy and polar climates23. Therefore, such soil-derived products can have 

Fig. 1  Spatial distribution of soil profiles used in the mapping procedure.
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significant consequences on hydrological applications and forestry studies, including natural and planted eco-
systems that require a precise characterization capturing all kinds of topo-climatic conditions.

The present research provides a new gridded product of soil physical and hydraulic properties which 
accounts for the natural variability of the country, using a newly compiled soil database for the national territory 
that includes soil profiles from mountainous ecosystems and hostile weather in addition to agricultural and 
forestry samples. DSM techniques coupled with more than two hundred potential environmental covariates are 
used to model clay, sand content and bulk density. Also, pedotransfer functions are used to obtain maps of field 
capacity, permanent wilting point, available water capacity soil saturated hydraulic conductivity, among other 
soil attributes, from the soil physical properties modeled with DSM. All maps were generated for six standard 
depths following the GlobalSoilMap project protocols at 0.001 degrees of spatial resolution (near 100 m).

Methods
Soil data.  The soil profile database used corresponds to a compilation of diverse published sources20,24–34, 
including a newly compiled database called ChSPD35. The data was classified into four categories, shown in Fig. 1. 
Data from CIREN consist of 46% of texture data and 21% of bulk density and are distributed mainly in soils 
with agricultural aptitude. On the other hand, data from the Laboratory of soil physics at the University of Chile 
(UChile) represents 41% for texture, 30% for bulk density and 90% of the hydraulic soil atributes. The Chilean Soil 
Organic Carbon Database (CHLSOC) represents 8%, 48% and 10% for texture, bulk density and soil hydraulic 
properties data (Table 1). These two databases are compilations of different authors and provide data from soils 
in diverse natural ecosystems such as the Atacama Desert, Andes Mountains, and Patagonia, in addition to native 
forests and forestry plantations in the south-central zone of the country. Only a few samples have the sampling 
year, so this variable was not considered for modeling, which is assumed not to be an inconvenience given the 
invariant nature of the soil properties chosen.

Soil samples were standardized at six depths 0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm, according 
to GlobalSoilMap project specifications22, using an equal-area splines method36. Given the resolution of 0.001 
degrees used to generate the predictive maps, some pixels contained more than one soil profile sample. To deal 
with the redundant information that would be generated in the regression matrix, all the soil profiles that were 
inside the same pixel were averaged after the standardization. The resulting dataset was then overlayed with the 
environmental covariates to generate the regression matrix.

Environmental covariates.  We selected predictors according to the soil formation factors proposed in the 
SCORPAN model. Table 2 shows a summary of all the predictors considered. We resampled all environmental 
covariates with the final resolution of the soil maps (0.001 degrees) before overlaying soil profiles and training 
the random forest models. The methodology to obtain and process the predictors is detailed in the following 
paragraphs.

Climate.  Climate predictors were obtained from gridded precipitation and maximum, minimum, and mean 
temperatures prepared for continental Chile by the Center for Climate and Resilience Research (CR2). These 
products have a spatial resolution of 0.05 degrees (near 5 km) and have daily and monthly images from 1979 to 
202037. Only the period from 1979 to 2009 was considered to obtain metrics related to the typical historical cli-
mate behavior, without considering the last ten years of megadrought38. Several environmental predictors were 
calculated, such as monthly long-term precipitation, mean, maximum, and minimum temperature, aside from 
21 bioclimatic indexes that give information about the annual behavior of climate and average conditions and its 
seasonal intra-annual variation39. All these covariates were resampled to 0.001 degrees using a bilinear method.

Fig. 2  Variable selection workflow. Two covariate subsets are obtained for each soil attribute, one for each of the 
soil database splits.
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Soil and organisms.  Surface reflectance measured by Landsat 8 was considered a proxy for obtaining soil and 
organism predictors. To create the Landsat 8 composite for the whole study area, an application developed for 
Google Earth Engine (GEE)40 was used. This app considers four criteria for determining the best-quality pixel 
among images. These criteria are explained briefly next: (1) Year of image, where the highest weight was assigned 
to the scenes in the middle of the period (1979–2009), and the weight decreases linearly to the limits of the year 
interval; (2) The period of the composite (e.g., summer months), greater weight was assigned for the images at 
the half of the period, decreasing in a bell shape towards the limits of the period; (3) Distance to clouds or cloud 
shadows, where the highest weight was assigned to the images that are farther than 1500 m from a cloud or cloud 
shadow, decreasing with distance according to a sigmoid function; and (4) The median reflectance value of the 
pixel, which was applied to reduce oversaturation or interference of clouds and cloud shadow. Here, the weight 
was assigned according to the near-infrared (NIR) band values, where pixels from the median of the distribu-
tion have the highest weight, decreasing linearly toward the limits of the distribution. For every scene pixel, the 
weighted weight was calculated, and the final composite was created with the pixels with the highest weight.

Product Resolution Type Predictors

CR2MET Precipitation and Temperature 
(mean, max and min) grids 5 km Climate

Isothermality, Max temperature of warmest month, Mean 
Precipitation of coldest quarter, Mean precipitation of driest 
quarter, Mean precipitation of warmest quarter, Mean Precipitation 
of wettest quarter, Mean temperature of coldest quarter, Mean 
temperature of driest quarter, Mean temperature of warmest 
quarter, Mean temperature of wettest quarter, Min temperature 
of coldest month, Precipitation of direst month, Annual mean 
precipitation, Annual standard deviation of precipitation, 
Precipitation seasonality, Total annual precipitation, Precipitation 
of wettest month, Temperature annual range, Temperature mean 
diurnal range, Temperature seasonality Coefficient of variation, 
Temperature seasonality Standard deviation, Long term mean 
monthly precipitation, Long term mean monthly temperature, 
Long term maximum monthly temperature, Long term minimum 
monthly temperature.

Landsat 8 Surface Reflectance 30 m Soil and 
Organisms

GNDVI, GRVI, NDVI, SAVI, GSI, Brightness, Greenness, Wetness, 
red/green, red/swir1, swir1/swir2

SRTM 30 m Relief

Elevation, Catchment area, Catchment slope, Convergence Index, 
Cross sectional curvature, Plan curvature, Tangential curvature, 
Diurnal anisotropic heat, Flow direction, Flow length, Mid slope 
position, MRRTF, MRVBF, Normalized Height, Saga Wetness Index, 
Slope Height, Standardized Height, Stream power index, Terrain 
surface classification*, Terrain surface texture, Topographic position 
Index (1000 m and 5000 m), Terrain ruggedness index, Valley depth

Table 2.  SCORPAN predictors. *Categorical variable.

