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Automatically Generated Datasets: 
Present and Potential Self-Cleaning 
Coating Materials
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The rise of urbanization coupled with pollution has highlighted the importance of outdoor self-cleaning 
coatings. These revolutionary coatings contribute to the longevity of various surfaces and reduce 
maintenance costs for a wide range of applications. Despite ongoing research to develop efficient and 
durable self-cleaning coatings, adopting systematic research methodologies could accelerate these 
advancements. In this work, we use Natural Language Processing (NLP) strategies to generate open- 
and traceable-sourced datasets about self-cleaning coating materials from 39,011 multi-disciplinary 
papers. The data are from function-based and property-based corpora for self-cleaning purposes. These 
datasets are presented in four different formats for diverse uses or combined uses: material frequency 
statistics, material dictionary, measurement value datasets for self-cleaning-related properties 
and optical properties, and sentiment statistics of material stability and durability. This provides a 
literature-based data resource for the development of self-cleaning coatings and also offers potential 
pathways for material discovery and prediction by machine learning.

Background & Summary
Outdoor self-cleaning coatings are drawing attention in a world becoming more urbanized and plagued by 
pollution and dirt. These innovative coatings are engineered to maintain surface cleanliness without requir-
ing intensive active cleaning, providing an effective solution for preserving the integrity of various surfaces in 
outdoor settings. Outdoor self-cleaning coatings are crucial due to key benefits, i.e., they prolong the lifespan 
of surfaces by reducing dirt accumulation and corrosion1, offer environmental advantages by lessening reli-
ance on water-intensive and chemically-harmful traditional cleaning, cut maintenance costs2, and minimize 
the level of air pollution containing compounds detrimental to human health and the environment3. Studies on 
self-cleaning coatings indicate that the primary properties governing their functionality are either hydrophilicity 
or hydrophobicity, which facilitate the efficient removal of dirt via rainwater, and photocatalytic activity, which 
aids in the decomposition of pollutants into gaseous or small particulate forms4. With a unique ability to retain 
cleanliness, outdoor self-cleaning coatings hold immense potential for large-scale applications such as building 
and transportation5–7. Moreover, they are particularly pivotal in the field of solar-related renewable energy gen-
eration, where the cleanliness of the light-absorbing surfaces of solar panels4,8 and solar thermal collectors9,10 
directly impacts efficiency. While research towards creating effective, durable, and cost-efficient self-cleaning 
coatings for various applications is advancing steadily, these efforts could be greatly expedited by employing 
more systematic research methodologies or multidisciplinary knowledge integration, compared to the conven-
tional approach of iterative material-component substitution.

The data-driven materials discovery using machine learning, namely Materials Informatics, has gained 
increasing prominence recently11–13. This approach leverages existing computational and experimental data in 
the principles of findability, accessibility, interoperability, and reusability (FAIR)14 to ensure high quality and 
machine-actionability. Computational data, inherently structured, can be readily used for machine learning 
and can be obtained from open-source databases like the Materials Project15 and NOMAD16. On the other 
hand, although these databases offer some empirical data, most of such data is embedded within the scientific 
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literature. The task of harvesting and processing this data for machine learning is challenging, as it involves 
the manual extraction of unstructured data, necessitating substantial human resources with specialized knowl-
edge17. However, recent advancements in Natural Language Processing (NLP) methods, including tools such 
as ChemDataExtractor18,19 and language models20–22, have enabled efficient extraction and processing of data 
from the scientific literature23,24. While some review articles have attempted to manually gather data on outdoor 
self-cleaning coating materials4,25, their domain-specific nature leads to a lack of comprehensiveness. As such, 
employing advanced NLP strategies to address this deficiency constitutes a worthy endeavour in this field.

The datasets we present are both open- and traceable-sourced, comprising literature data from 39,011 
multi-disciplinary papers. Beyond papers on self-cleaning coatings, materials investigated for different appli-
cations in a wide range of disciplines also show significant potential for outdoor self-cleaning applications. For 
example, the hydrophilic or hydrophobic traits of some marine antifouling coatings make them promising for 
self-cleaning applications, and their engineered stability and durability for harsh marine environments under-
score their outdoor suitability26. Given this insight, we collected literature data in two ways: (1) function-based 
datasets focusing on self-cleaning, and (2) property-based datasets which include self-cleaning-related proper-
ties, i.e., hydrophilic, superhydrophilic, hydrophobic, superhydrophobic, oleophobic, superoleophobic, omni-
phobic, amphiphobic, and photocatalytic. We collect data on oleophobic and superoleophobic coatings as such 
coatings are also promising in the outdoor self-cleaning function facilitated by rainfall. This is due to the fact 
that most oils exhibit lower surface tension values compared to water, which implies that if a coating possesses 
oleophobic or superoleophobic attributes, it will, by extension, also have hydrophobic or superhydrophobic 
properties27. Similarly, surfaces with omniphobic and amphiphobic properties are extraordinarily repellent to 
all kinds of liquids. As such, these surfaces inherently demonstrate hydrophobic or superhydrophobic charac-
teristics. The inclusion of literature data pertaining to these coatings will augment the repository of potential 
self-cleaning materials.

