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Measuring China’s Policy Stringency 
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Efforts on climate change have demonstrated tangible impacts through various actions and policies. 
However, a significant knowledge gap remains: comparing the stringency of climate change policies 
over time or across jurisdictions is challenging due to ambiguous definitions, the lack of a unified 
assessment framework, complex causal effects, and the difficulty in achieving effective measurement. 
Furthermore, China’s climate governance is expected to address multiple objectives by integrating 
main effects and side effects, to achieve synergies that encompass environmental, economic, and 
social impacts. This paper employs an integrated framework comprising lexicon, text analysis, 
machine learning, and large-language model applied to multi-source data to quantify China’s policy 
stringency on climate change (PSCC) from 1954 to 2022. To achieve effective, robust, and explainable 
measurement, Chain-of-Thought and SHAP analysis are integrated into the framework. By framing 
the PSCC on varied sub-dimensions covering mitigation, adaptation, implementation, and spatial 
difference, this dataset maps the government’s varied stringency on climate change and can be used as 
a robust variable to support a series of downstream causal analysis.

Background & Summary
Significant progress has been globally achieved in climate policy, as evidenced by extensive coverage, diversi-
fied mechanisms, and improved effectiveness in the field of climate governance1. Notably, those policies have 
demonstrated a discernible impact on climate change mitigation and adaption, particularly in specific coun-
tries, sectors, and technologies, including the noteworthy achievement of avoiding emissions equivalent to sev-
eral GtCO2-eq yr−1 2,3. However, considering the temperature control targets, there remains a substantial gap 
between the expected effects and the current policy supply4.

To address the gap in achieving temperature control targets, systematic policy settings and packages are 
expected to balance synergies among climate, social, and economic systems simultaneously. In the near term, 
integrating climate change action with sustainable development and low-carbon transition, aligning climate 
change targets with multiple economic, environmental, and social objectives, and combining adaptation with 
mitigation options are the three major concerns5–7. Several researches has demonstrated that the effectiveness 
of policies lies in the right mix rather than in the quantity of policies1,8. Consequently, it is urgent to analyze the 
complex causal effects underlying these interactions to support the design and implementation of policy pack-
ages that take into account the local context and macro perspective.

However, a conceptual paradox emerges with the current definition of climate policy, which is often based on 
principles of empirical experience. Traditionally, climate policy encompasses policies formulated specifically to 
tackle climate change and can broadly be categorized into two main types: those designed to minimize green-
house gas (GHG) emissions — climate change mitigation9 — and those intended to minimize risks and seize new 
opportunities — climate change adaptation10. This traditional definition and taxonomy are too narrow to fully 
capture the breadth of human-driven efforts to address climate change. As a result, number of policies whose 
main objective is not climate change are inevitably neglected in current research. For example, when an eco-
nomic policy addresses a pre-existing market failure that is made worse by climate change, it can inadvertently 
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support climate mitigation or adaptation by improving the system’s overall resilience whether its primary pur-
pose is climate change mitigation/adaption or not4,11,12.

The major challenges above have become more concrete and urgent in China. On the one hand, China’s his-
toric coal consumption, greenhouse gas (GHG) emissions, and GDP growth have shown uptrend fluctuations 
since the first Five-Year Plan was initiated in 1953. During 1953–1970, the proportion of coal consumption 
exceeded 80%–95% during the energy-intensive industrialization period13–16. Before officially joining global cli-
mate governance around the 1990s, China had already accumulated considerable experience with various prac-
tices that can now be recognized as precursors to modern climate change mitigation and adaptation strategies. 
For example: (1) The 1957 Instructions on Strengthening the Leadership of Saving Coal Use advocated optimiz-
ing ignition technology and equipment improvements; (2) The 1955 Resolution on Comprehensive Planning for 
the Eradication of Water Disasters and Development of Water Conservancy in the Yellow River implemented 
agricultural and forestry soil improvement measures and water conservation efforts; (3) The 1958 Instructions 
on Large-scale Afforestation throughout the Country aimed to double the country’s forest area within a decade. 
These measures, although not framed within the contemporary context of climate change, can be identified as 
unintended but effective mitigation and adaptation options in today’s climate change mainstream discourse.