Soil attribute Source N of profiles N of samples % of samples

Clay, Silt and Sand

CHLSOC 98 267 8%

CIREN 557 2269 46%

UChile 496 1612 41%

WoSIS 61 318 5%

Total 1212 4466 69%

BD

CHLSOC 851 1427 48%

CIREN 365 1476 21%

UChile 531 1701 30%

WoSIS 18 112 1%

Total 1765 4716 100%

PWP

CHLSOC 42 194 10%

CIREN 0 0 0%

UChile 397 1354 90%

WoSIS 1 9 0%

Total 440 1557 100%

FC

CHLSOC 42 194 10%

CIREN 0 0 0%

UChile 399 1368 90%

WoSIS 1 9 0%

Total 442 1571 100%

Table 1.  Number of soil profiles and soil samples per source and soil attribute. BD = Bulk Density, 
PWP = Permanent Wilting Point, FC = Field Capacity.

https://doi.org/10.1038/s41597-023-02536-x
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The study area represented as an image composite was divided into two zones due to certain environmental 
limitations. In January and February 2017, the country’s central zone was affected by mega-wildfires, which 
modified the ordinary conditions of the land41. For this reason, from 41.44 to 17°S, summer images were con-
sidered between December 21 and March 21 from 2014 to 2016. South of 41.44°S, the main limitation was the 
presence of clouds, so the period of the year had to be increased from 2014 to 2021, considering the same sum-
mer period. The final composite was downloaded from GEE and resampled to 0.001 degrees using the nearest 
neighbor method.

Missing pixels on the final composite were filled using a focal filter with a 5 × 5 window. Several spectral 
indexes were calculated from the composite: the Green Normalized Difference Vegetation Index (GNDV)42, 
Green-Red Vegetation Index (GRVI)43, Grain Size Index (GSI)44, Normalized Difference Vegetation Index 
(NDVI)45, Soil Adjusted Vegetation Index (SAVI)46; images of brightness, greenness, and wetness were calcu-
lated using a Tasseled Cap transformation40; and soil enhancement ratios: red/green, red/swir2, swir1/swir2 that 
augment the presence of some exposed soil minerals47. Finally, textural metrics of contrast, variance, entropy, 
dissimilarity, and homogeneity (inverse difference moment) were calculated using the grey-level co-occurrence 
matrix (GLCM) for all the previous spectral indexes48.

Fig. 3  Covariates selected as predictors for each soil attribute. The predictors selected by the VSURF function 
were filtered, eliminating all the predictors with a correlation greater than 0.6. The upper and lower sets 
correspond to the portion of the soil database used for selecting the covariates. Pr: Precipitation, Temp: 
Temperature, SD: standard deviation, CV: Coefficient of variation, TPI: Topographic Position Index.
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Relief.  The predictors in this category were obtained from the Shuttle Radar Topography Mission (SRTM) 
digital elevation model of 30 m resolution, which was downloaded from the GEE platform49 and resampled to 
0.001 degrees using the nearest neighbor method. Several first and second-degree topographic derivatives were 
calculated using open-access software SAGA GIS50 which can be seen in Table 2.

Depth.  Depth was added as a predictor following the methodology proposed by Akpa et al.51 where the mean 
of each horizon was added as a covariate (e.g. 2.5 for 0–5 cm horizon, 10 for 5–15 cm horizon, and so on). This 
allowed us to create 3D models that allowed us to train one single model that could predict on all soil horizons 
at once.

Covariate selection.  Given the large number of covariates generated, it was necessary to make a preselec-
tion to obtain more parsimonious models. For this, we used an automated method of variable selection based 
on Random Forest implemented in the R package VSURF52, which takes advantage of this model’s capacity to 
estimate the covariates’ predictive importance (PI). The VSURF capabilities have proven effective in remote 
sensing-based predictive modeling in other contexts such as biomass53 and post-fire litter54 mapping.

First, we split the database in two: one half with soil data from 0–30 cm (horizons 0–5, 5–15, and 15–30 cm) 
and the other half with data from 30–200 cm (horizons 30–60, 60–100, 100–200 cm). Then each split was over-
layed with the complete set of covariates already resampled to 0.001 degrees to create two regression matrices 
used as inputs for the VSURF function to select the most important predictors. The result of this selection pro-
cess was two subsets of covariates: upper (U) and lower (L) for each soil physical property (Fig. 2).

Once both subsets were obtained, a correlation filter was applied to all the continuous variables so that each 
pair of predictors with a correlation coefficient larger than 0.6. The variable with the lowest variable of impor-
tance, estimated by the VSURF function, was removed from the set. Then, depth was forced as a covariate in all 
models to ensure that the models could predict at any standardized depths.

Random forest model tuning.  To link observed soil values with the environmental covariates, Random Forest 
(RF) was used as the predictive model55, given its processing speed, resistance to overfitting, and ability to handle 
high dimensionality and categorical and quantitative predictors. This model has some parameters that can be 
adjusted to get a better fit. These parameters were the number of trees (ntree), the number of predictors selected 
at each split (mtry), and the minimum number of values for each branch or terminal node (nmin). These three 
parameters were adjusted for each modeled variable using the tune grid function of R package tune56, choosing 
the values that resulted in the lowest RMSE.

Model training and validation.  Training Random Forest models started by splitting the database into 75% 
for the training set and 25% for external model validation. Then the training set was sampled randomly with 
repetition in a bootstrap process with one hundred iterations. In each iteration the number of values sampled was 
75% of the total training set. With the sampled data, a random forest model was trained using as covariates the 
Upper and Lower subsets obtained on the covariates selection process, resulting in two different trained models 
per iteration. Repeating this process one hundred times, we got 100 models per soil attribute and covariates set. 
The 200 models were then validated against the 25% of the external validation set which allowed us to measure the 
generalization of the models using data that was never included in the training process. The validation metrics cal-
culated were RMSE (Eq. 1), PBIAS (Eq. 2), R2 (Eq. 3)., and nRMSE (Eq. 4), differentiating the results for each soil 
standardized horizon. The model with the highest R2 was selected for each horizon to generate the final soil maps.

Soil attribute File abbreviation Description Units

Bulk density Bulkd Bulk density of the fine fraction g/cm3

Clay Clay Clay content %

Sand Sand Sand content %

Silt Silt Silt content %

Field Capacity FC Field capacity at 330kPa cm3/cm3

Permanent Wilting Point PWP Permanent wilting point at 15000kPa cm3/cm3

Available Water Capacity AWC Available water capacity as 100*(FC-PWP) mm

Total Available Water Capacity Total_AWC Sum of AWC across all depths mm

Available Moisture AvMoist Available Moisture as FC-PWP cm3/cm3

θr theta_r residual water content cm3/cm3

θs theta_s saturated water content cm3/cm3

α alpha “alpha” shape parameter 1/cm

npar n “n” shape parameter —

Soil Hydraulic Conductivity ksat saturated hydraulic conductivity cm/day

Table 3.  Summary of soil attributes available in CLSoilMaps.

https://doi.org/10.1038/s41597-023-02536-x
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Fig. 4  Performance metrics for the final selected models. Beanplots show the distribution of accuracy metrics 
(RMSE) and precision (R2) for 100 bootstrap simulations for each property and depth.

