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Branch retinal vein occlusion (BRVO) is the most prevalent retinal vascular disease that constitutes a 
threat to vision due to increased venous pressure caused by venous effluent in the space, leading to 
impaired visual function. Optical Coherence Tomography Angiography (OCTA) is an innovative non-
invasive technique that offers high-resolution three-dimensional structures of retinal blood vessels. 
Most publicly available datasets are collected from single visits with different patients, encompassing 
various eye diseases for distinct tasks and areas. Moreover, due to the intricate nature of eye structure, 
professional labeling not only relies on the expertise of doctors but also demands considerable time and 
effort. Therefore, we have developed a BRVO-focused dataset named Soul (Source of ocular vascular) 
and propose a human machine collaborative annotation framework (HMCAF) using scrambled retinal 
blood vessels data. Soul is categorized into 6 subsets based on injection frequency and follow-up 
duration. The dataset comprises original images, corresponding blood vessel labels, and clinical text 
information sheets which can be effectively utilized when combined with machine learning.

Background & Summary
Branch retinal vein occlusion is recognized as one of the most prevalent sight-threatening retinal vascular dis-
eases observed in adult cohort1–3. The reported prevalence of BRVO is estimated to be 0.4% worldwide with no 
gender difference3,4. As the growth of the age increased risk, and patients with monocular BRVO have a 10% 
risk of developing retinal vein occlusion (RVO) in the contralateral eye within a three-year period5. The patho-
genesis of BRVO is multifactorial and has not been fully determined6. BRVO can lead to macular edema, insuf-
ficient blood supply to the retina, and thus blurred or impaired vision7. In some cases, BRVO may cause retinal 
oxygen deprivation, which stimulates the formation of potentially new blood vessels8.Theses vessels are fragile 
and prone to rupturing and bleeding, further damaging vision9,10. BRVO may also lead to complications such as 
glaucoma, and vitreous hemorrhage. An example of the different imaging modes is shown in Fig. 111. Therefore, 
although it may be asymptomatic in the early stages, can have serious effects on vision if left untreated12. The 
clinical treatment of BRVO patients involves two practical aspects: firstly, reducing macular edema and improv-
ing visual acuity; secondly, minimizing the occurrence of complications13. Currently, there are three anti-VEGF 
drugs available: ConberCept, Lucentis, and Eylea. Large clinical studies have demonstrated that all three drugs 
yield positive outcomes, with over 50% of patients experiencing significant vision improvement14,15.

Fluorescein Angiography (FA) helps characterize the retinal vascular system, including degree of 
non-perfusion, macular ischemia, macular edema, and leakage16. Although FA currently serves as the gold 
standard method for clinical evaluation of retinal perfusion, problems such as internal retinal bleeding, invasive 
nature and time-consuming inability to be repeated at each visit, as well as its incapability to visualize retinal 
capillary plexuses at different depths and the potential adverse effects associated with intravenous dye injection 
can make it difficult to obtain high-quality FA8,17,18. In contrast, OCTA is a recently developed non-invasive 
technique that utilizes a split-spectrum amplitude decorrelation vascular imaging algorithm16,19. It provides both 
structural and vascular information, enabling imaging of the superficial layer, deep layer, outer Retina layer, and 
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choroidalcapillary layer of vessels, respectively20. Several studies investigating OCTA in BRVO patients have 
reported microvascular abnormalities such as telangiectasias, microaneurysms, collateral vessels, and nonperfu-
sion zones20,21. Furthermore, these studies have demonstrated that OCTA can depict abnormal vascular changes 
equally or even more effectively than FA21–23.

Given the recent advancements in artificial intelligence (AI) technology in computer-aided disease diagnosis 
and treatment, multiple significant advancements started to focus on applying AI methods for automated analy-
sis of BRVO. To foster the development of OCTA image analysis and processing technology, Nanjing University 
Of Science And Technology and Cixi Institute of Biomedical Engineering has publicly released OCTA-50024,25 
and Rose26, respectively. However, these datasets were collected from a single visit to various patients and 
encompassed a wide range of eye diseases. Furthermore, the creation of these labels heavily relied on the man-
ual efforts of domain experts, which consumed significant amounts of time, energy, and financial resources. 
To the best of our knowledge, prior to this study, there was no publicly available OCTA database specifically 
focused on a particular ophthalmic disease with multiple diagnostic capabilities. In order to foster research 
on BRVO disease, we have released Soul dataset comprising image-text data from 53 patients. This study was 
received approval from the Institutional Review Board at the Affiliated hospital of Shandong Second Medical 
University (wyfy-2020-ky-11), following the principles outlined in the Declaration of Helsinki and with the 
include informed consent of all participants.

