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The dataset of main grain land 
changes in China over 1985–2020
Shidong Liu1, Li Wang   1 ✉ & Jie Zhang2 ✉

Continuous, Accurate, and detailed information on main grain land (MGL) areas is crucial for 
provisioning food security and making policies affecting sustainable agricultural production. It still lacks 
a long-term MGL distribution dataset with fine spatial resolution. This study aimed to produce a long-
term, high-resolution MGL distribution map for China. Here, we developed the change map of MGL 
with resolution 30 m in China for the period 1985–2020 using the Landsat image-based random forest 
algorithm on the GEE platform. Finally, the planting intensity, gain time and loss time of MGL was 
calculated. Results indicate that our mapping results are highly consistent with the annual planting area 
of various grain crops according to national statistics. A validation based on 3113 field survey samples 
with a 30-m resolution showed that the overall accuracy of MGL were 93.57%. The full MGL dataset is 
freely available at https://doi.org/10.6084/m9.figshare.26212643.v2.

Background & Summary
Rice, wheat, and maize are the main sources of human food, accounting for approximately 42.5% of the calorie 
supply and 79.2% of the total cropland1. However, the rapid increase in global population has led to an increase 
in food demand, exacerbating the expansion and transformation of cropland use patterns2. Meanwhile, climate 
change, urbanization, and land degradation have led to significant changes in crop cultivation, posing a threat 
to global food security3. Therefore, accurate and timely information on crop spatial distribution and long-term 
changes is crucial, especially for agricultural ecosystem management and environmental sustainability policy 
formulation4.

In recent decades, remote sensing technology has been used for mapping crop types for a long time5,6. Due to 
the fact that different crop types may have similar spectral and texture features during the same growing season 
in large-scale remote sensing images7. Therefore, phenological differences play an important role in large-scale 
crop classification8–10. Meanwhile, with the development of machine learning technology, the random forest 
(RF) algorithm has been successfully used for crop classification11,12. The combination of these phenological 
features and machine learning techniques has facilitated the implementation of large-scale crop classification13.

The most important cropland for food security is the main grain land (MGL), mainly plant three food crops: 
rice, wheat, and maize14, the three major staple crops that constituted 30.37%, 20.06%, and 40.38%, respec-
tively, of the national total grain production in 202315. Meanwhile, the implementation of agricultural measures 
depends on the MGL use change information. Although there is increasing research on cropland change, the 
large-scale and long-term MGL changes have not been discussed. The known time series has a resolution of only 
500 m and lacks MGL distribution before 20001,16. Due to the high diversity and complexity of crop planting 
systems, spatially datasets of MGLs, including single wheat, single rice, single maize, wheat & maize, wheat & 
rice, double rice, and non-MGL, in China are not available, which hinders research on global food security17. 
Meanwhile, many previous studies have focused on mapping single crop types without considering different 
planting patterns or multiple crop types over long time series18. Therefore, considering the limitations of short 
time and low resolution19–22, it is necessary to mapping high-resolution long time series MGL maps. It is urgent 
to obtain a spatially clear MGL dataset in China in the long term. Accurate and timely MGL datasets are of great 
significance for relevant scientific research and policy formulation.

To address this issue, we have focused on China, a typical agricultural country, and constructed a MGL 
dataset by integrating multi-source data and high-resolution satellite imagery. From this, we have quantified the 
MGL use change. The main aims of this study are: (1) to reveal the crop type and spatial distribution of MGL; 
(2) to evaluate the accuracy of MGL maps by comparing the ground-truth crop type and grain statistical data 
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obtained from the National Bureau Statistical of China (NBSC); (3) to investigate the spatiotemporal patterns of 
MGL change. This study provides scientific support for optimizing MGL farming practices, ensuring global food 
security, and promoting agricultural management.