Soil Attribute Model Depth RMSE nRMSE R2 PBIAS

Bulk Density

RF-U 0–5 0.18 8.96 0.82 0.84

RF-U 5–15 0.14 6.93 0.88 −0.04

RF-U 15–30 0.15 7.79 0.86 −0.81

RF-U 30–60 0.19 9.62 0.79 −0.90

RF-L 60–100 0.19 10.13 0.78 −0.89

RF-L 100–200 0.20 10.69 0.76 0.20

Clay

RF-U 0–5 7.23 11.74 0.68 2.75

RF-U 5–15 6.11 9.95 0.76 2.97

RF-L 15–30 7.29 10.21 0.75 0.27

RF-L 30–60 9.29 12.05 0.72 −7.17

RF-L 60–100 11.36 13.52 0.60 −5.93

RF-U 100–200 12.99 15.70 0.50 3.90

Sand

RF-U 0–5 10.83 11.16 0.75 0.25

RF-U 5–15 9.25 10.06 0.83 0.84

RF-U 15–30 9.16 9.78 0.83 0.04

RF-U 30–60 9.73 10.09 0.84 2.47

RF-U 60–100 13.78 13.89 0.67 −0.03

RF-U 100–200 13.91 14.63 0.71 −3.82

Table 4.  Mean validation metrics across 100 bootstrap iterations. RF-U: random forest model using the Upper 
set of covariates. RF-L: random forest model trained using the Lower set of covariates.

https://doi.org/10.1038/s41597-023-02536-x
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To evaluate model uncertainty, we calculated the prediction interval coverage probability (PICP) suggested 
by57. This value corresponds to the percentage of samples contained inside the boundaries of a prediction inter-
val, given a level of confidence. The procedure consisted of estimating the prediction interval of each response 
using different confidence levels for each model. Then for each model, precision maps were generated58 showing 
the proportion of observed data within the prediction interval at different confidence levels.

Generating digital soil maps.  As a result of the bootstrap process, we obtained 200 trained models, two 
for each iteration. With each of those models one map was generated for each property and standardized depth, 
getting a distribution of 100 values for every pixel. The final map for each property and depth was generated by 

Fig. 5  Prediction interval coverage probability (PICP) for the final selected models.
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calculating the mean of the distribution. Also masks of urban areas, water bodies (available at “https://www.bcn.
cl/siit/mapas_vectoriales”) and glaciers (available at “https://dga.mop.gob.cl/estudiospublicaciones/mapoteca/
Paginas/Mapoteca-Digital.aspx”) were applied to the final maps since these types of cover are not considered soil.

Then with the mean of sand and clay, silt content was calculated using Eq. 5:

Silt% 100 (Sand% Clay%) (5)= − +

Fig. 6  Soil maps for clay, sand and bulk density for depths of 5–15, 30–60 and 100–200 cm.
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Since sand and clay content were estimated independently, the sum of both gave values above 100%, so spe-
cific pixels yielded a negative silt content. All the negative pixels were replaced with a focal filter by the mean of 
the neighboring pixels using a 5 × 5 window.

Next, to evaluate the uncertainty of the models, we calculated prediction intervals with a 90% confidence 
level, estimating the upper and lower limits using Eq. 521.

= ± . σ +PI x 1 645 MSE (6)2

Where x  and σ2 correspond to the mean and variance of the Bootstrap iterations, and MSE is the quadratic 
mean error associated with the 100 trained models. The limits of the prediction intervals were capped to the 
actual boundaries for the selected physical properties (e.g., clay and sand content between 0 and 100%, and a 
bulk density greater than 0) to prevent intervals with unreal limits.

Map of soil textural classes.  We standardized the maps of clay, silt, and sand (considering that the three 
particles add up to 100) to obtain the textural classes map, for example to standardized sand content:

=
+ +

⋅Sand Sand
Clay Silt Sand( )

100
(7)

c

Depth Bulk density Sand Clay

0–5 0.98 0.97 0.96

5–15 0.97 0.97 0.98

15–30 0.98 0.96 0.98

30–60 0.97 0.93 0.95

60–100 0.94 0.96 0.95

100–200 0.95 0.95 0.93

Table 5.  PICP values for a 90% confidence prediction interval.

Fig. 7  Probability density functions at each ecoregion for clay, silt, sand, and bulk density. AD: Atacama Desert, 
CADP: Central Andean Dry Puna, SAS: Southern Andean Steppe, CM: Chilean Matorral, VTF: Valdivian 
Temperate Forests, MSF: Magellanic Subpolar Forests, PS: Patagonian Steppe. The black line is the distribution 
of observed data, the red line is the predicted value distribution of CLSoilMaps products, and the blue line is the 
SoilGrids 2.0 predicted values. A map of Ecoregions adapted from Olson et al., 2001 is displayed on the left.
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where Sandc was the corrected sand content. Once all three particles were standardized, we used the R package 
soil texture (Moeys, 2018) to get a textural classification map according to the USDA classification system.

Generating maps with PTFs.  In addition to the soil properties modeled, soil water retention, and available 
water capacity were obtained using Rosetta V359. Rosetta is a PTF that estimates water retention parameters in 
van Genuchten’s (1980) equation:
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We obtained the soil water content at field capacity (FC; h = 330kPa), and the permanent wilting point 
(PWP; h = 15000kPa) using the parameters estimated by Rosetta V3. Next, the available water capacity (AWC) 
was calculated using the following equation:

AWC FC PWP H( ) (9)h thickness= − ∗

Where AWCh corresponds to the available water capacity for each soil horizon, FC and PWP are the field capac-
ity and permanent wilting point estimated by Rosetta, and Hthickness is the thickness of the standardized horizon 
in mm (namely 50, 100, 150, 300, 400, 1000 mm for the six standardized horizons 0–5, 5–15, 15–30, 30–60, 
60–100, 100–200 cm). The total available water capacity for the whole soil profile was given by the sum of AWC 
values across all soil horizons.

Maps of FC and PWP were validated against measured values (Table 1) that were standardized to the six soil 
horizons using equal area splines with the same methodology as the physical properties modeled with DSM.

Fig. 8  Classification of textural classes for horizon 0–5 cm according to the USDA classification system. CL: 
clayey; ClLo: Clayey loam, Lo: Loam; LoSa: Loamy sand; Sa: Sandy; SaCl: Sandy clay; SaClLo: Sandy clay loam; 
SaLo: Sandy loam; SiCl: Silty clay; SiClLo: Silty clay loam; SiLo: Silty loam. Map of textural classes for Chile, pie 
charts show the percentage of pixels inside the ecoregion that belong to each textural class (a). Zoom of the soils 
on the Atacama Desert where sandy loam soils are dominant (b). Zoom of the first valleys with water courses 
(c). Zone with complex soil patterns and appearance of Andic soils (d).
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Spatial analysis.  We analyzed the spatial variability of the CLSoilMaps products of textures, bulk density, 
and textural classes according to a map of the ecoregions60. The ecoregions of the Sechura Desert and Central 
Andean Puna were added to the Atacama Desert and Central Andean Dry Puna because they span less than 1% 
of the total national territory, and there needed to be more soil samples within these areas. We compared the 
similarity of the frequency distribution of the observed values against CLSoilMaps and SoilGrid61 products for 
each ecoregion.

Fig. 9  Correlations between observed standardized soil values against field capacity and permanent wilting point.
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Data Records
CLSoilMaps can be downloaded from the Zenodo repository at https://doi.org/10.5281/zenodo.746421062.  
This repository has different zip files that contains different groups of soil maps:

	 1.	 SoilMaps_Mean: Maps of soil physical properties mean across 100 bootstrap iterations. Bulk density, clay, 
sand. Silt maps were generated using Clay and Sand values (see Methods for details).