Finally, our contributions include: 

	(1)	 The datasets we constructed consist solely of patients with BRVO, all of whom have been diagnosed with 
BRVO disease due to vascular loss or macular edema, resulting in various changes in image data. These 
datasets do not include normal disease-free eye imaging data.

	(2)	 Multiple pre-operative and post-operative follow-up visits were performed and the data were divided into 
different subsets. This allows for longitudinal analysis of patient changes and expands beyond a single seg-
mentation task. Researchers can now select appropriate data for clinical research purposes such as disease 
diagnosis and prognosis after completing the segmentation task.

	(3)	 We have developed a comprehensive framework for automatic vascular label formation that utilizes model 
integration technology and deep learning knowledge to generate high-quality vascular labels. In compari-
son to alternative approaches, this framework not only attains a high level of accuracy but also significantly 
mitigates the expenses associated with manual annotation.

Methods 
We categorize the generation of Soul datasets into three primary stages: initial clinical data acquisition, subse-
quent data filtering and pre-processing, and ultimately the implementation of a Human machine collaborative 
annotation framework (HMCAF). The overall workflow is illustrated in Fig. 2.

Clinical data acquisition.  Soul is a multi-diagnosis dataset collected from 53 subjects. The data collected at 
baseline include OCTA retinal images among BRVO patients in ages between 31 and 82 years old retrospectively 
collected from the Affiliated hospital of Shandong Second Medical University between 2020 to 2021. This study 

Fig. 1  (a) Retinal structure; (b) (c) Ultra-wide-angle fundus photographic image of patients with BRVO 
disease; (d) OCTA vessel image of macular edema secondary to BRVO; (e) OCT structure image of macular 
edema secondary to BRVO.
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was received approval from the Institutional Review Board at the Affiliated hospital of Shandong Second Medical 
University (wyfy-2020-ky-11), following the principles outlined in the Declaration of Helsinki and with the 
include informed consent of all participants. OCTA images were included if (1) They do not have noticeable qual-
ity issues, such as severe smudges, artifacts, out-of-focus, blurriness, incorrect exposure, etc., that would affect the 
clarity of the observed target area. (2) To ensure spatial alignment of longitudinal tracking data, the macular fovea 
area is first labeled by a professional ophthalmologist during each patient visit. Subsequently, the 6*6mm area of 
the fovea of the macula is identified by automatic spatial alignment using the Optovue Angio OCT RTVueXR, 
a specialized ophthalmic device. This process uses high-resolution optical coherence tomography angiography 
to ensure accurate alignment of data from each image, helping doctors better monitor the progression of lesions 
and develop more effective treatment plans. An example is shown in Fig. 3, The results of multiple imaging data 
comparison showed that the blood vessels were reconstructed to a certain extent after multiple treatments. (3) 
Since the anti-VEGF Ranibizumab Injections drug is only valid for one month, in order to ensure the validity of 
follow-up data, only the information of visits on the day of Injections and visits within one week of Injections are 
kept in the follow-up data, and the follow-up should be ensured within 2-3 days after surgery as far as possible. 
Images were excluded if they showed any evidence of treatment, severe exposure abnormalities, severe refractive 
interstitial opacities, large-scale contaminations or if information about its origin was missing.

Text Record.  The data primarily encompasses diverse medical information of patients, encompassing collec-
tion numbers, gender, age, diseased eye (left and right), disease progression, surgical dates, follow-up visit count, 
macular center thickness measurements, visual acuity assessments etc., with the corresponding records stored 
in an Excel file. To ensure participant anonymity and confidentiality, personal identifiers such as names are 
removed which can identify the subjects identity.

