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GastroHUN an Endoscopy Dataset 
of Complete Systematic Screening 
Protocol for the Stomach
Diego Bravo   1,2 ✉, Juan Frias   3,4, Felipe Vera3,4, Juan Trejos3,4, Carlos Martínez3,4, 
Martín Gómez3,4 ✉, Fabio González   1,5 & Eduardo Romero1,2 ✉

Endoscopy is vital for detecting and diagnosing gastrointestinal diseases. Systematic examination 
protocols are key to enhancing detection, particularly for the early identification of premalignant 
conditions. Publicly available endoscopy image databases are crucial for machine learning research, yet 
challenges persist, particularly in identifying upper gastrointestinal anatomical landmarks to ensure 
effective and precise endoscopic procedures. However, many existing datasets have inconsistent 
labeling and limited accessibility, leading to biased models and reduced generalizability. This paper 
introduces GastroHUN, an open dataset documenting stomach screening procedures based on a 
systematic protocol. GastroHUN includes 8,834 images from 387 patients and 4,729 labeled video 
sequences, all annotated by four experts. The dataset covers 22 anatomical landmarks in the stomach 
and includes an additional category for unqualified images, making it a valuable resource for AI model 
development. By providing a robust public dataset and baseline deep learning models for image 
and sequence classification, GastroHUN serves as a benchmark for future research and aids in the 
development of more effective algorithms.

Background & Summary
Stomach gastric cancer is one of those oncologic processes with the poorest prognosis and yet it can go unde-
tected during routine examinations. Unfortunately, current methods often fail to identify premalignant 
lesions and early-stage cancers, thereby limiting treatment options and patient survival rates. According to the 
International Agency for Research on Cancer (IARC) https://gco.iarc.fr/today/en/fact-sheets-cancers, the spe-
cialized cancer agency of the World Health Organization (WHO), stomach cancer remains a significant global 
public health concern. In 2022, IARC estimated 968,784 new cases and 660,175 deaths attributable to stomach 
cancer worldwide1. Esophagogastroduodenoscopy (EGD) is the screening procedure for diagnosing upper gas-
trointestinal (GI) diseases and upper GI cancers in high-risk areas2.

A main purpose of the EGD screening setting is to enhance the detection rate of early-stage gastric cancers 
(EGC) and to reduce cancer-related mortality, both tasks highly dependent on the operator’s expertise. In fact, 
20%–25% of EGC are missed3 while 11.3% of upper gastrointestinal cancers in more advanced stages are not 
detected4. Certain locations, the cardias, body lesser curvature or posterior wall, have been reported as gastric 
regions with higher risk of lesions to be missed5,6. Therefore, accurate diagnosis relies on exhaustive scanning 
of the gastric mucosa7, which should be documented with photographs during endoscopic procedure, ensuring 
exploration is complete. Several protocols worldwide have been introduced to visually register the explored areas 
of the upper gastrointestinal tract, differing among them in the specific areas to be documented. Currently, the 
European Society of Gastrointestinal Endoscopy (ESGE) proposed that photodocumentation in a normal endo-
scopic examination should have at least 10 gastric regions8, The Korean Society of Gastrointestinal Endoscopy 
(KSGE) recommends photodocumentation of at least 8 gastric regions in a normal EGD examination, with 
additional photos of suspicious lesions9. In Japan, the “Systematic Screening Protocol for the Stomach (SSS)”, 
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suggest 22 gastric regions10 (see protocol in Fig. 1). Although all these protocols have shown to be useful, the 
Japanese strategy has shown to be more effective in reducing mortality rates.

The gastroenterology community agrees about the importance of auditing these procedures, thinking effec-
tiveness of these procedures could be benefited by ensuring the protocol is strictly followed11. However, in 
actual clinical scenarios this audit sounds unrealistic, except if a part or the entirety of the audit procedure is 
automated. Artificial Intelligence (AI) systems present a real opportunity for implementing automatic audits. 
However, realizing this potential requires two key improvements in data: a significant increase in the amount of 
relevant data and enhanced accessibility to existing datasets. AI systems are fundamentally dependent on data, 
and their performance generally improves with larger datasets. A growing number of data collections demon-
strate the feasibility of automated audits. However, most of these data repositories remain private. It is important 
to note that data protection decisions are often guided by medical ethics committees, as acquiring health data 
poses unique challenges not commonly found in non-medical machine learning fields.

Medical imaging databases are crucial for advancing algorithms in medical image analysis, particularly 
in deep learning applications across a wide range of clinical domains. Initiatives like the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI)12,13, the Human Brain Connectivity Database (HBCD)14,15, and the Cancer 
Genome Atlas (TCGA)16 are just a few examples of the invaluable data repositories that have fueled progress 
in neuroscience17, digital pathology, and other fields18. Beyond these examples, there are also expansive data-
bases supporting research in areas such as radiology19, cardiology20, retinal21, and musculoskeletal imaging, 
all of which have become essential tools for developing transformative AI technologies to enhance clinical 
decision-making and patient care. However, there is a notable disparity in accessible, large-scale gastrointes-
tinal (GI) datasets. Most GI datasets are private, limited in size, and primarily focus on lower GI tract abnor-
malities. Notable public endoscopy datasets include Endomapper, which provides annotated videocolonoscopy 
procedures22, Kvasir-Capsule, featuring small bowel images in 14 categories23, and HyperKvasir, which offers 
comprehensive data on the upper and lower GI tracts24. Despite these efforts, the scarcity of large-scale, acces-
sible GI datasets, particularly for the upper GI tract and normal cases, remains a significant challenge. There 
is currently no public collection of upper GI videoendoscopies that follow a standardized quality protocol for 
stomach screening. This highlights the urgent need for more extensive data-sharing initiatives in gastroenter-
ology to support comprehensive research and algorithm development. Table 1 provides an overview of datasets 
containing photographic documentation of the stomach. All works, except for our own, were selected from a 
review by Renna, Francesco, et al.25. To determine if these databases were public or not, and under which condi-
tions they might be accessed, authors were contacted via email and if after two-week no response was obtained, 
the corresponding collection was classified as private. Portions of the GastroHUN dataset have been used in 