	 2.	 PIRange: Maps of soil physical properties uncertainty estimated with 100 bootstrap iterations. These are 
only available for bulk density, clay and sand.

	 3.	 ROSETTA_MEAN: Mean maps of soil hydraulic properties generated with Rosetta V3. There are also 
available maps for each parameter of the Van Genuchten equation.

	 4.	 ROSETTA_SD: Standard deviation of soil hydraulic properties generated with Rosetta V3
	 5.	 Textural_Classes: Maps of soil textural classes using USDA classification scheme.

Each file contains the information for one of six standardized horizons which are: 0–5, 5–15, 15–30, 30–60, 
60–100, and 100–200 cm. All files specify to which standard horizon it corresponds in its filename. Details for 
every soil attribute can be found on Table 3.

Technical Validation
Covariate selection.  The process of variable selection included a total of 269 predictors. For each property, 
two sets of covariates were obtained (Fig. 3) from each database splits described in the methodology. The initial 
pool of predictors was reduced with the VSURF and correlation filter to only 6–8 variables per set.

Climate variables were the most important type of predictors for bulk density. Temperature seasonality was 
the most important predictor in the U set, and monthly precipitation of December for the L set, with more than 
40% relative importance. In comparison, topographic, soil, and organism predictors had much less predictive 
power for both the U and L subsets. In contrast, topographic variables showed greater predictive importance for 
clay, especially elevation, with relative importance close to 30% for the U set. Climate variables for clay were all 
related to precipitation: mean precipitation of January, precipitation seasonality, and precipitation in the coldest 
quarter, and show greater predictive importance on the L set. Moreover, the top predictors for sand were related 
to soil, organisms, and climate variables. The SAVI vegetation index was the most important predictor in both 
sets, with relative importance close to 30%, while climate variables such as temperature diurnal range and tem-
perature and precipitation seasonality follow on predictive importance.

Fig. 10  Total available water capacity in mm from 0 to 200 cm. The figure presents a zoom-in for different 
basins in each macroclimatic zone of Chile.
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For all the sets, most spectral variables selected correspond to textural metrics of the vegetation indexes. 
These textural metrics add contextual information from the neighbourhood of the variable; in this sense, it 
seems that at the scale of Chile, textural metrics generated with wider windows provide more useful information 
than smaller ones, given that 7 out of 13 of the selected predictors were calculated with a 51 × 51 neighbourhood 
window.

Model accuracy and uncertainty.  R2 values ranged from 0.76 to 0.88 for bulk density, 0.50 to 0.76 for 
clay, and 0.67 to 0.84 for sand. RMSE values ranged from 0.14 to 0.20 kg/m3 for bulk density, 6.11 to 12.99% for 
clay, and 9.16 to 13.91% for sand. nRMSE showed that bulk density was the most precise soil property modeled 
compared to sand and clay. Bias was not significant for bulk density and sand, with PBIAS values ranging from 
−0.90 to 0.20% and −3.82 to 2.47%, respectively, and for clay, it presented a minimum of −7.17% at 100–200 cm. 
However, it showed a similar PBIAS to sand at other depths (−5.93 to 3.90%). The distribution of R2 and RMSE 
values across the 100 bootstrap iterations showed a decrease in the performance with depth and a higher range 
in the distribution of the performance metrics (Fig. 4, details in Table 4). Regarding uncertainty, for a 90% con-
fidence interval, PICP values were between 0.93–0.98 for bulk density, 0.94–0.98 for sand, and 0.93–0.97 for clay 
(Fig. 5, details in supplement 1). This deviation above the 1:1 line indicates that observed values fall into the pre-
diction intervals more times than they theoretically should, which means that prediction intervals are too broad.

Trained models outperformed the results of several studies reviewed, where the same properties were 
mapped at the national and regional scale, like Viscarra-Rossel, et al.63 (R2 between 0.36–0.49 for sand, 0.38–0.46 
for silt and 0.39–0.53 for clay), Loiseau, et al.64 (R2 between 0.15–0.45 for clay), Adhikari, et al.65 (R2 between 
0.50–0.55 for clay), Ramcharan et al.66 (R2 of 0.57 for sand, 0.46 for clay and 0.42 for bulk density), and only com-
parable with the results obtained by Akpa, et al.51 (R2 between 0.43–0.91 for clay, 0.51–0.92 for sand, 0.59–0.88 
for silt). Furthermore, the performance of the models decreased with depth, which responds to the decreasing 
sample of points at lower depths.

Fig. 11  Maps of prediction uncertainty for the first standardized horizon (0–5 cm) for bulk density, clay and 
sand content (a). Plots of prediction interval width and soil attributes (b). The blue line is the linear regression 
between the modeled soil property and its corresponding prediction interval width.
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Maps of soil physical properties.  Figure 6 depicts the spatial distribution of the modeled soil properties 
for the first horizon, the remaining maps are available on the supplementary information (Figs. S1–4). Sand and 
clay showed an inverse spatial distribution, as north of 30°S and south of 40°S are the lowest values for clay (~20%) 
and the highest values for sand (~50%). Between 30 and 40°S, both particle sizes showed more complex patterns 
with a noticeable north-south gradient with increasing clay and decreasing sand content. By contrast, silt showed 
a different pattern than the other particles, with a higher content in the central valley, especially around 40°S, and 
in southern Patagonia. Changes in particle size distribution with depth were subtler than its horizontal variation. 
The mean clay content decreased from 0 to 30 cm, reaching its maximum values at 100–200 cm (Table 5). Mean 
sand content was at its minimum value of 15–30 cm and then increased its content towards 60–100 cm. Bulk 
density showed a noticeable north-south gradient where the maximum values were at the northern part of the 
country and decreased at lower latitudes. Between 20–30°S, bulk density increased from the Coastal Range from 
east to west, but the difference was smoother at lower depths. Then, from 30–40°S, a transition zone begins in 
which values lower than 1 g/cm3 were observed towards the east of the Central Valley and Andes Mountains. At 
lower latitudes than 40°S, values lower than 1 g/cm3 were generally observed except in some parts of Patagonia. 
In general, bulk density values increased with depth for the study area except for zones on the insular part of the 
country at 50°S.

Figure 7 shows that the amount of data sampled at each ecoregion was widely heterogeneous with a range 
from 15 to 3113 samples for textures and 11 to 3111 samples for bulk density. Among these ecoregions, the ones 
located in the Andes Range and the southern limit of the country were the most underrepresented.

For clay, there is a general overestimation of its content by SoilGrids (SG) throughout all ecoregions, except 
for the Chilean Matorral, where the peak of the distribution coincides but is higher for SG than for CLSoilMaps 
and the observed values. By contrast, CLSoilMaps show a similar distribution of clay content to the observed 
values except at the Central Andean Dry Puna, where contents below 5% are underrepresented. Sand con-
tent predicted by our product also shows a similar distribution with the observed values for all ecoregions, 
even in sparsely sampled areas. SG underestimates sand content in the Atacama Desert and the Andean ecore-
gions, whereas for the rest, it showed a narrower distribution of predicted values than the observed. Although 
not modeled directly with a DSM approach, Silt shows a similar distribution to the observed values. The most 
remarkable differences are in the Central Andean Dry Puna, where CLSoilMaps overrepresents values between 
17 and 25% of silt content, and the Atacama Desert, where the model underrepresented silt content below 10%. 
SG shows an overestimation of silt content in the northern ecoregions, such as the Atacama Desert and the 
Central Andean Dry Puna, and an underestimation in the southern ecoregions, such as the Patagonian Steppe 
and the Magellanic Subpolar Forests.