The datasets in this work offer refinement in literature data, enhancing training quality while minimizing the 
computational expenses associated with machine learning for self-cleaning material discovery. Concurrently, 
these datasets can function as a validation mechanism for such machine-learning outcomes. The datasets are 
presented in four formats for different potential uses: (1) frequency statistics datasets for the material name 
(43,571 materials), which can be used as a benchmark or an evaluation index in material discovery using unsu-
pervised machine learning28; (2) material name dictionaries comprising material names, formulas, and corre-
sponding acronyms, which is a pivotal resource for the standardization of material nomenclature in machine 
learning; (3) material measurement value datasets (16,420 data points) comprising water-related measurements 
(contact angle and sliding angle) and optical properties and performance (refractive index and transmittance), 
which can be employed in the manual discovery of self-cleaning or transparent self-cleaning materials, as well 
as in NLP tasks like material performance prediction after certain processing21,22; (4) statistics datasets for senti-
ment classification of material stability and durability (24,789 subjective sentences), which can be used in further 
opinion mining for material practicability prediction29,30. In this work, all data are fully traceable, with Digital 
Object Identifiers (DOIs) of the source publications provided for reference. Figure 1 illustrates the extraction 
pipeline of the datasets.

Methods
This section provides the pipeline and methodologies implemented to produce the datasets, including the cor-
pora creation, material name processing, dictionary formation, and data extraction.

Corpus generation.  A corpus comprising 39,011 articles was amassed from articles published by Elsevier 
within the date range of January 1, 2000 to December 31, 2022. The metadata of these articles were sourced from 
the Web of Science (WoS) using an advanced search feature. This search was executed utilizing specific keywords, 
as stipulated in Table 1, as indices for the subject matter within the article titles and abstracts. Under the publish-
er’s permission and in compliance with all relevant terms and conditions of the publisher, full texts of these arti-
cles were then retrieved via Elsevier’s Application Programming Interface (API) using SciCrawler29 in six dataset 
tags: SelfCleaning (consisting of 2,044 articles on self-cleaning coatings), Hydrophilic (with 8,921 articles on 
hydrophilic and superhydrophilic coatings), Hydrophobic (comprising 13,677 articles on hydrophobic and supe-
rhydrophobic coatings), Oleophobic (encompassing 581 articles on oleophobic and superoleophobic coatings), 

Fig. 1  Extraction pipeline of datasets. The arrows indicate the workflow.
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Omniphobic (involving 143 articles on omniphobic and amphiphobic coatings), and Photocatalytic (comprising 
13,437 articles on photocatalytic coatings). It should be noted that there may be instances of duplicate counts 
within these six datasets due to the potential overlap of domains. The articles were then converted from the XML 
format to the text format. Subsequent preprocessing procedures entailed the removal of information not related 
to the desired datasets, including author names, affiliations, and references.

Material name and dictionary processing.  ChemDataExtractor18,19 was used to extract material names, 
including English terminology and corresponding abbreviations such as formulae and acronyms, for each des-
ignated category. Two dictionaries were subsequently created. The first, a sentence dictionary, was constructed 
to store the original sentence and any contained material names along with their respective starting and ending 
character indices. The second, a name-abbreviation pair dictionary, was formulated to store the pairs of material 
names and their abbreviations, and their associated paper DOIs. The example below shows the extraction of 
‘TiO2’ and ‘Titanium dioxide’ pairs:

In cases where two extracted material names were linked via specific punctuations such as hyphens, colons, 
slashes, or dashes, these names were consolidated into a single entry as a composite material.