Fig. 1  Photographic documentation protocol of the stomach that begins as soon as the endoscope is inserted 
into the gastric antrum. With the anterograde view, endoscopic photographs of 4 quadrants of the gastric 
antrum, body, and upper middle body are taken. Then, with the retroflex view, endoscopic photographs of  
4 quadrants of the fundus cardia, and 3 quadrants of the upper middle body and gastric incisura are taken. 
The SSS series consists of 22 endoscopic photographs of the stomach. Images where the intended category is 
not clearly visible, or a documented lesion is present are categorized as “NA”. The abbreviations are L for lesser 
curvature, A for anterior wall, G for greater curvature, and P for posterior wall.
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previous works. Initially, 2,054 images were categorized into six classes by one medical expert (2023)26,27. The 
categories were later extended to 13 (2024)28,29. The dataset now includes a larger number of cases, 23 categories, 
diverse data types such as images, sequences, and videoendoscopies, contributions from multiple labelers, and 
fully adheres to a systematic detection protocol10.

Contributions of this paper are as follows

•	 An open dataset is available at figshare30, containing 387 high-definition esophagogastroduodenoscopy cases 
recorded using the SSS Kenshi Yao protocol10. The dataset includes two types of recordings: 4,729 sequences 
from 223 videoendoscopies and 8,834 images, each representing a selected frame from one of the 22 stations 
of the Kenshi Yao protocol or unqualified category.

•	 Annotations were provided at the frame level by a panel of four experts: two recent graduates, and two final-
year gastroenterology fellows. The specialist selected all representative samples during the procedure through 
image photodocumentation, the central frame of each sequence was chosen as the most representative. All 
frames and static images were labeled into one of 23 categories.

•	 A comprehensive validation framework for image and sequence classification is provided, encompassing data 
partitioning, performance metrics, and baseline models.

Methods
Use of human participants.  The study adhered to the principles of the Declaration of Helsinki, and ethical 
approval was granted by the Ethics Committee of the Hospital Universitario Nacional de Colombia (approval 
number: CEI-2019-06-10). All patients signed an Informed Consent to Privacy Data Protection Authority, which 
explicitly allowed the use of their clinical and procedural data for research and educational purposes, includ-
ing the development of computational methods to enhance diagnostic procedures for gastrointestinal diseases. 
Recordings were collected retrospectively from procedures scheduled between 2019 and 2023. Participants were 
informed that their information might be used to improve medical practice, with all data anonymized through 
the removal of metadata and renaming of files via a hash generator to ensure their identity cannot be traced. The 
Ethics Committee approved the publication of the dataset under an open license, considering the retrospective 
nature of the study, the informed consent provided, and the anonymization of the data, ensuring compliance with 
open-access requirements.

Endoscopy procedure.  The endoscopy procedure is carried out as follows: after scheduling for an upper 
gastrointestinal endoscopy, patients sign informed consent forms before entering the gastroenterology unit. 
Approximately 30 minutes before the procedure, they receive a preparation of 10 mL of a solution containing 
400 mg of N-acetylcysteine and 200 mg of simethicone. Afterwards, patients lie on their left side during 5 minutes 
and then wait 20 to 30 minutes before the procedure. Once in the procedure room, a cannula is inserted into the 
patient’s right arm, and a certified anesthesiologist administers intravenous sedation with propofol. The patient 
standard posture during esophagogastroduodenoscopy (EGD) is the left lateral decubitus position. After seda-
tion, an Olympus series 190 endoscope is introduced to aspirate gastric content residues, distend the cavity by 
injecting air and position it at the duodenum31.

After inspection of the duodenum with the monocular endoscope, a photographic record is performed as 
illustrated in Fig. 1. This photodocumentation starts at the pylorus’s position, after which gastroenterologists 
should perform the next exploration after the SSS Kenshi Yao protocol10:

Dataset Protocol Classes Size Availability

Takiyama et al. (2018)37 Japanese Classification of 
Gastric Carcinoma 4 sites + 3 gastric sites 44,416 images Private

Wu et al. (2019)38 SSS 10 or 26 (22 SSS + others) 24,549 images Private

Xu et al. (2019)39 N/A 10 sites 75,275* images Private

Wu et al. (2019)40 SSS 26 sites (22 SSS + others) + NA 34,513 images; 107 sequences Private

He et al. (2020)41 Modified British and 
Japanese guideline 11 3,704 images By request

Igarashi et al. (2020)42 Unclear 10 85,246 images Private

Chang et al. (2021)43 Unclear 8 15,723 images Private

LI et al. (2021)44 SSS 7 non stomach + 24 gastric regions 
(22 SSS + others) 170,297 images; 5,779 sequences Private

Choi et al. (2022)45 ESGE 8 sites 2,599 images Private

Ding et al. (2021)46 Undefined 6 sites + 1 background 7,351 images Private

Sun et al. (2022)47 Unclear 11 10,474 images Private

Ours (GastroHUN, 2025) SSS 22 SSS + NA 233 videoendoscopies; 8,834 images collected from 387 
cases; 4,729 sequences derived from 223 cases Public

Table 1.  An overview of existing upper anatomical datasets, sorted by year of publication. * including non-
informative and NBI frames.
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	 1.	 The equipment is retracted 5 cm to initiate the antrum photo-documentation, beginning at the greater cur-
vature and proceeding clockwise, capturing 4 overlapping photos: greater curvature (photo 1-G1), anterior 
wall (photo 2-A1), lesser curvature (photo 3-L1), and posterior wall (photo 4-P1).