Methods
Study framework.  The study framework used for mapping MGL includes data preprocessing, MGL map-
ping methods, accuracy evaluation, and quantification of MGL change patterns. We first constructed phenological 
indicators based on the Google Earth Engine (GEE) platform, including Normalized Difference Vegetation Index 
(NDVI)、 Normalized Difference Water Index (NDWI). NDVI is often used to reflect surface vegetation charac-
teristics23, evaluate crop growth status, and is one of the important indicators for identifying crops24. NDWI is a 
key indicator for distinguishing between water and land, often used to identify rice planting areas25,26. Therefore, 
phenological change information characterized by NDVI, NDWI, and RGB bands of Landsat are combined to 
train an RF model for identifying MGL. In addition, we collected all available land use/cover change (LUCC) 
data and spatial distribution datasets of the major grain lands from 1985 to 2020. Used to construct annual MGL 
training samples. Combining phenological indicators with MGL samples, a machine learning algorithm based on 
RF is used to train and identify different MGLs. We developed an MGL dataset, analyzed spatiotemporal changes 
in cropland and MGL in China over 36 years (Fig. 1).

To ensure the accuracy of MGL mapping results, we adopted three different data validation methods. Firstly, 
based on field observation data from different years, the accuracy of identifying types is verified at the plot 
scale. Secondly, by calculating the total MGL area from 1980 to 2020 and comparing it with the data reported 
by National Bureau of Statistics of China (NBSC), the accuracy of MGL identification at the time series scale is 
verified. Finally, we validated the spatial accuracy of the dataset based on different crop planting areas reported 
by NBSC in different provinces. Finally, based on accurate MGL mapping results, we extracted critical crop 
planting patterns, including crop types, MGL gain time (the time when the non-MGL pixels first transformed 
into MGL), planting intensity (the total number of years used for planting MGL), and MGL loss time (the time 
when MGL pixels first transform into non-MGL pixels), using time-series analysis. These indicators are the core 
indicators reflecting the changes in China’s MGL over the past 36 years.

Fig. 1  Study framework.
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Study area and data source.  This study focuses on China, where the agricultural planting system is highly 
diverse and complex27 (Fig. 2). Wheat, rice, and maize are the most important staple crops in China28. Globally, 
wheat, rice, and maize account for 79% of the total grain harvest area29. In fact, in China, these three main crops 
accounted for about 97% of the country’s grain area in 2020 (www.stats.gov.cn/english/).

The study mainly utilized datasets of cropland and MGL distribution, field crop monitoring data, and sta-
tistical data (Table 1). The spatial distribution of rice19,20, wheat21, and maize22 in China from 1985 to 2020 were 
collected to assist in producing national MGL training samples30. We employed the Landsat dataset in GEE to 
generate MGL. Additionally, the annual 30 m cropland dataset in China from 1986 to 2021 was used to constrain 
the scope of MGL31, with the cropland in 1985 being supplemented using the cropland from the China land use 
dataset in 198532.

Identification of MGL.  We have collected spatial distribution datasets of rice, wheat, and maize in China 
within a resolution range of 30 m–1 km, spanning from 1985 to 2020. Based on these existing datasets, we have 
utilized data fusion techniques to create a nationwide fundamental sample dataset of MGL. In the specific process 
of data fusion, we first expand the spatial range of all available datasets to the entire China. During the expansion 
process, fill the missing pixels with NoData and resample them to a resolution of 30 m for subsequent statistics 
and fusion. Secondly, we used a probability distribution model (Eq. (2)) to calculate the probability (P T( ) ) of 
each pixel belonging to non-MGL (code: 0, N), wheat (code: 1, W), maize (code: 2, M), single rice (code: 3, R), 
and double rice (code: 4, DR) based on all existing crop datasets (A).

= |A T{ 0, 1, 2, 3, 4} (1)

Fig. 2  Study area. The land cover data is sourced from China Land Cover Dataset 1985–202032.