The developed models represent Bulk density values well, capturing observed bimodal distributions like 
those in the Valdivian Temperate Forest. The most prominent disagreement with the observed values is in the 
Central Andean Dry Puna, where all predicted values are above 1 g/cm3 for both products, while the observed 

Soil Attribute Depth (cm) Mean Median SD Max Min IQR 1st Quantile 3rd Quantile

Clay

0–5 15.04 12.89 7.27 60.60 1.43 10.42 9.34 19.75

5–15 15.72 13.52 7.46 74.37 0.69 8.33 10.47 18.80

15–30 14.93 13.65 6.45 59.73 0.99 7.93 10.28 18.21

30–60 15.87 14.20 7.22 62.72 0.90 8.49 10.90 19.39

60–100 16.54 14.72 7.74 69.58 0.48 8.81 11.35 20.16

100–200 16.83 14.02 8.48 73.86 0.67 11.89 10.47 22.37

Sand

0–5 55.70 56.68 11.93 94.00 4.83 18.08 47.33 65.41

5–15 56.28 57.36 11.59 95.01 6.20 16.36 48.22 64.58

15–30 55.72 56.68 11.88 93.75 4.99 18.04 47.39 65.43

30–60 56.01 57.03 12.10 94.61 4.69 18.05 47.53 65.57

60–100 56.34 57.51 12.20 94.95 4.68 17.57 47.92 65.49

100–200 55.75 56.84 12.42 94.92 5.62 18.97 46.51 65.48

Silt

0–5 29.28 28.92 9.22 76.60 0.00 12.83 22.80 35.63

5–15 28.08 27.91 9.34 73.84 0.00 13.00 21.68 34.68

15–30 29.32 29.25 9.30 76.60 0.00 14.22 22.29 36.51

30–60 28.15 28.20 9.40 74.13 0.00 13.97 21.26 35.23

60–100 27.18 27.13 9.40 75.07 0.00 13.74 20.42 34.17

100–200 27.53 26.93 9.93 83.76 0.00 13.38 20.79 34.17

Bulk Density

0–5 1.14 1.13 0.37 2.20 0.14 0.66 0.79 1.45

5–15 1.22 1.21 0.34 2.10 0.23 0.58 0.95 1.52

15–30 1.13 1.12 0.38 2.20 0.14 0.67 0.78 1.44

30–60 1.16 1.15 0.36 2.18 0.14 0.66 0.81 1.47

60–100 1.21 1.20 0.35 2.15 0.24 0.61 0.93 1.54

100–200 1.24 1.23 0.35 2.14 0.31 0.59 0.97 1.57

Table 6.  Soil map descriptive statistics for each soil attribute modeled.
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data showed that most soils are below that threshold. For this soil attribute, SG shows a clear upper boundary at 
1.5 g/cm3, which may be a severe limitation for using this product in this area of the country.

Maps of soil textural classes.  Soils with coarser textures, such as sandy loam and loamy sand, are widely 
represented nationwide (Fig. 8). In the Atacama Desert and the Central Andean Dry Puna, sandy loam soils are 
dominant, but loamy soils are more frequent, especially in areas around salt flats and wetlands. Following the 
Andes range to the south in the Southern Andean Steppe, coarse texture soils prevail until 29°S, from which a 
transition begins to medium texture soils classified as sandy clay loam.

The Chilean Matorral ecoregion shows a transition of soils from coarser textures at its northern limit to finer 
textures at its southern limit, which results in more complex patterns of soil distribution. In the northern part 
of the ecoregion, sandy loam and loamy textures still dominate, and from 32°S southwards, there is a mixture of 
mainly sandy clay loam and loamy soils. Despite this coarser texture dominance, eruptions of fine texture soils 
appear generally in flat parts of the valleys, such as in the Limarí, Aconcagua or Maipo basin with clay loam and 
silty loam-textured soils, which become more prominent from 34°S and dominate the landscape from 36°S.

The Valdivian Temperate Forests ecoregion shows a similar distribution of texture classes percentage cover 
to the Chilean Matorral. This region comprises the coastal range and coastal plains from 34°S and the Andes 
range from 33°S. The former shows a combination of sandy clay loam and loamy soils, which gradually change 
to finer texture soils such as clay loam, while the latter presents the inverse pattern with medium texture soils 
at its northern limit and coarser textures towards its southern limit. Meanwhile, in the central valley, fine and 
medium texture soils like clay loam, silty clay loam, and silty loam soils are predominant until 41°S, where an 
abrupt change is observed to coarser texture soils such as loam and sandy loam. These types of soils are widely 
represented in the southern ecoregions of the Magellanic Subpolar Forests and Patagonian Steppe, where only 
small aggregations of clayey loam and sandy clay loam soils can be found.

Maps of soil hydraulic properties.  This section presents the map of the total available water capacity for 
the whole country and different basins located in contrasting ecoregions of Chile. For brevity, maps of field capac-
ity (FC) and permanent wilting point (PWP) obtained from the Van Genuchten soil hydraulic function param-
eters predicted by Rosetta V3 are displayed in the supplementary information. Also, these maps are available in 
the CLSoilMaps products.

Validation metrics for FC and PWP are shown in Fig. 9. R2 values for FC are between 0.43–0.65, while PWP 
R2 values are between 0.17–0.36. Low RMSE values are reported for both properties, with values between 0.09–
0.1 for FC and 0.07–0.1 for PWP. Bias metrics show that predictions for PWP tend to underestimate observed 
values, with PBIAS values between –23.9 to –5.5%. On the other hand, the bias for FC is lower than PWP for all 
horizons, with values from –0.3 to 13.7%. Concerning depth, unlike physical properties, soil hydraulic proper-
ties report better performance with depth, showing the best metrics for the deepest layers.

Available water capacity followed a similar pattern to the physical properties mapped, which are heavily 
influenced by climate (Fig. 10). AWC was more significant for the central-southern part of the country than the 
northern part—a crescent gradient in AWC from the northern limit until around 40°S, where the maximum 
values were observed. From then on, the patterns became more irregular and were determined mainly by topog-
raphy. At the basin level, the ones located in the northern part of the country revealed greater AWC values at 
higher altitudes and lower values at the lower parts of the slope. On the other hand, the Trancura basin showed 

Soil Property Depth Mean Median SD Max Min IQR 1st. Quant. 3th. Quant.