	 2.	 The equipment is withdrawn 15 cm up to the distal gastric body, continuing clockwise to capture: greater 
curvature (photo 5-G2), anterior wall (photo 6-A2), lesser curvature (photo 7-L2), and posterior wall 
(photo 8-P2).

	 3.	 The equipment is then pulled back another 15 cm to the upper-middle gastric body, maintaining the clock-
wise documentation: greater curvature (photo 9-G3), anterior wall (photo 10-A3), lesser curvature (photo 
11-L3), and posterior wall (photo 12-P3).

	 4.	 The gastroscope is advanced to the corporoantral junction where retroflexion is performed to visualize 
the cardias and gastric fundus regions. Photodocumentation proceeds: greater curvature (photo 13-G4), 
anterior wall (photo 14-A4), lesser curvature (photo 15-L4), and posterior wall (photo 16-P4).

	 5.	 Once the equipment is adjusted for rear view, the lesser curvature by 5 cm is fully exposed, capturing three 
additional photos: anterior wall (photo 17-A5), lesser curvature (photo 18-L5), and posterior wall (photo 
19-P5).

	 6.	 Finally, after aligning the equipment tip for a complete view, the concluding photographs are the anterior 
wall (photo 20-A6), lesser curvature (photo 21-L6), and posterior wall (photo 22-P6).

Recording endoscopy procedure and data.  Data are herein presented either as single images or videos 
and were collected by standard endoscopy equipment: Olympus EVIS EXERA III CV-190 video processor, EVIS 
EXERA III CLV-190 light source and EXERA II TJF-Q180V and GFI-H170 gastroscope from the Department of 
Gastroenterology, Hospital Universitario Nacional de Colombia (HUN), in Bogotá (Colombia). HUN provides 
gastroenterology services to more than 4,000 patients per year. The procedures herein recorded were performed 
by 2 last year residents and two 2 gastroenterologists, and one master gastroenterologist with more than 20 years 
of experience and about 50,000 procedures following the SSS Kenshi Yao protocol10. The two residents of gastro-
enterology (FG - Team A) have documented an average of 500 procedures while gastroenterologists (G - Team 
B) have performed at least 1,000 procedures. Each case was independently annotated by experts from both Team 
A and Team B using a quadruple-blind labeling process. The images and videos were manually edited to remove 
any identifying information, such as direct and indirect identifiers and frames recorded when the camera was 
outside the patient’s body. Recordings were collected retrospectively from procedures scheduled between 2019 
and 2023. At least one of the five gastroenterologists was present during recording sessions to ensure the quality 
of the acquisition without interfering with the medical procedures. The videos were recorded at 30 and 15 frames 
per second using video capture devices from either Epiphan (Ottawa, Canada, specializing in professional video 
capture hardware and audiovisual solutions) or Elgato (Corsair Components, Inc., Fremont, California, USA, 
specializing in consumer electronics and streaming peripherals) to capture footage from the endoscope.

Data Records
The GastroHUN dataset is available at figshare30. Table 2 provides a summary of all data recorded within the 
dataset, which includes 8,834 annotated images and 4,729 annotated sequences. The dataset has a total size of 
96.86 GB and is organized into three catalogs: “Labeled Images”, “Labeled Sequences”, and “Videoendoscopies”. 
The “Labeled Images” and “Labeled Sequences” catalogs contain archive files for each labeled class, while the 
“Videoendoscopies” catalog includes endoscopic findings and pathological diagnoses video files. An overview 
of the dataset structure is presented in Table 3.

Labeled Images.  The dataset comprises 8,834 labeled images from 387 patients, with 8,053 images stored in 
JPG format, recorded by an Olympus MAJ-1925 portable memory provided with the Olympus EVIS EXCERA 
III CV-190 endoscope and whose default compression varies between 1/5 to 1/10 ratios. Additionally, 781 
images stored in JPG format, captured as screenshots from recorded videoendoscopies. Figure 2 illustrates 
the 23 different classes representing the labeled images and the number of images in each class. A JSON file, 
gastrohun-image-metadata.json maps image filenames to their labels provided by the four gastroenterologists, 
including consensus labels across 8 levels, and features a column called source_type to specify whether each image 
is a direct endoscope capture or a video frame. The dataset’s key components are summarized in Table 3. The 
dataset offers a detailed overview of patient data, annotations from two different teams, and agreement labels 
to evaluate the consistency and reliability of the annotations. The category classes are organized following their 
location within the stomach, after the photodocumentation guidelines by SSS Kenshi Yao10. The image resolutions 
are distributed as follows: 8,427 images (91.16%) at [1080, 1350], and 407 images (8.84%) at [720, 900]. Frames 
extracted from video are available in two resolutions: 407 images at [720, 900] and 374 images at [1080, 1350]. 