Data type Data Name Resolution Data sources

Land/cropland Cover

Wheat in China 2001–2020 30 m http://www.nesdc.org.cn/

Maize in China 1985–2020 30 m https://doi.org/10.6084/m9.figshare.16437054

Rice in China 1990–2016 30 m https://doi.org/10.57760/sciencedb.15865

Double rice in China 2016–2020 10 m https://doi.org/10.12199/nesdc.ecodb.rs.2022.012

China rice, wheat, and maize planting dataset 2000–2019 1 km https://doi.org/10.17632/jbs44b2hrk.2

Annual cropland dataset of China 1986–2021 30 m https://doi.org/10.5281/zenodo.7936885

China Land Cover Dataset 1985–2020 30 m https://zenodo.org/record/8176941

Image data Landsat images 30 m Google Earth Engine

Field data Agro-meteorological data — http://data.cma.cn/en

Vector data Provincial administrative boundary data in China — https://www.resdc.cn/

Statistical data Crop planting area — http://www.stats.gov.cn/english

Table 1.  Data source of this study.
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Considering that the multiple cropping index of cropland in China does not exceed 3 times, this study 
assumes that a pixel can belong to no more than 3 crop types in a year, which means that the threshold of the 
probability distribution model is 33%. Based on the probability distribution characteristics of each crop in each 
pixel, this study determines the actual type of pixel as the crop with a probability greater than the threshold. If 
a pixel belongs only to a single crop type other than double rice, it is determined as a single planting MGL type, 
such as single wheat, single rice, or single maize. If a pixel belongs only to double rice, then the pixel is defined as 
double rice. If a pixel belongs to multiple crop types, it is defined as an MGL type that has been planted multiple 
times, such as wheat & maize, wheat & rice, maize & rice. Considering that there are no pixels belonging to both 
maize & rice, seven basic MGL types including non-MGL were formed in the basic sample dataset (Fig. 3).

Considering 7 types comprehensively, including single wheat, single rice, single maize, wheat & maize, wheat 
& rice, double rice, and non-MGL, we have automatically selected 100,000 sample points nationwide from the 
fundamental sample dataset using stratified sampling. Meanwhile, utilizing Landsat imagery from the GEE 
platform, we have constructed a remote sensing imagery feature set for each year. Available spectral features 
are synthesized every two months, including red, green, blue, and near-infrared bands, as well as NDVI, NDBI, 
and NDWI. By combining six spectral features from each year, we have formed a phenological feature dataset. 
Finally, using the random forest algorithm, we individually mapped the MGL for each year. By merging all types 
of MGL, the cropland map of China from 1985 to 2020 can be obtained.

Quantification of cropland planting patterns.  Based on the MGL dataset from 1985 to 2020, we 
assigned MGL and non-MGL values of 1 and 0 to all cropland, respectively. The planting intensity gain time and 
loss time of cropland and MGL was calculated.

Detection of MGL planting intensity.  Using time series analysis techniques, we counted the number of 
times each pixel (Cij) belonged to cropland or MGL over the past 36 years (Eq. (3)), which were named as the 
cropland planting intensity (PIcropland) and the MGL planting intensity (PIMGL), respectively. The attribute range of 
the PIMGL map is 0–36, where 0 represents non-MGL cropland. The values from 1 to 36 represent the number of 
times that pixel has been used for PIMGL over the past 36 years. Similarly, In the PIcropland map, 0 represents 
non-cropland, and the meaning of attribute values is similar to PIMGL.

∑=
=

PI C
(3)k

ijk
1985

2020

Fig. 3  Data fusion process of the fundamental sample dataset of MGL.
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Detection of MGL gain time.  Using time series analysis techniques, we counted the first time of each pixel 
(Cij) belonged to cropland or MGL over the past 36 years (Eq. (4)), which were named as the cropland gain time 
(GTcropland) and the MGL gain time (GTMGL), respectively. The attribute range of GTMGL map is 1986–2020, and the 
values of each pixel represent the time when the pixel first transformed into MGL. The attribute range of the 
GTcropland map is 1986–2020, and the values of each pixel represent the time when the pixel was first developed into 
cropland.