Image.  The OCTA images typically acquired and stored grayscale in nature, saved in JPG format. The scan-
ning process employed the Optovue Angio Oct RTVueXR system. It took approximately three years to collect 
and annotate these images. All subjects have complete registration information, with diagnosed diseases pro-
vided by ophthalmologists. Figure 4 (left) illustrates an sample of the scanned images alongside Projection maps 
at various levels. Although OCTA can produce projection Superificial layer (SVC), Deep layer (DVC), Outer 
Retina layer, and Choriocapillaris layer according to different retinal projection map, since BRVO disease image 
features are mostly based on the Superificial layer information, we have only take the SVC layer as the research 

Fig. 2  Overall framework of Human machine collaborative annotation framework (HMCAF).

Fig. 3  The spatially aligned OCTA image data of BRVO patients corresponded to surgery 1, surgery 2 and 
surgery 3, respectively.
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object and build labels for its images. The retinal hierarchy corresponding to different projections is shown in 
Table 1 and Fig. 4 (right).

Model Pre-training and Data pre-processing.  Soul encompasses three subsets, which have been cat-
egorized based on the number of injections and follow-up periods. These subsets include Soul-1(s1t1 & s1t2), 
Soul-2(s2t1 & s2t2), and Soul-3(s3t1 & s3t2), corresponding to patients who underwent a minimum of one, 
two, and three surgical treatments respectively. The characteristic of HMCAF is to reduce the time investment of 
expert manual annotation as much as possible while ensuring the authenticity and accuracy of labels. To ensure 
image quality and model performance, before original images imported into the baseline models of the HMCAF 
framework, A series of data processing operations such as data normalization, scale transformation, brightness 
change and contrast change were carried out. All images were uniformly cropped to eliminate any unused or 
unimportant boundaries and resized images with 304 * 304 pixels samed as OCTA-500 and ROSE. Before gener-
ating initial labels, the baseline model in the HMCAF framework needs to be pre-trained on the OCTA dataset to 
produce more accurate results. We pre-trained each of the four baseline models on the open source ROSE dataset 
and achieve optimal performance on the ROSE dataset. The baseline model performance is shown in Table 2.

Human machine collaborative annotation framework.  In order to balance labeling accuracy and 
expert annotation cost, we propose a framework for automatically generating Pseudo-expert label, which con-
sists of two modules: deep learning module and manual correction medules. Its framework is shown in the 
following Fig. 5.

Machine learning.  For the beginner learner, we select the basic framework model OCTA-NET26, U-Net27, 
AttResU-Net28 and AttU-Net29, which are pre-train on the ROSE-1 dataset using two-level labels of the SVC, 
to generate primary labels. However, the results are controversial due to the nature of the data for tiny blood 
vessel. Subsequently, we used the weighted fusion method to integrate the results of different models to obtain 
an improved fine vessel fusion label, as shown in Fig. 6.

Human correction.  Through deep learning, we have achieved labeling results with a certain level of accuracy. 
However, the inherent characteristics of diseases, such as patients’ poor fixation and other factors. Hence, to 

Fig. 4  Original scanned images(left) and Projection maps at different levels(right).

projections map Superificial Deep Outer Retina Choriocapillaris

Retinal layer ILM-IPL IPL-OPL OPL-BRM BRM-BRM+30

Table 1.  Superificial layer (SVC), Deep layer (DVC), Outer Retina layer, and Choriocapillaris layer 
corresponding retinal layers.

Model AUC ACC G-mean Kappa Dice FDR

U-Net 0.9222 0.9058 0.7939 0.6654 0.7213 0.1928

AttU-Net 0.9378 0.9176 0.8281 0.7142 0.7636 0.1763

AttResU-Net 0.9335 0.9144 0.8123 0.6982 0.7491 0.1651

OCTA-NET 0.9476 0.9217 0.8196 0.7214 0.7673 0.1284

average 0.9353 0.9149 0.8135 0.6998 0.7503 0.1657

Table 2.  Performance of the baseline model of pre-trained.
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further enhance the accuracy and clinical applicability of our results, our ophthalmologists employ Labelme 
software (https://github.com/labelmeai/labelme)30 to correct the fusion label results (including additions, dele-
tions, modifications, etc.). An example of artifacts and a comparison chart of expert corrections are shown in 
the Fig. 7.

Data Records
Soul is available on Figshare31. All personal information that could be used to identify the patients was removed 
before preparation. The dataset details are presented in Table 3, encompassing the mean age of patients, gender 
distribution proportions, and image counts.