Data Record # Files Description Size (GB)

Labeled Images 8,834 22 anatomical landmark classes + NA 2.71

Labeled Sequences 4,729 22 anatomical landmark classes + NA 30.25

Videoendoscopies 237 from 233 procedures with diagnoses 63.90

Table 2.  Overview of the data records in the GastroHUN dataset, which includes 387 patients. The 
demographic distribution is as follows: Females have an average age of 63.2 ± 15.1 years (60%), and Males have 
an average age of 61.3 ± 16.4 years (40%).
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Despite these variations, the set of experts did not perceive any difference among the different compression and 
resolution formats.

Labeled Sequences.  A sequence represents a ten-second video segment centered around an annotated 
frame, capturing five seconds before and after that frame for a particular station. When videoendoscopies are 
available, photodocumented images are used to extract temporal information within these sequences. The cen-
tral frame of each sequence is assigned a label based on the Labeled Images process. The samples were gener-
ated using ffmpeg with the following settings: 15 frames per second (fps), encoded with libx264, pixel format 
yuv420p, baseline profile, and a bitrate of 23. All files are provided in MP4 format. The dataset includes 4,729 
video sequences collected from 223 patients, obtained through standard recording procedures. A JSON file, 
gastrohun-sequence-metadata.json, maps each sequence to its corresponding label, independently assigned 
by four gastroenterologists with varying levels of agreement (see Table 3). The file also includes details such 
as the patient number, frame number, frames of the sequence, and the videoendoscopy name from the 
“Videoendoscopies” dataset. Sequence resolutions are distributed as follows: 4,043 sequences at [1080, 1350] and 
686 sequences at [720, 900].

Videoendoscopies.  All files are in MP4 format, containing 237 videos from 233 patients. The video reso-
lutions are distributed as follows: 206 endoscopies at [1080, 1350] and 31 at [720, 900]. Among these, 204 vid-
eos have a frame rate of 30 frames per second, while 33 have a frame rate of 15 frames per second. A JSON 
file, gastrohun-videoendoscopy-metadata.json, includes key diagnostic information in four columns. The 
Diagnoses, which lists conditions such as Chronic Gastritis, Peptic Esophagitis, and other related disorders. 
Findings, which describes observations from videoendoscopy procedures, H. PYLORI, indicating the infection 
status of Helicobacter pylori, and OLGA, which stages atrophic gastritis based on its severity according to the 
Operative Link for Gastritis Assessment (OLGA) system. This dataset offers a unique challenge for researchers 
due to the integration of videoendoscopies, allowing for a detailed analysis of not just images, but entire endo-
scopic sequence. This opens possibilities for tasks like classifying visual endoscopic findings or detecting the 
presence of Helicobacter pylori based on the visual examination of the gastric mucosa, as confirmed by pathology 
reports. Additionally, the dataset supports staging gastric conditions using OLGA, which can be valuable for early 
detection of premalignant conditions. A particularly compelling challenge is developing models that could: (1) 
predict metaplasia from white-light endoscopy videos, (2) quantify abnormal motility patterns in conditions that 
may be associated with Helicobacter pylori infection or OLGA stages, and (3) provide automatic quality assess-
ment of complete upper gastrointestinal tract examinations. These tasks represent significant opportunities for 
advancing automated diagnostic tools in upper gastrointestinal disorders.

Technical Validation
The technical quality of the GastroHUN dataset is ensured by evaluating inter-annotator agreement on image 
labels using Cohen’s kappa coefficient. This approach provides stratified data partitions and a validation frame-
work for future research, enabling comparisons with existing image and sequence classification methods.

Label Kappa Agreements.  In this study, labeling consistency among four raters was evaluated using the 
Cohen’s kappa coefficient which was pairwise computed to assess collective agreement: firstly 905 (9.761%) 
images were shown twice at different times and results are shown at the diagonal in Fig. 3, and secondly the lower 

Dataset Information

Column Name Description

num_patient Patient number (e.g., 7)

filename Unique image file named: 0c14fc9a-3781-4fa9-b8f3-1ece0af92ebd.jpg; Unique sequence file named: 0c14fc9a-3781-4fa9- 
b8f3-1ece0af92ebd.mp4

Team Annotations

FG1 (Team A) Annotation from Fellow Gastroenterology 1 - Team A (e.g., A1)

FG2 (Team A) Annotation from Fellow Gastroenterology 2 - Team A (e.g., A1)

G1 (Team B) Annotation from Gastroenterology 1 - Team B (e.g., A1)

G2 (Team B) Annotation from Gastroenterology 2 - Team B (e.g., A1)

Agreement Types

Complete Indicates complete agreement across all annotations (e.g., A1)

Triple Indicates agreement among three of the four annotations (e.g., A1)

FG Indicates agreement between FG1 and FG2 annotations (e.g., A1)

G Indicates agreement between G1 and G2 annotations (e.g., A1)

FG1-G1 Indicates agreement between FG1 (Team A) and G1 (Team B) (e.g., A1)

FG1-G2 Indicates agreement between FG1 (Team A) and G2 (Team B) (e.g., A1)

FG2-G1 Indicates agreement between FG2 (Team A) and G1 (Team B) (e.g., A1)

FG2-G2 Indicates agreement between FG2 (Team A) and G2 (Team B) (e.g., A1)

Table 3.  Detailed description of the columns of image and sequence metadata.
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triangle in Fig. 3 displays the agreement between pairs of experts across 8,834 images (100%). A thorough analysis 
of inter-rater agreement provides a deeper understanding of data integrity.