Clay

0–5 cm 23.46 24.36 2.6 64.08 13.41 3.89 21.45 25.34

5–15 cm 24.74 24.21 3.09 62.34 11.67 2.62 23.4 26.02

15–30 cm 23.76 24.54 2.3 57.72 13.01 2.59 22.5 25.09

30–60 cm 28.77 29.99 3.31 60.58 16.2 4.94 26.38 31.32

60–100 cm 33.58 33.97 4.33 62.76 19.19 7.58 30.28 37.86

100–200 cm 36.95 35.99 5.73 65.98 22.09 11.2 32.12 43.32

Sand

0–5 cm 37.48 36.87 1.88 88.98 23.08 1.35 36.4 37.75

5–15 cm 33.72 32.93 2.52 92.4 22.23 2.45 32.03 34.48

15–30 cm 32.02 31.56 1.61 67.9 20.65 1.43 31.02 32.45

30–60 cm 34.02 33.42 1.9 89.85 21.16 1.5 32.9 34.4

60–100 cm 46.79 46.4 1.63 98.79 27.66 1.13 46 47.14

100–200 cm 51.91 47.05 8.56 99.04 28.97 12.09 46.5 58.59

Bulk Density

0–5 cm 0.64 0.63 0.05 1.56 0.47 0.05 0.6 0.66

5–15 cm 0.55 0.54 0.05 1.62 0.48 0.06 0.51 0.57

15–30 cm 0.54 0.53 0.05 1.5 0.43 0.06 0.5 0.57

30–60 cm 0.66 0.65 0.04 1.62 0.49 0.05 0.63 0.68

60–100 cm 0.72 0.69 0.07 1.87 0.64 0.09 0.66 0.76

100–200 cm 0.75 0.73 0.07 1.83 0.67 0.08 0.7 0.79

Table 7.  Statistics of map prediction uncertainty.
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the highest AWC values at lower altitudes with minimums around the volcanoes. At the Cisnes basin, the great-
est AWC values were east of the Andes Mountains, where flat lands begin.

Maps of prediction uncertainty.  Maps of predicted uncertainty are displayed using the width of the 90% 
confidence prediction interval (Fig. 11). Wider intervals represent more uncertainty in the prediction mean. 
The mean prediction interval (PI) width for clay goes from 23.46–36.95%, for sand 32.02–51.91%, and for bulk 
density 0.54–0.75 (Details in Table 6). Maximum PI width is at the lowest depth for the three soil properties 
modeled, showing increasing uncertainty with depth. Nevertheless, the models show low IQR for clay 2.59–11.2, 
sand 1.13–12.09, and bulk density 0.05–0.09 PI width, indicating that the model predictions were stable across 
different regions. Bulk density showed the lowest PI width in the central part of the country, where soils were 
more densely sampled. Also, uncertainty increased where the values were closer to the physical limits for bulk 
density, as seen in the country’s north and south. By contrast, sand showed a stable uncertainty distribution across 
the entire country, except for the Patagonian archipelago, where PI width becomes larger. Finally, clay predictions 
showed higher uncertainty in the central and southern regions of the country, which was correlated with higher 
clay contents Table 7.

Usage Notes
Validation metrics showed moderate to good results for all soil attributes and depths, but some limitations must 
be considered when using these maps for different contexts. Careful consideration must be taken with the scale 
of the study area since precision at the local scale decreases as the extent of the soil maps is larger67. For this rea-
son, it is recommended that when selecting a soil map product, an independent evaluation must be done, either 
by collecting new soil samples or comparing them with available conventional soil maps.

Another consideration is that the uncertainty of soil maps is different for different regions and even for differ-
ent soil attributes. As seen on the uncertainty maps (Figure 11), bulk density, sand, and clay show different pat-
terns in their uncertainty prediction that respond to the soil sample density and the range of possible values that 
the soil property can present in different zones. Even so, the PICP values above 0.9 showed that this uncertainty 
is overestimated, which means that prediction intervals are too broad. Future work must be done to improve the 
uncertainty evaluation of the predictions, either by collecting more samples in low-density sampled areas, which 
has been found to have a great impact on the performance of DSM models68, or by testing more direct methods 
for estimating prediction uncertainty like quantile regression forest69.

Furthermore, as demonstrated by the validation metrics, the performance of the models decreases with 
depth, so using these soil maps for applications where deep soil layers are relevant must be done with care. 
Moreover, these maps consider the same configuration of SoilGrids products with a fixed maximum depth of 
200 cm for all soils, which is only sometimes valid. For instance, soils in the northern part of the country tend to 
be shallower, while soils to the south have been found to exceed that two-meter limit. This issue is especially rel-
evant when working in forestry or with hydrological applications, where total available water capacity is directly 
dependent on depth, so considering deeper soils (e.g., in the north) may lead to an important overestimation 
or, on the contrary, to an underestimation in areas where soils are more profound than 200 cm. To tackle this 
disadvantage, an evaluation of global soil maximum depth products like the ones provided by SoilGrids could 
be done. Future efforts must be made to sample soils at their maximum depth so that this constraint can be 
incorporated into soil maps for Chile.

Code availability
Source code of this project can be accessed at CLSoilMaps Github repository located at https://github.com/
diegodinamarca/CLSoilMaps.git.

Received: 9 May 2023; Accepted: 4 September 2023;
Published: xx xx xxxx

References
	 1.	 FAO & ITPS. Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations 

and Intergovernmental Technical Panel on Soils, Rome, Italy. (2015).
	 2.	 Lal, R. et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. 

Geoderma Reg. 25, e00398 (2021).
	 3.	 Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services - A global review. Geoderma 262, 101–111 (2016).
	 4.	 Moene, A. F. & van Dam, J. C. Transport in the Atmosphere-Vegetation-Soil Continuum. https://doi.org/10.1017/CBO9781139043137 

(Cambridge University Press, 2014).
	 5.	 Miller, D. A. & White, R. A. A Conterminous United States Multilayer Soil Characteristics Dataset for Regional Climate and 

Hydrology Modeling. Earth Interact. 2, 1–26 (1998).
	 6.	 Rivas-Tabares, D., de Miguel, Á., Willaarts, B. & Tarquis, A. M. Self-organizing map of soil properties in the context of hydrological 

modeling. Appl Math Model 88, 175–189 (2020).
	 7.	 Kemper, W. D. & Noonan, L. Runoff as Affected by Salt Treatments and Soil Texture. Soil Sci. Soc. Am. J. 34, 126–130 (1970).
	 8.	 Redding, T. & Devito, K. Aspect and soil textural controls on snowmelt runoff on forested Boreal Plain hillslopes. Hydrol. Res. 42, 

250–267 (2011).
	 9.	 Dilustro, J. J., Collins, B., Duncan, L. & Crawford, C. Moisture and soil texture effects on soil CO2 efflux components in southeastern 

mixed pine forests. For. Ecol. Manage 204, 87–97 (2005).
	10.	 Li, H. et al. Soil texture controls added organic matter mineralization by regulating soil moisture—evidence from a field experiment 

in a maritime climate. Geoderma 410, 115690 (2022).
	11.	 Li, H. et al. Soil textural control on moisture distribution at the microscale and its effect on added particulate organic matter 

mineralization. Soil Biol. Biochem. 172, 108777 (2022).

https://doi.org/10.1038/s41597-023-02536-x
https://github.com/diegodinamarca/CLSoilMaps.git
https://github.com/diegodinamarca/CLSoilMaps.git
https://doi.org/10.1017/CBO9781139043137


1 8Scientific Data |          (2023) 10:630  | https://doi.org/10.1038/s41597-023-02536-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

	12.	 Hassink, J. Effect of soil texture on the size of the microbial biomass and on the amount of c and n mineralized per unit of microbial 
biomass in dutch grassland soils. Soil. Biol. Biochem. 26, 1573–1581 (1994).