GT k C Cmin [ 1] (4)k
ijk ijk

1985 2020
= × | =

= →

Detection of MGL loss time.  To ensure the stability of the cropland loss time (LTcropland) and MGL loss time 
(LTMGL), we define the pixels (Cij) that have been non-cropland or non-MGL for three consecutive years as stable 
loss pixels. Using time series analysis techniques, we counted the first time of each pixel (Cij) belonged to LTcropland 
or LTMGL over the past 36 years (Eq. (5)), respectively. The attribute range of LTMGL map is 1987–2020, and the 
values of each pixel represent the time when the pixel first transformed into non-MGL. The attribute range of the 
LTcropland map is 1987–2020, and the values of each pixel represent the time when the pixel was first abandoned or 
converted into cropland, including long-term fallow. The time for re-cultivation after fallow is recorded on the GT  
map.

=
= →

+ +( )V C C Cmax , , (5)ijk
k

ijk ijk ijk
1985 2018

1 2

= × − | =
= →

( )LT k V Vmin [ 1 0] (6)k
ijk ijk

1987 2020

Crop planting area statistics.  The annual sowing area and the area planted with MGL are different con-
cepts. Due to the fact that the national statistical agricultural planting area is only the total sowing area of a single 
crop, without the composite MGL area, we cannot directly verify the accuracy of MGL. To verify the accuracy of 
MGL’s mapping area, it is necessary to calculate the annual total planting area for each crop type (Ai), which is the 
sum of the areas of any MGL type planted with that crop (AMGLij). The existence of the multiple cropping index 
allows this study to calculate the crop sowing area (Eq. (7)), ensuring comparability with the national statistical 
agricultural planting area. Please note that we have calculated the double cropping rice area twice when calculat-
ing the rice planting area ( =m 2ij ).

∑= ×
=

A m AMGL
(7)

i
j

n

ij ij
1

Fig. 4  MGL in China from 1985 to 2020. (a) is the overall distribution of MGL in 2020. (b) is the mapping 
results of MGL in 1985. (c) is the mapping results of MGL in 2005. (d) is the mapping MGL results for 2020.
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Data Records
MGL map in China.  The datasets are available at the figshare repository in a Geotiff format with the ESPG: 
4326 (WGS_1984) spatial reference system33. The main grain land changes in China are provided during 1985–
2020 (Fig. 4). The dataset includes 36 bands. Bands 0 to 35 represent the MGL maps from 1985 to 2020, respec-
tively. For an annual year MGL map, the code of MGL map ranges from 0 to 7, representing non-cropland, single 
wheat, single rice, single maize, wheat & maize, wheat & rice, double rice, and non-MGL respectively. Similarly, 
the cropland dataset can be obtained by simply merging the MGL dataset.

MGL change pattern map.  The dataset also includes maps of three map layers of MGL planting patterns, 
including MGL planting intensity, MGL gain time, and MGL loss time (Fig. 5). The attribute range of MGL gain 
time map is 1986–2020, and the values of each pixel represent the time when the pixel first transformed into 
MGL. The attribute range of the MGL planting intensity map is 0–36, where 0 represents non-MGL cropland. The 
values from 1 to 36 represent the number of times that pixel has been used for PIMGL over the past 36 years. The 
attribute range of MGL loss time map is 1987–2020, and the values of each pixel represent the time when the pixel 
first transformed into non-MGL. The planting pattern map of the cropland dataset corresponding to the MGL 
year has the same pixel attributes as the MGL planting pattern.