Stratified data partition.  The dataset was divided using a stratified partition by patient, allocating 70% for 
training, 15% for validation, and 15% for testing. This technique ensures each subset shows similar label distri-
bution with respect to the entire dataset. The stratification was performed using Fleiss’ Kappa to assess inter-rater 
agreement for each patient. Cases were subsequently divided into quartiles according to their Fleiss’ Kappa scores, 
and proportionally distributed across training, validation, and testing sets to ensure consistent distribution of 
agreement levels (refer to Fig. 4). The official splits are provided as CSV files in the data and code repository: 

Fig. 2  The distribution of images across different anatomical categories is shown by annotator and at various 
levels of agreement. “FG” stands for Fellow Gastroenterologist, and “G” stands for Gastroenterologist.

Fig. 3  Cohen’s Kappa coefficients assess inter-rater (lower triangle) agreement among gastroenterologists 
and intra-rater (diagonal) consistency over time. “FG” denotes Fellow Gastroenterologists (Team A), and  
“G” refers to Gastroenterologists (Team B). The matrix illustrates temporal comparisons and paired annotators’ 
agreement.
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image_classification.csv and sequence_classification.csv. These files follow the structure outlined in Table 3 and 
include a new column called set_type, which specifies the dataset type (e.g., Train, Validation, or Testing). These 
files ensure consistent use of the same cases for both image and sequence classification tasks.

Machine Learning baseline models, metrics and statistical testing.  This section focuses on two 
types of supervised machine learning models that can be trained using the provided labels: image classification 
and sequence classification tasks. The experiments serve two primary purposes: first, to establish a baseline for 
future research using the GastroHUN dataset, and second, to evaluate the complexity of categorizing the data. 
Performance for both tasks was assessed by weighted and macro precision, recall, and F1-score, metrics which 
account for class imbalances while assessing model performance. These metrics are defined as follows:

Precision, also known as Positive Predictive Value (PPV), is the ratio of correctly identified positive samples 
to all samples predicted as positive by the model. It measures the relevance of the retrieved positive instances: 

precision TP
TP FP (1)

=
+

Recall, also known as Sensitivity, True Positive Rate (TPR), is the ratio of correctly identified positive samples to 
all actual positive samples in the dataset. It measures how well the model captures all relevant positive instances: 

=
+

precision TP
TP FN (2)

F1 score is a measure of a model’s accuracy that combines both precision and recall into a single metric. It is 
calculated as the harmonic mean of precision and recall, providing a balanced assessment, especially in cases of 
imbalanced dataset: 

= ×
×
+

precision
precision recall
precision recall

2
(3)

 Model stability was evaluated by bootstrapping, using 100 iterations applied to the testing set32. At each itera-
tion, 50% of the complete consensus-labeled samples for each patient were randomly and independently 
selected. Moreover, 95% confidence intervals were computed for each metric (e.g., precision, recall, F1-score) 
from the bootstrap results by calculating the sample mean (x) and the margin of error. The margin of error was 
derived by first calculating the standard error of the mean (SEM), which is the sample standard deviation (s) 
divided by the square root of the bootstrap iterations (b). The SEM was then multiplied by the critical t-value 
(t0.025) corresponding to a 95% confidence level with α = 0.05. The margin of error was used to define the lower 
and upper bounds of the confidence interval, computed as follows: 

x t s
b

confidence interval
(4)

0 025 = ±





×



.

 Where:

•	 x  is the sample mean of the metric.
•	 t0.025 is the critical t-value for the two-tailed 95% confidence interval, given α = 0.05.
•	 s is the standard deviation.
•	 b is the number of bootstrap iterations (b = 100).

Fig. 4  Boxplot illustrating the distribution of Fleiss’ Kappa coefficients across different patient sets. Each 
boxplot represents the inter-rater reliability within a specific set, highlighting the median, interquartile range, 
and potential outliers of the Kappa scores.
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This methodology ensures a robust evaluation of model performance, accounting for variability in the testing 
set, and provides a clear measure of the model’s stability across different metrics. To ensure reproducibility, the 
code for these evaluations is available in the code repository.

Supervised image classification baseline.  As mentioned, models were evaluated by partitioning data into 70% 
for training (270 cases), 15% for validation (58 cases), and 15% for testing (59 cases). Network architectures 
received 3 × H × W RGB images as input, being H and W the height and width, and each re-sized to 224 
pixels using lanczos interpolation during pre-processing, basically by computing the mean and standard 
deviation from the training samples to normalize all data. To ensure a straightforward comparison, archi-
tectures were trained in two distinct phases: (a) Initially, there was a “warm-up” phase focused on training 
the classification layers, during which they were trained for 10 epochs with a constant learning rate. (b) After 
this warm-up phase, a fine-tuning phase targeted the final 40% of the feature layers. This fine-tuning was 
conducted over 100 epochs to optimize model’s performance, with early stopping if the validation F1-macro 
score did not improve for 10 consecutive epochs. Details of networks and training configuration are pre-
sented below:

•	 Family architectures: ConvNeXt33, ResNet34, VGG35 and VisionTransformer (ViT)36 in PyTorch 
implementation.

•	 Pre-trainned weights: ImageNet_V1.
•	 Optimizer: Adam.
•	 Loss function: Weighted cross-entropy for class imbalance.
•	 Learning rate for warmup: 0,001 with gamma = 0,1.
•	 Learning rate for finetuning: each parameter group by gamma every step size epoch.
•	 Output Layer Neural Network: 23 (22 for stomach classification + 1 for additional category).