These six name-abbreviation pair dictionaries were then merged to create an expansive dictionary of abbre-
viations. A frequency threshold of greater than five was employed as a filter to preserve reliable abbreviations 
and their corresponding English names in the final pair dictionary. The sentence dictionary was then updated, 
replacing material names with their abbreviations. It should be highlighted that there may be unavoidable 
instances where some organic materials share the same abbreviations. Furthermore, it is important to note 
that not only target materials (i.e., functional materials) were recorded, but also recipe materials and potential 
by-products were documented within the process. The example below illustrates a final dictionary of ‘TEOS’ 
where the total material name frequencies in the literature are also shown:

Material measurement value extraction and pairing.  Sentences containing the target phrases, values, 
and material names were initially selected based on established criteria. Within these selected sentences, when a 
single material name and value are identified, they are directly paired. In instances where multiple material names 
are detected, a structured matching algorithm is employed. This process begins with the utilization of regular 
expressions to execute fuzzy matching based on predefined patterns, such as ‘[value] for [material]’ or ‘[material] 
(value)’. In the absence of discernible pairs, the sentence is segmented using punctuation marks and conjunctions, 
followed by an attempt to identify value-material pairs within these fragments. If pairs remain undetected, a 

Dataset tag Function/Property Descriptor

SelfCleaning ‘self-cleaning’ ‘coating’ or ‘film’

Hydrophilic ‘hydrophilic’ or ‘superhydrophilic’ ‘coating’ or ‘film’

Hydrophobic ‘hydrophobic’ or ‘superhydrophobic’ ‘coating’ or ‘film’

Oleophobic ‘oleophobic’ or ‘superoleophobic’ ‘coating’ or ‘film’

Omniphobic ‘omniphobic’ or ‘amphiphobic’ ‘coating’ or ‘film’

Photocatalytic ‘photocatalytic’ ‘coating’ or ‘film’

Table 1.  Keywords used in Web of Science searching for each dataset.
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dependency relationship is employed, wherein all-layer head words of each value and material name (encompass-
ing both direct and indirect heads) are documented. If there’s an overlap in the head words for both the value and 
material name within certain layers, they are designated as a match.

The method for extracting contact and sliding angles involved filtering sentences that contained either or 
both of these phrases and the symbol “°”. Regular expressions, specifically the pattern [0–9.]+[±]*[0–9.]*°, 
were utilized to extract the corresponding angular values. This was conducted with the focus on retrieving 
absolute values only, thereby discarding any sentences that included comparisons such as ‘increase of ’ or ‘lower’. 
If a plus-minus symbol (±) was present, only the value preceding this symbol was extracted. In some instances, 
both angles were mentioned within a single sentence (e.g., “The sliding angle and contact angle of TiO2 coating 
were 5° and 160° respectively.”). In such cases, a matching algorithm was devised that leveraged the positions of 
the keywords and dependency relationship within the sentence to associate each angle with its respective value. 
Contact angles of 50, 90, and 150 degrees were omitted due to their frequent use in defining hydrophilic and 
hydrophobic properties, thus not providing specific material characteristics. It should be noted that despite the 
role of rainfall in self-cleaning processes, we have refrained from extracting data for only ‘water contact angle’ 
and ‘water sliding angle’. This is due to the fact that certain studies, such as those involving oleophobic coatings, 
often employ organic liquids in their experiments instead of water.

For the refractive index, sentences containing the phrase ‘refractive index’ were filtered. Only those sen-
tences including ‘at … nm’ or ‘maximum’ were retained. The regular expression pattern [0–9]{1}[.]{1}[0–9]+ was 
applied to extract the refractive index value, focusing on absolute values and omitting sentences with compar-
ative phrases. In the presence of a plus-minus symbol (±), only the first value preceding it was considered. The 
range of acceptable values was limited between 1 and 10.

For transmittance, sentences were filtered based on the presence of both ‘%’ and ‘transmittance’. As with the 
refractive index, only sentences including ‘at … nm’ or ‘maximum’ were retained. The regular expression pat-
tern [0–9.]+[±|–]*[0–9.]*% was employed to extract the transmittance value, again focusing solely on absolute 
values and excluding sentences with comparative phrases. If a plus-minus symbol (±) or a dash (–) was pres-
ent, only the initial value before the symbol was extracted. The permissible range of transmittance values was 
restricted between 90 and 100. Although the extinction coefficient, a normalized property, is a more scientific 
term, it is relatively rarely reported compared to the thickness-dependent transmittance. However, when the 
thickness is known, transmittance serves as a practical measure to facilitate comparative analyses of materials.