On the other hand, China has established a comprehensive top-down administrative system for climate gov-
ernance under the strategic guidance of the Central Committee of the Communist Party of China (CCCPC) 
and the supervision of the National People’s Congress of China (NPCC)13,17,18. This system operates under the 
unified leadership of the National Leading Group for Climate Change (NLGCC), with the central government 
managing policy implementation, and with the participation of all relevant departments and extensive engage-
ment from localities and industries. Thus, efforts to tackle climate change have been scattered and overlapped 
across various policies and sectors19–21. Moreover, following global trends and domestic demands, China’s 
climate change governance has developed into “Integrating Carbon Reduction, Pollution Reduction, Green 
Expansion, and Sustainable Growth” as outlined in the CCCPC’s decision-making at the 20th CPC National 
Congress. Consequently, designing and implementing climate policy packages concerning multiple objectives 
expect robust empirical evidence locally while a single definition of climate policy is insufficient to capture the 
breadth of national actions and historical policy behaviors.

Research on climate policies and policymaking has expanded upon reviewing the literature in recent years. 
First, there is growing recognition that climate change action occurs in the context of multiple climate and 
development objectives10. Second, there is growing attention to enabling transitions over time22. However, 
limited research has been devoted to addressing the research gaps and their reification in China to promote 
further effective interventions: (1) Current datasets on climate policies are often initiated based on subjective 
criteria without a clear assessment of whether they comprehensively cover all effective policy measures. (2) 
Mitigation-oriented policies and adaptation-oriented policies are often studied separately in the literature, 
which leads to a lack of robust data instruments to understand the co-benefits and trade-offs between these 
two mainstreams. This gap hinders the ability to assess how these policies can either accelerate or offset climate 
change actions. Integrating the analysis of mitigation and adaptation policies is crucial for developing compre-
hensive strategies. (3) In the context of China’s climate governance, there is a lack of deeper understanding of 
how policies are implemented and diffused, especially when taking into account spatial differences. Within the 
same policy, the intensity of policy objectives and measures can vary, and this variation is more pronounced 
in terms of space. For instance, some policy provisions are more focused on certain regions, which is particu-
larly prominent in adaptation policies. (4) There is a lack of detailed decomposition for existing options from 
global mainstreams, such as those outlined in AR6, to match with local climate governance frameworks. For 
example, afforestation, which is a major area in China’s climate governance handled by the National Forestry 
and Grassland Administration (NFGA), is often integrated with ecosystem restoration corresponding to the 
Ministry of Ecology and Environment (MEE) into a single option in AR6. This integration can obscure the dis-
tinct benefits and challenges associated with each activity, resulting in evaluation bias.

Overall, as climate policies gain increasing prominence, we argue that the theoretical understanding of cli-
mate policy needs to expand in three key dimensions. First, the benchmark for identifying climate policies 
should broaden to encompass all human interventions and actions that have both direct and indirect poten-
tial effects, not just proactive measures. Second, policy should be meticulously decomposed to precisely iden-
tify their main and side effects, accounting for both intended and unintended consequences. Third, historical 
evidence supports this broader perspective: global CO2 emissions have shown observable fluctuations since 
185023,24, with many of these changes driven by policy interventions. This historical pattern provides valuable 
context for developing future climate governance frameworks, even though formal global climate governance 
only emerged in the 1980s.

Therefore, in this paper, we define “Policy Stringency on Climate Change” (PSCC) to depict the stringency 
of those policies with the positive effects on climate change, regardless of whether their main targets are climate 
change or not. This expanded definition enhances the theoretical connotation of climate policy from the per-
spective of objective posterior, enabling measurement, causal inference, and the development of comprehensive 
policy packages. Based on this clear and specific definition of PSCC, we utilized a framework integrating feature 
lexicons, text analysis, machine learning, and large language models to construct a dataset of China’s PSCC for 
the period 1954–2022. This dataset includes 2,216 policies selected from over 24,000 candidates which include 
governmental publication archives, third-party databases, and academic datasets. The resulting dataset is the 
most comprehensive to date for China at the national level, offering insights into China’s hierarchical climate 
governance structure and governmental behavior concerning climate change. This dataset can be parallelly 
applied to other countries and vertically scaled to provincial and city levels for broader applicability.