The model achieving the highest F1-macro score during the validation phase was selected for evaluating 
the testing set. Each method was assessed using defined performance metrics. Given the variability of labels by 
raters, Table 4 outlines the different configurations used to validate models. For all cases, testing used the label 
with the highest kappa.

Supervised Sequence Classification Baseline.  In this experiment, the sequence dataset was divided into train-
ing, validation, and testing sets, ensuring that cases with sequences were consistently assigned to the same 

Image Dataset Distribution

Strategy Training label Team Train Valid Test

Consensus

All A & B 3,722 793 803

Triple A & B 5,228 1,103 803

FG A 4,244 918 803

G B 5,028 1,078 803

FG1 - G1 A & B 4,940 1,064 803

FG1 - G2 A & B 4,811 988 803

FG2 - G1 A & B 4,553 982 803

FG2 - G2 A & B 4,528 953 803

Annotator

FG(1,2) - G(1,2) A & B 6,165 1,316 803

Patients — 270 58 59

Percentage — 70% 15% 15%

Table 4.  Distribution of the imaging dataset based on inter-observer and per-annotator agreement levels. 
The table details the data splits, with the test set held constant across all approaches. “FG” refers to Fellow 
Gastroenterologists (Team A), and “G” to Gastroenterologists (Team B).

Image Classification Sequence Classification

Set Patients Images Patients Sequences

Train 270 6,165 159 3,401

Valid 58 1,316 32 654

Test 59 803 32 394

Total 387 8,834 223 4,729

Table 5.  Distribution of annotator-level datasets for image and sequence classification. The table shows the 
number of patients and data splits for these tasks. Note the reduction in sequence cases due to the absence of 
recorded video procedures.
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subsets as in the image classification task. Table 5 provides the number of samples for each specific set. As in 
the image classification task, testing set consists of samples with complete agreement among the annotators. 
Classification of sequences applies two methods: a multi-layer gated recurrent unit (GRU) and a Transformer 
encoder block. Each token is obtained by embedding each frame with the ConvNeXt_Tiny classification model. 
Features from contiguous frames are concatenated into three-dimensional tensors, incorporating a sequence 
dimension for batch processing, a temporal window dimension to capture dependencies across frames, and a 
feature dimension for detailed characteristics within each frame. This structure enables processing and analysis 
of sequences.

Baseline results.  The experimental setup includes two tasks: image classification and sequence classification. 
The outcomes were assessed across three scenarios:

Scenario A (Image Classification):
•	 Evaluate different state-of-the-art deep learning architectures on GastroHUN using labels with complete 

agreement (see Table 4).

Scenario B (Image Classification):
•	 Analyze model prediction confidence by using different levels of agreement to train and evaluate the models 

(see Table 4).

Scenario C (Sequence Classification):
•	 Evaluate the effectiveness of using sequential data to identify gastric regions.

Image Classification with Complete Agreement Labels.  Sixteen models from four different architec-
ture families were trained using samples with complete expert consensus about the labels (refer to the ‘All’ row 

Fig. 5  Bootstrap distribution of Macro F1-score rankings across different architectures, evaluated by repeated 
sampling (b = 100). Each point represents a ranking for a specific architecture obtained from a bootstrap 
iteration. The distribution of rankings shows the stability of each model’s performance with respect to sampling 
variability.

model

macro weighted

precision recall f1-score precision recall f1-score

ConvNeXt_Large 88.83 ± 0.20 88.54 ± 0.23 88.25 ± 0.22 89.52 ± 0.19 88.71 ± 0.20 88.71 ± 0.20

ConvNeXt_Base 87.96 ± 0.27 87.53 ± 0.28 87.16 ± 0.29 88.72 ± 0.25 87.66 ± 0.27 87.64 ± 0.27

ConvNeXt_Tiny 87.58 ± 0.25 86.92 ± 0.27 86.79 ± 0.26 88.10 ± 0.24 87.28 ± 0.24 87.25 ± 0.25

ConvNeXt_Small 87.24 ± 0.27 86.77 ± 0.26 86.47 ± 0.28 87.82 ± 0.23 86.99 ± 0.26 86.90 ± 0.26

ResNet152 86.30 ± 0.26 85.49 ± 0.27 85.28 ± 0.27 86.82 ± 0.23 85.81 ± 0.25 85.76 ± 0.25

Table 6.  Top 5 performance metrics across bootstrap samples for different models. Macro and weighted 
metrics (precision, recall, and F1-score) are presented with their corresponding 95% confidence intervals (CIs), 
shown as “mean ± margin of error.” These results emphasize the robustness of each model’s performance, with 
ConvNeXt_Large exhibiting the highest stability and performance across all evaluated metrics.
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in Table 4 for the ground truth). After training, models’ stability was evaluated by a bootstrap applied to the test 
set. As shown in Fig. 5, the distribution of macro F1-score rankings demonstrates that the ConvNeXt architecture 
family consistently outperformed other models across multiple evaluations. 

Table 6 shows that ConvNeX_Large outperformed other models, demonstrating the highest stability and 
performance across all metrics, with a macro F1-score of 88.25 ± 0.22. Other ConvNeXt variants, such as 
ConvNeXt Base and ConvNeXt Tiny, also achieved competitive performance but showed slightly higher margins 

Fig. 6  The bubble chart depicts the relationship between the mean bootstrap macro F1-score and the total 
number of parameters (including both feature extraction and classification layers) for each model.