Durability and stability.  The method for evaluating durability and stability entailed a multi-step process. 
For each category, sentences were filtered based on the presence of either ‘durability’ or ‘stability’ and a length of 
fewer than 500 characters. Following this, a convolutional neural network (CNN) sentiment analysis model29,30 
pre-trained on energy-related text was utilized to extract sentences expressing an opinion, dividing these sen-
tences into positive and negative categories based on the sentiment conveyed. Each material was then associated 
with its respective frequency of positive and negative sentiments. The positive rate was computed as the ratio 
of the frequency of positive sentiment to the total frequency (positive + negative), and this data was stored in a 
dictionary, enabling the ranking of materials based on their positive rate. For each appearance of a material name, 
classification result, and its DOI were recorded. The positive and negative sentiments were denoted as ‘driver’ and 
‘barrier’ respectively.

Data Records
The datasets presented in this work are available online in JSON format on Figshare31. In accordance with the 
publisher’s relevant terms and conditions, the datasets contain only data and do not include any excerpts from 
the original text. A detailed description of data records is provided in Table 2. These different formatting styles 
provide various perspectives on the data, enabling users to utilize the datasets effectively based on their specific 
research requirements.

Technical Validation
In this technical validation section, we will evaluate the chosen five coating properties for self-cleaning function, 
and also evaluate the data reliability of presented datasets manually and statistically.

File Name or Feature Name Description Data Type

material_statistics Material name statistics by frequency. List

material_dictionary Material name dictionary for English terminology, formulae and acronyms. Dict

sentiment_statistics Result of sentiment analysis for durability and stability, classified by ‘driver’ and ‘barrier’. Dict

contact_angle Numerical values of contact angle. Float

sliding_angle Numerical values of sliding angle. Float

refractive_index Numerical values of refractive index. Float

transmittance Numerical values of transmittance. Float

doi Digital object identifier of the paper. String

freq Frequency of the material name or the number of sentiments. Int

driver Positive sentiment with references. String

barrier Negative sentiment with references. String

Table 2.  Description of file label and data key label in data records.
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Property validation for self-cleaning.  The validity of the properties under investigation, namely 
Hydrophilic, Hydrophobic, Oleophobic, Omniphobic, and Photocatalytic, as the key attributes for self-cleaning 
was ascertained by assessing their coverage over the SelfCleaning dataset. It was determined that the cover-
age of the full set of five property subsets was 58.1% and that of the noise-removed set (from which materi-
als with a frequency of less than 10 were excluded) was 77.3% as shown in Table 3. Moreover, we also found 
that the inclusion of ‘Antisoiling’ as a self-cleaning property significantly improved the coverage of the full set 
to 94.7% and the noise-removed set to 97.8%. This suggests that the properties of Hydrophilic, Hydrophobic, 
Oleophobic, Omniphobic, Photocatalytic, and Antisoiling collectively constitute the comprehensive mechanisms 
for self-cleaning coatings. Nonetheless, it should be noted that antisoiling represents an independent and substan-
tial area that is beyond the scope of this work.

Manual validation.  A manual evaluation was conducted to determine the dataset reliability by precision 
and recall metrics:

=
+

precision TP
TP FP (1)

recall TP
TP FN (2)

=
+

F
precision recall

precision recall
2

(3)
score =

⋅
+

×

where true positive, TP, is the number of extracted correct data, false positive, FP, is the number of extracted 
incorrect data, and false negative, FN, is the number of omitted correct data.

To evaluate the material name extraction, 100 sentences were randomly selected from the corpora of each 
dataset for analysis. The correctness of extraction, signified by TP, FP and FN, was determined through the 
comparison of automatic extraction results and the expert’s extraction results. Table 4 provides a summary of 
the evaluation outcomes. The precision of extraction is generally observed to be high across the six datasets, 
however, recall rates appear to be comparatively low. The lower recall can be attributed to infrequently used 
material names and abbreviations in coatings, particularly for organic or composite materials, which may not be 
incorporated in ChemDataExtractor (a tool primarily geared towards materials encountered in natural science). 
Particularly, the Hydrophilic, Hydrophobic, Oleophobic, and Omniphobic datasets exhibit low recall, this can 
be attributed to the multidisciplinary nature of these datasets spanning fields such as biology and medicine. For 
example, hydrophilic, hydrophobic, oleophobic, and omniphobic properties significantly impact the interaction 
between drugs, cells, and biological membranes, and thus these properties are widely discussed in medicine 
domains.