Technical Validation
Comparison with field data.  We compared our maps with field data at each agro-meteorological site dur-
ing the period 1985–2020. This involves a total of 3113 on-site verification points, with an average of over 100 
verification points per region in 31 provincial-level administrative units in China. The overall accuracy (OA), 
user accuracy (UA), and producer accuracy (PA) were calculated for each annual maps of rice, wheat, and maize 
using the monitoring data (Table 2). The OA of the three grain crops was 93.57%. The user accuracy of rice, wheat, 
and maize were, 92.84%, 96.00%, and 95.36% respectively. Meanwhile, the producer accuracy of rice, wheat, and 
maize were, 94.98%, 91.45%, and 94.90% respectively.

Fig. 5  The change pattern of MGL.

Number of samples

Actual label

Total Rice Wheat Maize Others Producer accuracy (%)

Estimated results

Total 11345 3360 1750 3122 3113

Rice 3284 3119 12 16 137 94.98

Wheat 1837 25 1680 50 82 91.45

Maize 3137 76 30 2977 54 94.90

Others 3087 140 28 79 2840 92.00

User accuracy (%) 92.84 96.00 95.36 91.23

Overall accuracy (%) 93.57

Table 2.  Accuracy assessment using field sites. Note: The ‘Others’ type refers to non-MGL cropland.
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Validation of MGL total planting area.  Here, we have calculated the estimated total MGL planting area 
in China each year and compared it with the annual major grain planting area reported by NBSC (Fig. 6). The val-
idation results from a long time series show that the MGL dataset has a high consistency with the NBSC reported 
data (R2 = 0.824). The high consistency also indicates that the mapping accuracy of this dataset is high.

Spatial validation with agricultural statistical data.  The plant areas derived from MGL maps were 
compared with agricultural statistical data reported by NBSC at the provincial level from 1985 to 2020 (Fig. 7). 
There is a high consistency between the rice planting area of each province and statistical data, with an R2 close to 
1 (0.97–0.99). Meanwhile, the wheat planting areas also agreed well with agricultural statistical data (R2 = 0.92–
1). In contrast, the spatial consistency of maize is lower than that of wheat and rice, but its R2 is still higher than 
0.80 (0.80–0.97). These high levels of consistency also indicate that the MGL dataset has high spatial accuracy.

Comparison of accuracy with existing datasets.  To compare the accuracy of the MGL product, we 
compared the overall accuracy (OA, %) of the mapping results with existing high-resolution crop map using 
the same sample. The dataset for comparison includes crop maps near 2020 with a resolution of no less than 30 

Fig. 6  Time series consistency between MGL total area and statistical data.

Fig. 7  Spatial validation with statistical data from different provinces.
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meters, including wheat maps in 30 m resolution by Dong et al., maize maps in 30 m resolution by Peng et al., 
and rice maps in 10–20 m resolution by Shen et al. Our wheat map has an OA of 91.34%, slightly higher than that 
of 89.88% of Dong’s wheat map (Fig. 8a). The maize map of this study has an OA of 93.14%, higher than that of 
80.06% of Peng’s wheat map (Fig. 8b). Similarly, our rice map has an OA of 93.88%, higher than that of 85.23% of 
Peng’s wheat map (Fig. 8c). From a consistency perspective, the MGL results have a high degree of consistency 
with the mapping OA of a single crop map (Fig. d-f, R2 = 0.9995 in wheat, R2 = 0.9986 in maize, R2 = 0.8447 in 
rice). These results indicate that the MGL map are slightly higher than similar products with the same resolution 
available.

Code availability
The code for this study is developed based on GEE. Users can call the link to view the data source code (GEE 
link: https://code.earthengine.google.com/d371ab6f6c1bd274c85af270e4ad09c5). Here is the case code for MGL 
recognition based on RF algorithm (https://code.earthengine.google.com/cae24a2d455b2735226c7976b72fc1ba). 
The subsequent processing, analysis, mapping, and verification of data are all completed by background 
computers. These processes are mainly completed in Excel 2021 and ArcGIS 10.2 software, and do not involve 
code. The full MGL dataset33 is freely available at https://doi.org/10.6084/m9.figshare.26212643.v2.
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