Fig. 7  The confusion matrix for classifying images into 22 anatomical sites and an additional “not applicable” 
(NA) class.
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of error. Likewise, ResNet152 exhibited lower stability in top 5 model performance with a macro F1-score of 
85.28 ± 0.27. Overall, ConvNeXt Large proved to be the most reliable model for handling multi-task challenges 
involving stomach anatomical landmarks.

Any model should balance performance and the number of parameters. Figure 6 visualizes this trade-off 
using a bubble chart, where each bubble’s size represents the number of parameters, and its position indicates 
the mean macro F1-score. The evaluation was comprehensive, with models trained on 3,722 images, validated 
on 793, and tested on 803, all with complete consensus. The results illustrate the relationship between model size 
and performance across different neural network architectures. ConvNeXt_Large achieves the highest F1-scores 
(88.25%) with 200M parameters, while lighter models like ResNet18 and ConvNeXt_Tiny reach  ~ 85% F1-score 
with only  ~ 11M and  ~ 28M parameters respectively. This suggests that some smaller architectures offer prac-
tical advantages where computational resources are limited.

Image Classification: Confusion matrix of ConvNeXt Large.  The network achieved consistent performance in 
key regions like the antrum, lower body, and incisura (Fig. 7) but showed reduced accuracy in the middle body 
(L3, P3, and G3). While effective at detecting specific anatomical landmarks, challenges persist in classifying 
areas such as the cardia, lesser curvature, and posterior wall—regions where a higher rate of missed gastric 
cancer lesions has been reported in systematic reviews and meta-analyses5,6,31. Effective photodocumentation 
demands precise imaging, with standardized air insufflation and suction for better visibility. It is also worthy 
to note that testing results were exclusively obtained from images with complete agreement among four expert 
endoscopists. This consensus guarantees high-quality ground truth labels, but it misses a much more variable 

Strategy Training label

macro weighted

precision recall f1-score precision recall f1-score

Consensus

All 87.58 ± 0.25 86.92 ± 0.27 86.79 ± 0.26 88.10 ± 0.24 87.28 ± 0.24 87.25 ± 0.25

Triple 86.21 ± 0.27 85.15 ± 0.28 84.97 ± 0.28 86.66 ± 0.25 85.51 ± 0.27 85.41 ± 0.27

FG 88.11  ±  0.21 87.09  ±  0.21 87.05  ±  0.21 88.27  ±  0.19 87.43  ±  0.20 87.36  ±  0.20

G 86.42 ± 0.27 85.92 ± 0.27 85.66 ± 0.27 87.27 ± 0.23 86.40 ± 0.25 86.38 ± 0.25

FG1 - G1 86.67 ± 0.27 85.49 ± 0.28 85.44 ± 0.28 86.85 ± 0.25 85.97 ± 0.27 85.87 ± 0.27

FG1 - G2 86.92 ± 0.23 86.03 ± 0.24 85.94 ± 0.24 87.24 ± 0.22 86.37 ± 0.23 86.35 ± 0.23

FG2 - G1 87.16 ± 0.28 86.14 ± 0.28 86.07 ± 0.28 87.89 ± 0.24 87.03 ± 0.26 86.93 ± 0.26

FG2 - G2 85.61 ± 0.26 85.53 ± 0.27 85.11 ± 0.27 86.76 ± 0.26 85.99 ± 0.27 85.96 ± 0.27

Annotator

FG1 84.07 ± 0.27 82.88 ± 0.31 82.86 ± 0.30 84.75 ± 0.26 83.56 ± 0.27 83.63 ± 0.27

FG2 85.37 ± 0.26 84.88 ± 0.27 84.33 ± 0.28 86.50 ± 0.24 85.27 ± 0.26 85.19 ± 0.26

G1 85.64 ± 0.23 84.91 ± 0.23 84.82 ± 0.23 86.24 ± 0.22 85.39 ± 0.23 85.40 ± 0.23

G2 84.21 ± 0.27 83.94 ± 0.26 83.53 ± 0.27 85.16 ± 0.23 84.07 ± 0.25 84.09 ± 0.25

Table 7.  Performance metrics by bootstrap: ConvNeXt_Tiny with consensus labels and individual annotators. 
Macro and weighted metrics (precision, recall, F1-score) shown with 95% confidence intervals. “FG” refers to 
Fellow Gastroenterologists (Team A), and “G” to Gastroenterologists (Team B).

Fig. 8  Cohen’s Kappa scores comparing model predictions with gastroenterologist labels across all samples in 
the test set, with the lower triangle showing agreement among experts ("FG” for Fellow Gastroenterologists, “G” 
for Gastroenterologists) and the diagonal representing model-expert annotations. The trained model was FG 
(consensus in Table 7).
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real-world scenario. Therefore, the future should focus on enhancing the model’s performance in situations 
when label variability or disagreements occur.