Precision assessments for the contact angle, sliding angle, refractive index, and transmittance data are delin-
eated in Tables 5–8. The extraction of these characterization datasets was evaluated by manually reviewing 100 
randomly selected sentences containing the target characterization (100 sentences for each characterization) 
from SelfCleaning dataset and each applicable property dataset. Several datasets either lacked specific meas-
urement results, were not applicable for certain measurements, or contained insufficient sentences with target 
results. Contact and sliding angle measurements are not relevant for the Photocatalytic dataset, and sliding 
angle measurements do not apply to the Hydrophilic dataset. Furthermore, as we applied relatively strict data 

Dataset
Collected in  
property datasets

Total in SelfCleaning 
dataset Coverage

Full dataset 2341 4026 58.1%

Noise-removed dataset 1553 2009 77.3%

Table 3.  Material numbers and coverages of Hydrophilic, Hydrophobic, Oleophobic, Omniphobic, and 
Photocatalytic datasets on SelfCleaning dataset.

Dataset TP FP FN Precision Recall Fscore

SelfCleaning 33 4 6 89.2% 84.6% 86.8%

Hydrophilic 48 3 13 94.1% 78.7% 85.7%

Hydrophobic 35 3 9 92.1% 79.6% 85.4%

Oleophobic 33 9 11 78.6% 75.0% 76.7%

Omniphobic 31 6 10 83.8% 75.6% 79.5%

Photocatalytic 32 7 7 82.1% 82.1% 82.1%

Total 212 32 56 86.9% 79.1% 82.8%

Table 4.  Precision, recall and Fscore of material name datasets.
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extraction criteria, the Omniphobic dataset only includes 9 sliding angle data points, and the Oleophobic dataset 
comprises merely 4 refractive index data points, while the Omniphobic dataset does not contain any refrac-
tive index results. Additionally, the datasets for four properties have limited transmittance results, with 46 data 
points in Hydrophilic, 4 in Oleophobic, 3 in Omniphobic, and 48 in Photocatalytic datasets. The evaluation of 
recall was not performed for these characterization extractions, given their considerably lower frequency in the 
literature relative to material names. Despite the undetermined recall rate for data extraction, the quality of the 
data can be assured owing to the high precision of these four characterization extractions. The overall precision 
for each characterization is computed by summing the total TP and total FP.

Even though durability and stability are critical attributes for outdoor coatings, the absence of standard 
measurements to appraise these properties necessitates a different approach. Consequently, we have extracted 
authors’ opinions from the literature to synthesize an overarching perspective on the materials in durability 
and stability. For the sentiment analysis evaluation, 100 sentences conveying subjective sentiments about mate-
rial durability and stability from each dataset, along with their automated classification results, were randomly 
selected and manually assessed for accuracy. It should be noted that only 94 subjective sentences about material 
durability and stability were identified in the Omniphobic dataset due to the relatively smaller size of its corpus. 
The precision achieved in the sentiment analysis is notably high as shown in Table 9, highlighting the reliability 
of these data in durability and stability assessments.

Dataset TP FP Precision

SelfCleaning 87 13 87.0%

Hydrophilic 72 28 72.0%

Hydrophobic 74 26 74.0%

Oleophobic 70 30 70.0%

Omniphobic 76 12 86.0%

Total 379 109 77.7%

Table 5.  Precision of contact angle extraction.

Dataset TP FP Precision

SelfCleaning 80 11 87.9%

Hydrophilic 40 6 87.0%

Hydrophobic 91 9 91.0%

Oleophobic 3 1 75.0%

Omniphobic 1 2 33.3%

Photocatalytic 44 4 91.7%

Total 259 33 88.7%

Table 8.  Precision of transmittance extraction.

Dataset TP FP Precision

SelfCleaning 85 15 85.0%

Hydrophobic 77 23 77.0%

Oleophobic 26 6 81.3%

Omniphobic 6 3 67.0%

Total 194 47 80.5%

Table 6.  Precision of sliding angle extraction.

Dataset TP FP Precision

SelfCleaning 91 9 94.0%

Hydrophilic 84 16 84.0%

Hydrophobic 79 21 79.0%

Oleophobic 3 1 75.0%

Photocatalytic 89 11 89.0%

Total 346 58 85.6%

Table 7.  Precision of refractive index extraction.
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Statistical validation.  Statistical assessments were executed to evaluate the reliability of the dataset. The 
distribution of contact angles generally aligns with the anticipated trends. Figure 2a illustrates the distribution 
of contact angles in the SelfCleaning dataset, predominantly occurring at lower values (<10 degrees) and higher 
values (>150 degrees). This distribution can be attributed to the fact that hydrophilicity and hydrophobicity are 
integral properties for self-cleaning. As a result, most research on self-cleaning coatings is dedicated to engineer-
ing surfaces with these extreme characteristics.