	13.	 Zeraatpisheh, M., Ayoubi, S., Jafari, A. & Finke, P. Comparing the efficiency of digital and conventional soil mapping to predict soil 
types in a semi-arid region in Iran. Geomorphology (Amst) 285, 186–204 (2017).

	14.	 Poggio, L. & Gimona, A. Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas.  
Sci. Total Environ. 579, 1094–1110 (2017).

	15.	 Yang, L. et al. Updating Conventional Soil Maps through Digital Soil Mapping. Soil Sci. Soc. Am. J. 75, 1044–1053 (2011).
	16.	 McBratney, A. B., Mendonça Santos, M. L. & Minasny, B. On digital soil mapping. Geoderma 117, 3–52 (2003).
	17.	 Wadoux, A. M. J. C., Minasny, B. & McBratney, A. B. Machine learning for digital soil mapping: Applications, challenges and 

suggested solutions. Earth-Sci. Rev. 210, 103359, https://doi.org/10.1016/J.EARSCIREV.2020.103359 (2020).
	18.	 Nussbaum, M. et al. Evaluation of digital soil mapping approaches with large sets of environmental covariates. Soil 4, 1–22 (2018).
	19.	 Weber, E., Hasenack, H., Flores, C. A., Pötter, R. O. & Fasolo, P. J. GIS as a Support to Soil Mapping in Southern Brazil. in Digital Soil 

Mapping with Limited Data (ed. Hartemink A. E., McBratney, A. and M.-S. M. de L.) 103–112, https://doi.org/10.1007/978-1-4020-
8592-5_9 (Springer Netherlands, 2008).

	20.	 Batjes, N. H., Ribeiro, E. & Van Oostrum, A. Standardised soil profile data to support global mapping and modelling (WoSIS 
snapshot 2019). Earth Syst Sci Data 12, 299–320 (2020).

	21.	 Padarian, J., Minasny, B. & McBratney, A. B. Chile and the Chilean soil grid: A contribution to GlobalSoilMap. Geoderma Reg. 9, 
17–28 (2017).

	22.	 Arrouays, D., McKenzie, N., Hempel, J., de Forges, A. R. & McBratney, A. B. GlobalSoilMap: basis of the global spatial soil information 
system. (CRC press, 2014).

	23.	 Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).
	24.	 Pfeiffer, M. et al. CHLSOC: The Chilean Soil Organic Carbon database, a multi-institutional collaborative effort. Earth Syst. Sci. Data 

12, 457–468 (2020).
	25.	 CIREN. Estudio Agrológico III Región. Descripciones de suelos, materiales y símbolos Vol 135 (Centro de Información de Recursos 

Naturales (CIREN), 2007).
	26.	 CIREN. Estudio Agrológico XI Región. Descripciones de suelos, materiales y símbolos Vol 130 (Centro de Información de Recursos 

Naturales (CIREN), 2005).
	27.	 CIREN. Estudio Agrológico IV Región. Descripciones de suelos, materiales y símbolos Vol 129 (Centro de Información de Recursos 

Naturales (CIREN), 2005).
	28.	 CIREN. Estudio Agrológico X Región. Descripciones de suelos, materiales y símbolos Vol 123 (Centro de Información de Recursos 

Naturales (CIREN), 2003).
	29.	 CIREN. Estudio Agrológico IX Región. Descripciones de suelos, materiales y símbolos. Vol 122 (Centro de Información de Recursos 

Naturales (CIREN), 2002).
	30.	 CIREN. Estudio Agrológico VIII Región. Descripciones de suelos, materiales y símbolos Vol 121 (Centro de Información de Recursos 

Naturales (CIREN), 1999).
	31.	 CIREN. Estudio Agrológico VII Región. Descripciones de suelos, materiales y símbolos Vol 117 (Centro de Información de Recursos 

Naturales (CIREN), 1997).
	32.	 CIREN. Estudio Agrológico V Región. Descripciones de suelos, materiales y símbolos Vol 116 (Centro de Información de Recursos 

Naturales (CIREN), 2005).
	33.	 CIREN. Estudio Agrológico Región Metropolitana. Descripciones de suelos, materiales y símbolos Vol 115 (Centro de Información de 

Recursos Naturales (CIREN), 2005).
	34.	 CIREN. Estudio Agrológico VI Región. Descripciones de suelos, materiales y símbolos Vol 114 (Centro de Información de Recursos 

Naturales (CIREN), 1996).
	35.	 Seguel, O. et al. ChSPD Chilean soil profile database V1. Zenodo https://doi.org/10.5281/zenodo.7846566 (2023).
	36.	 Bishop, T. F. A., McBratney, A. B. & Laslett, G. M. Modeling soil attribute depth functions with equal-area quadratic smoothing 

splines. Geoderma 91, 27–45 (1999).
	37.	 Boisier, J. P. et al. CR2MET: A high-resolution precipitation and temperature dataset for hydroclimatic research in Chile. in EGU 

General Assembly Conference Abstracts 19739 (2018).
	38.	 Garreaud, R. D. et al. The Central Chile Mega Drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 40, 421–439 

(2020).
	39.	 O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. 

US Geological Survey Data Series 691, 4–9 (2012).
	40.	 Hurni, K., Heinimann, A. & Würsch, L. Google earth engine image pre-processing tool: background and methods. Centre for 

Development and Environment, University of Bern, Switzerland. https://www.cde.unibe.ch/e65013/e542846/e707304/e707386/
e707388/CDE_Pre-processingTool-BackgroundAndMethods_eng.pdf (2017).

	41.	 Bowman, D. M. J. S. et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio 48, 350–362 
(2019).

	42.	 Gitelson, A. A., Kaufman, Y. J. & Merzlyak, M. N. Use of a green channel in remote sensing of global vegetation from EOS- MODIS. 
Remote Sens. Environ. 58, 289–298 (1996).

	43.	 Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote. Sens. Environ. 8, 127–150 
(1979).

	44.	 Xiao, J., Shen, Y., Tateishi, R. & Bayaer, W. Development of topsoil grain size index for monitoring desertification in arid land using 
remote sensing. Int. J. Remote Sens. 27, 2411–2422 (2006).

	45.	 Rouse, J. W., Hass, R. H., Schell, J. A. & Deering, D. W. Monitoring vegetation systems in the great plains with ERTS. Third Earth 
Resources Technology Satellite (ERTS) symposium 1, 309–317 (1973).

	46.	 Huete, A. R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295–309 (1988).
	47.	 Saunders, A. M. & Boettinger, J. L. Chapter 28 Incorporating Classification Trees into a Pedogenic Understanding Raster 

Classification Methodology, Green River Basin, Wyoming, USA. in Dev. in Soil Sci. vol. 31 389–620 (Elsevier Ltd, 2006).
	48.	 Haralick, R. M., Shanmugam, K. & Dinstein, I. H. Textural features for image classification. IEEE Trans. Syst. Man. Cybern. 610–621 

(1973).
	49.	 Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
	50.	 Conrad, O. et al. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8, 1991–2007 (2015).
	51.	 Akpa, S. I. C., Odeh, I. O. A., Bishop, T. F. A. & Hartemink, A. E. Digital Mapping of Soil Particle-Size Fractions for Nigeria. Soil Sci. 