Image Classification: Different Ground Truth consensus validation.  In this experiment, models 
were trained independently based on varying agreement levels and annotators (see Table 4). The ConvNeXt_Tiny 
architecture was chosen for its parameter efficiency and macro F1 score in the model comparison (see Fig. 6). 
After training, the models’ stability was evaluated by a bootstrap applied to the test set. The results are shown 
in Table 7. In this validation, we present baseline metrics and analyze the dataset’s statistical characteristics to 
demonstrate its technical merit. The model trained with label agreements among Fellow Gastroenterologists 
(FG) achieved a macro F1-score of 87.05 ± 0.21, surpassing the best single annotator’s performance (G1) of 
84.82 ± 0.23. Notably, this superior result was obtained with fewer training samples. Figure 8 displays Cohen’s 
kappa scores for the complete test set (including all samples without agreement) using the FG trained model. 
The diagonal shows the agreement between the model and each annotator, while the lower triangle illustrates the 
agreement among annotators. The highest model-annotator agreement was 0.701 (between the model and the G1 
expert), while the strongest inter-annotator agreement was 0.790 (between G1 and FG1 experts). Given the exten-
sive collection of images in GastroHUN, we invited fellow researchers to explore and develop innovative meth-
odologies within the medical field. Recent advances in self-supervised learning and neural graph learning are 
promising for handling sparsely labeled or unlabeled data in image classification. Additionally, transformer-based 
architectures and contrastive learning techniques have shown effectiveness in improving feature extraction and 
classification accuracy. Multi-scale learning, which captures both fine and broad details, combined with advanced 
data augmentation techniques, can help build more robust models. These approaches can improve the ground 
truth labeling process, especially in cases with high inter-observer variability, and allow for a multilabel approach 
that leverages complex relationships within the data. We provide a baseline analysis and suggest future research 
using GastroHUN, focusing on advanced machine learning techniques to enhance image classification and 
address areas with high rates of missed lesions. Such advancements could enable researchers to comprehensively 
expand the dataset’s labeling, thereby enhancing its utility for future studies.

Sequence Classification: Performance metrics.  The GRU and Transformer encoder were trained on 
the dataset using the frame embeddings generated by the ConvNeXt_Tiny model trained for image classification 
(Scenario B - see Table 7, FG-trained model). The analysis focused on a 23-frame temporal window (1.53 seconds) 
based on manual inspection to capture the largest possible sequence without including additional categories. 
The duration reflects the variability in the specialist’s observation time of a region, as observed during endo-
scopic photodocumentation. Performance in temporal scenarios was evaluated using macro precision, recall, and 
F1-score, with bootstrap applied to the complete agreement cases within the test set. Table 8 shows Transformer 
and GRU models performed similarly within the 23-frame window, with Transformer FG1-G2 achieving the 
highest F1-score (86.30 ± 0.42). Future work should explore optimal window sizes and self-supervised learning 
to improve multi-label sequence analysis, model generalization, and automatic photodocumentation of anatom-
ical structures during endoscopic procedures.

Usage Notes
The GratoHUN dataset is available at figshare30. To perform image or sequence classification experiments, we 
recommend using the scripts provided in our GitHub repository. Additionally, we have included all trained 
models in the README file on GitHub, along with Jupyter Notebook script for quick testing to obtain repro-
ducible results.

Strategy Training label

Transformer: macro GRU: macro

precision recall f1-score precision recall f1-score

Consensus

All 85.96 ± 0.47 86.34 ± 0.49 85.14 ± 0.48 85.49 ± 0.44 85.92 ± 0.44 84.86 ± 0.44

Triple 81.46 ± 0.44 81.58 ± 0.45 80.51 ± 0.45 83.58 ± 0.44 83.17 ± 0.44 82.45 ± 0.43

FG 85.31 ± 0.36 84.14 ± 0.39 83.33 ± 0.40 85.59 ± 0.40 84.40 ± 0.41 83.66 ± 0.41

G 81.95 ± 0.45 81.34 ± 0.46 80.46 ± 0.45 86.74 ± 0.38 86.09 ± 0.39 85.47 ± 0.39

FG1 - G1 86.21 ± 0.40 85.53 ± 0.45 84.81 ± 0.44 84.07 ± 0.44 83.27 ± 0.49 82.85 ± 0.47

FG1 - G2 86.98 ± 0.42 87.01 ± 0.41 86.30 ± 0.42 86.15 ± 0.41 85.63 ± 0.39 85.01 ± 0.41

FG2 - G1 83.83 ± 0.49 82.67 ± 0.49 82.03 ± 0.48 81.84 ± 0.50 81.52 ± 0.56 80.53 ± 0.51

FG2 - G2 82.62 ± 0.42 83.77 ± 0.44 82.00 ± 0.44 78.38 ± 0.46 79.54 ± 0.45 77.53 ± 0.46

Annotator

FG1 80.99 ± 0.46 80.43 ± 0.49 79.52 ± 0.48 79.04 ± 0.53 78.40 ± 0.57 77.32 ± 0.56

FG2 79.10 ± 0.45 79.35 ± 0.51 77.47 ± 0.44 76.79 ± 0.51 76.38 ± 0.58 74.37 ± 0.55

G1 81.54 ± 0.44 80.68 ± 0.41 80.12 ± 0.39 82.03 ± 0.39 81.28 ± 0.44 80.59 ± 0.42

G2 80.57 ± 0.52 80.27 ± 0.54 79.38 ± 0.51 78.67 ± 0.53 78.83 ± 0.57 77.53 ± 0.55

Table 8.  Comparison of macro precision, recall and f1-scores for sequence classification using transformer 
and GRU, utilizing a trained ConvNeXt Tiny model for sequence embedding. “FG” refers to Fellow 
Gastroenterologists (Team A), and “G” to Gastroenterologists (Team B).
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Code availability
Alongside the data release, we are also providing access to the code utilized in our experiments. The complete 
code and any supplementary material needed for the experiments can be found on GitHub at https://github.com/
Cimalab-unal/GastroHUN.git.
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