Dataset TP FP Precision

SelfCleaning 92 8 92.0%

Hydrophilic 88 12 88.0%

Hydrophobic 92 8 92.0%

Oleophobic 94 6 94.0%

Omniphobic 89 5 94.7%

Photocatalytic 92 8 92.0%

Total 547 47 92.1%

Table 9.  Precision of sentiment sentence classification for durability and stability.

Fig. 2  Contact angle distributions of (a) SelfCleaning, (b) Hydrophilic, (c) Hydrophobic, (d) Oleophobic and 
(e) Omniphobic datasets. The insets show the distributions in the high-frequency ranges.
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Figure 2b presents the distribution of contact angles in the Hydrophilic dataset, with the majority of values 
falling in the lower range and decreasing frequency as the contact angle increases. This deviates slightly from the 
anticipated distribution, where a significant concentration of values at the lower end and only a minimal scat-
tering in the higher range were expected. This discrepancy can be accounted for the corpus design. For exam-
ple, not only do papers studying hydrophilic coatings contain the keyword ‘hydrophilic’, but papers covering a 
range of measurements from small to large contact angles also employ ‘hydrophilic’ in the titles or the abstracts. 
Nevertheless, users have the discretion to exclusively select data from the lower range for applications.

Figure 2c,d depict the distribution of contact angles in the Hydrophobic, Oleophobic, and Omniphobic 
datasets, respectively. Predominantly, the angles fall within the higher value range, but a minor peak at the 
lower range is also visible. The explanation for this unexpected distribution pattern could be the same as for the 
Hydrophilic dataset, i.e., the keyword-based selection of papers might include studies that cover a wider range 
of contact angle measurements.

Figure 3 exhibits the distribution of sliding angles for four pertinent datasets. The distribution follows the 
expected trend, with the majority of the frequency predominantly localized in the lower angle range (<10 
degrees). Among the datasets, the Hydrophobic dataset accounts for the largest proportion of frequency, which 
is attributable to its largest corpora. A noticeably high frequency is observed at the 10-degree mark. This anom-
aly arises from the common practice of using 10 degrees as a generalized range for summarizing sliding angles, 
e.g., a statement ‘A sliding angle of less than 10° was measured for the … samples characterizing them as supe-
rhydrophobic surfaces.’ Nevertheless, such data noise can be easily rectified using algorithms prior to further 
data processing.

Figure 4 presents the refractive index distributions for five different datasets. The refractive indices predom-
inantly span the range of 1 to 4, which aligns well with both experimental observations and theoretical predic-
tions for commonplace materials considering their optical bandgaps32.

Figure 5 illustrates the materials that have garnered over 50 subjective comments within SelfCleaning sen-
timent dataset for durability and stability. The top four materials displayed in this figure corroborate with the 
frequency rank in material name datasets, as materials with a broader research focus tend to accumulate more 
subjective remarks in the literature. TiO2, SiO2, and PDMS exhibit similar sentiment results in durability and 
stability, each with roughly 90% of positive comments. ZnO, however, demonstrates an even higher positive 
sentiment rate at 94.4%. This can be attributed to the fact that, although ZnO has a relatively short history 
as a self-cleaning material, its superior performance has garnered considerable attention within a few years.  

Fig. 3  Total sliding angle distribution of SelfCleaning, Hydrophobic, Oleophobic and Omniphobic datasets. 
The portion of each dataset is shown.

Fig. 4  Refractive index distributions of SelfCleaning, Hydrophilic, Hydrophobic, Oleophobic and 
Photocatalytic datasets.
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The prominence of ZnO within the self-cleaning literature can be traced back to 201733. Factors such as ZnO’s 
ease of modification33 may explain its elevated positive sentiment rate in durability and stability, as a relatively 
new promising material.

Code availability
The source code used to generate the datasets is available at https://github.com/MasterAI-EAM/self-cleaning. 
Other codes used are available at https://github.com/MasterAI-EAM/SciCrawler, https://github.com/MasterAI-
EAM/TextMaster and https://github.com/CambridgeMolecularEngineering/chemdataextractor2.
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