The corresponding diagram of the data subset is shown in the figure below.The dataset comprises projection 
maps, four types of text labels, and pixel-level labels constructed through human machine collaboration. In 

Fig. 5  Detailed model of the HMCAF: OCTA-NET26, U-Net27, AttResU-Net28 and AttU-Net29.

Fig. 6  Results of different models and the fusion labels.
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Fig. 6 on the left, the subgraph represents three surgeries denoted as s1 (includes s1t1, s1t2), s2 (includes s2t1, 
s2t2), and s3 (includes s3t1, s3t2) respectively, with a time interval greater than or equal to one month (i.e., s2 
- s1 >= 1 month; s3 - s2 >= 1 month). The term “s1t1” refers to the first follow-up after the initial operation, 
while subsequent terms indicate different surgeries and their respective follow-up visits. Herein, it is ensured 
that s1 - s1t1 >= 7 days and s1 - s1t2 >= 14 days.

In order to satisfy one operation and two follow-up visits, 36 individuals must be included in a total of 48; 
similarly, for the subgraph depicted in Fig. 8 on the left, Soul’s structure is illustrated. Additionally, Fig. 9 pro-
vides a sample set of data for pre-operative and post-operative follow-up diagnoses with multiple samples.

Fig. 8  The population distribution of the correspondence dataset, along with its folder hierarchy.

Fig. 7  Diagram of the Expert Correction Module.

Name average age
Ratio of 
women

Ratio of 
OS

Samples 
quantity

Treatments 
quantity

A-scan 
quantity

s1t1 55.25 47.9 41.7 48 105 209

s1t2 53.72 55.6 38.9 36 73 219

s2t1 55 56.7 43.2 37 94 187

s2t2 53.92 65.4 42.3 26 63 189

s3t1 52.35 40.0 45.0 20 60 120

s3t2 50.36 63.6 54.5 11 33 99

Table 3.  Basic statistics of Soul dataset.
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Technical Validation
Data.  The OCTA scans were selected retrospectively by a search of the digital files from a public university 
hospital and a private imaging practice. For the Optovue Angio OCT device,the examinations were performed 
from Nov.20.2020 to Dec.30.2021.

Inclusion criteria.  OCTA images was performed using the angio retina mode. A 6 × 6mm scan, centered on 
the fovea, was performed in all study eyes for diagnosing branch retinal vein occlusion. File availability in the 
Picture Archive and Communication System (PACS) from medical center.

Exclusion criteria.  Artifacts that prevented the ophthalmologist from visually interpreting the images. 
Examinations with fully or partially corrupted files. There was no restriction on age, patient status(inpatients or 
outpatients) or any other inclusion or exclusion criteria different from those mentioned.

Model selection.  We chose the widely recognized U-Net basic model and the classical attention module 
model as our baseline models, along with the latest retinal vascular segmentation model OCTA, to ensure that our 
reusable baseline models are not only classical but also incorporate state-of-the-art research features.

Docter announction.  The label results of model reuse were manually reviewed and corrected by ophthal-
mologists specialized in BRVO-related diseases.

Usage Notes
Readers who wish to download the dataset may do so at figshare31. We hope that this published dataset will be 
available to more researchers and encourage more authors to publish their optimized codes and models, which 
will contribute to the development and advancement of the field of BRVO disease. Although the dataset we con-
structed does not have a significant improvement in the number of datasets, our dataset gives multiple follow-up 
data for the same patient, including image data and corresponding text labels. This improvement allows us to 
use multiple follow-up data to assist doctors in disease diagnosis or prognosis assessment, and to use image-text 
multimodal data for related research. The HMCAF we built can greatly reduce manual input while ensuring 
accuracy. The framework we built is not limited to a certain kind of data, it has a good generalization effect on 
various clinical data, it is not only suitable for OCTA image data, but also can be well generalized to CT data, 
MRI data and so on; This process can achieve better results in the relatively precise segmentation task of blood 
vessels, so the segmentation of lesions such as optic discs and pulmonary nodules can also achieve better results. 
Clear instructions for acquisition and segmentations are given for readers who wish to increase the size of the 
dataset.

Code availability
The code is publicly available in the following GitHub repository: https://github.com/CMAIBITU/Soul. The 
repository encompasses python version, which contains how to preprocess the original image, how to extract 
the ROI region and pre-trained state-of-the-art deep learning models of OCTA image segmentation on ROSE 
publicic dateset.
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