Soc. Am. J. 78, 1953–1966 (2014).
	52.	 Genuer, R. et al. VSURF: An R Package for Variable Selection Using Random Forests. R. J. 7, 19–33 (2015).
	53.	 Fassnacht, F. E. et al. Using Sentinel-2 and canopy height models to derive a landscape-level biomass map covering multiple 

vegetation types. International Journal of Applied Earth Observation and Geoinformation 94, 102236 (2021).
	54.	 Tolorza, V. et al. An operational method for mapping the composition of post-fire litter. Remote Sens. Lett. 13, 511–521 (2022).
	55.	 Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001).
	56.	 Kuhn, M. & Wickham, H. Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles. 

https://www.tidymodels.org (2020).

https://doi.org/10.1038/s41597-023-02536-x
https://doi.org/10.1016/J.EARSCIREV.2020.103359
https://doi.org/10.1007/978-1-4020-8592-5_9
https://doi.org/10.1007/978-1-4020-8592-5_9
https://doi.org/10.5281/zenodo.7846566
https://www.cde.unibe.ch/e65013/e542846/e707304/e707386/e707388/CDE_Pre-processingTool-BackgroundAndMethods_eng.pdf
https://www.cde.unibe.ch/e65013/e542846/e707304/e707386/e707388/CDE_Pre-processingTool-BackgroundAndMethods_eng.pdf
https://cran.r-project.org/package=tune


1 9Scientific Data |          (2023) 10:630  | https://doi.org/10.1038/s41597-023-02536-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

	57.	 Malone, B. P., Minasny, B. & McBratney, A. B. Using R for Digital Soil Mapping. (Springer International Publishing, 2016).
	58.	 Goovaerts, P. Geostatistical modelling of uncertainty in soil science. Geoderma 103, 3–26 (2001).
	59.	 Zhang, Y. & Schaap, M. G. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic 

parameter distributions and summary statistics (Rosetta3). J. Hydrol. (Amst) 547, 39–53 (2017).
	60.	 Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions 

provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).
	61.	 Poggio, L. et al. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil 7, 217–240 (2021).
	62.	 Galleguillos, M., Dinamarca, D., Seguel, O. & Faundez, C. CLSoilMaps: A national soil gridded product for Chile. Zenodo https://

doi.org/10.5281/zenodo.7464210 (2022).
	63.	 Viscarra Rossel, R. A. et al. The Australian three-dimensional soil grid: Australia’s contribution to the GlobalSoilMap project. Soil 

Res. 53, 845–864 (2015).
	64.	 Loiseau, T. et al. Satellite data integration for soil clay content modelling at a national scale. Int. J. Appl. Earth Obs. Geoinf. 82, 101905 

(2019).
	65.	 Adhikari, K. et al. High-Resolution 3-D Mapping of Soil Texture in Denmark. Soil Sci. Soc. Am. J. 77, 860–876 (2013).
	66.	 Ramcharan, A. et al. Soil Property and Class Maps of the Conterminous United States at 100-Meter Spatial Resolution. Soil Sci. Soc. 

Am. J. 82, 186–201 (2018).
	67.	 Lemercier, B. et al. Multiscale evaluations of global, national and regional digital soil mapping products in France. Geoderma 425, 

116052 (2022).
	68.	 Somarathna, P. D. S. N., Minasny, B. & Malone, B. P. More Data or a Better Model? Figuring Out What Matters Most for the Spatial 

Prediction of Soil Carbon. Soil Sci. Soc. Am. J. 81, 1413–1426 (2017).
	69.	 Meinshausen, N. Quantile regression forests. J. Mach. Learn. Res. 7, 983–999 (2006).

Acknowledgements
We acknowledge the Chilean National Agency for Research and Development (Agencia Nacional de Investigación 
y Desarrollo de Chile, ANID) through projects FONDECYT 1210932, and 1212071, FONDAP CR2 1522A0001, 
and the Data Observatory Foundation, Technology Center No. DO210001.

Author contributions
D.D. conducted most of the work, including processing input data, generating soil maps, preparing the figures, 
and writing the manuscript. M.G. designed the conceptualization of the research and figures, analysed results, 
edited the manuscript, and advised on data processing. O.S and C.F. participated in the research conceptualization 
and analysis of the soil maps’ results according to their expertise in soil science.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/ 
10.1038/s41597-023-02536-x.
Correspondence and requests for materials should be addressed to M.G.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2023

https://doi.org/10.1038/s41597-023-02536-x
https://doi.org/10.5281/zenodo.7464210
https://doi.org/10.5281/zenodo.7464210
https://doi.org/10.1038/s41597-023-02536-x
https://doi.org/10.1038/s41597-023-02536-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	CLSoilMaps: A national soil gridded database of physical and hydraulic soil properties for Chile

	Background & Summary

	Methods

	Soil data. 
	Environmental covariates. 
	Climate. 
	Soil and organisms. 
	Relief. 
	Depth. 

	Covariate selection. 
	Random forest model tuning. 

	Model training and validation. 
	Generating digital soil maps. 
	Map of soil textural classes. 
	Generating maps with PTFs. 
	Spatial analysis. 

	Data Records

	Technical Validation

	Covariate selection. 
	Model accuracy and uncertainty. 
	Maps of soil physical properties. 
	Maps of soil textural classes. 
	Maps of soil hydraulic properties. 
	Maps of prediction uncertainty. 

	Usage Notes

	Acknowledgements

	Fig. 1 Spatial distribution of soil profiles used in the mapping procedure.
	Fig. 2 Variable selection workflow.
	Fig. 3 Covariates selected as predictors for each soil attribute.
	Fig. 4 Performance metrics for the final selected models.
	Fig. 5 Prediction interval coverage probability (PICP) for the final selected models.
	Fig. 6 Soil maps for clay, sand and bulk density for depths of 5–15, 30–60 and 100–200 cm.
	Fig. 7 Probability density functions at each ecoregion for clay, silt, sand, and bulk density.
	Fig. 8 Classification of textural classes for horizon 0–5 cm according to the USDA classification system.
	Fig. 9 Correlations between observed standardized soil values against field capacity and permanent wilting point.
	Fig. 10 Total available water capacity in mm from 0 to 200 cm.
	Fig. 11 Maps of prediction uncertainty for the first standardized horizon (0–5 cm) for bulk density, clay and sand content (a).
	Table 1 Number of soil profiles and soil samples per source and soil attribute.
	Table 2 SCORPAN predictors.
	Table 3 Summary of soil attributes available in CLSoilMaps.
	Table 4 Mean validation metrics across 100 bootstrap iterations.
	Table 5 PICP values for a 90% confidence prediction interval.
	Table 6 Soil map descriptive statistics for each soil attribute modeled.
	Table 7 Statistics of map prediction uncertainty.