Our research stands out for several innovative contributions: First, we expand the definition of climate pol-
icy to address the ambiguity that can lead to potential biases in causal effects. We then develop an integrated 
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framework that combines lexicon-based methods, text analysis, machine learning, and large language models 
to measure policy stringency on a policy-by-policy basis. Second, we introduce and integrate a Large Language 
Model (LLM) into our framework. Climate governance encompasses a broad spectrum of fields, making some 
policies with unintended positive effects on climate change neglected. To address the challenge of identifying 
potential target policies, we leverage the world comprehension and generalization abilities of LLMs through 
systematically designed prompt engineering. Techniques such as Chain-of-Thought (CoT) and integrated eval-
uation metrics are employed to guide the LLM in reading, understanding, and further inferring which policies 
should be selected for our subsequent analysis accurately. Third, we develop a robust measurement variable. Our 
Policy Stringency on Climate Change (PSCC) for each policy can be broken down into various sub-dimensions, 
providing robust variables for comprehensive causal effects analysis. Fourth, we enhance the explainability of 
our technical validation by introducing SHapley Additive exPlanations (SHAP) analysis and Dynamic Time 
Warping (DTW) into our framework to provide detailed insights into the model’s decision-making process 
and ensure that our results are transparent and interpretable. These innovations collectively advance the field 
of climate policy analysis, offering a more powerful approach to evaluating policy stringency and effectiveness.

Methods
Our framework is constructed with four modules: Data collection, Data pre-processing, Evaluation and mode-
ling, and Validation. And it’s presented in Fig. 1.

Data collection.  Potential policies identification.  As previously concluded, climate action involves multi-
ple sectors, organizations, and authorities22. Adhering to the definition of Policy Stringency on Climate Change 
(PSCC), our goal was to incorporate all policies that could potentially impact climate change into our research 
boundary. To get potential policies enrolled comprehensively across various climate-related domains, without 
regard to the primary objective or effect, we adopted an inclusive approach, initially including a wide array of 
policies regardless of their categorization or domain, provided they were issued at the national or central level. 
Following a detailed investigation, we identified and confirmed 8 data sources, which include governmental pub-
lication archives, third-party databases, and academic datasets; these sources and their basic statistics are detailed 
in Table 1.

Metadata database and data acquisition.  Based on the initial dataset obtained from the previous step, our next 
tasks involve building a metadata database and developing a data acquisition process. The first step is to establish 
a metadata database that captures the essential identification information of each policy, such as a unique iden-
tification (UID), title, category, and other relevant details, which can be found in Table 2. This database serves as 
a centralized repository for organizing and managing the metadata associated with climate policies. The second 
step involves data acquisition. To achieve this, we developed a task-oriented web scraper using the RSelenium 
package created by Harrison et al.25. RSelenium is a powerful tool that leverages Selenium, a widely recognized 
framework for automating web browsers, enabling us to collect detailed policy information from various online 
sources efficiently. To ensure that the metadata database effectively maps to the policy documents gathered from 
multiple sources, each policy document is assigned a unique identifier (UID) upon ingestion into the system, 

Fig. 1  Schematic. The framing of this study is composed of four parts Data collection, Data Pro-processing, 
Evaluation and Modeling, and Technical Validation.

https://doi.org/10.1038/s41597-025-04476-0


4Scientific Data |          (2025) 12:188  | https://doi.org/10.1038/s41597-025-04476-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

acting as a primary key that links the metadata record to the corresponding policy document. We also maintain 
a record of the source from which each policy document was obtained, which helps in verifying the authenticity 
and provenance of the documents and aids in resolving any discrepancies or inconsistencies. For each policy 
document, we store the URL where it was originally published, allowing users to access the full text directly and 
ensuring that the metadata is linked to the source material.

After completing the steps of potential policy identification, metadata database framing, and data acquisi-
tion, we have established two foundational databases. The first database records the identification information 
of all collected policies, while the second is a comprehensive policy pool with specific policy text. This pool is 
characterized by its multi-source, multi-format, multiple-theme, and multi-time scale nature. Our elementary 
policy pool contains over 24,000 records, with 9.3% sourced from governmental data, 90% from third-party data 
sources, and 0.7% from academic datasets.

Data pre-processing.  Multi-source data standardization.  In the realm of data pre-processing, multi-format 
data, including PDF, TXT, DOC, and JPG files, need to be standardized. Each format presents unique challenges 
that require specific handling to ensure uniformity and accessibility across the dataset. For standard PDF files 

Dataset Description Records
Selected 
Records Format Reference

China’s State 
Council Gazette 
Archive System 
(CSCGAS)

CSCGAS, published by the 
General Office of the State 
Council, is a domestic and 
international government 
publication that accurately 
releases key documents 
including administrative 
regulations, decisions, and 
orders, along with important 
rules and files from its 
various departments, and 
personnel changes.

Started since 1954, 
with each year 
comprising dozens 
of issues, and each 
issue containing 
varying numbers 
of policies.

All selected 
from 
1954–2022.

For data prior to 2000, 
the format is PDF files 
containing images. For 
data post-2000, the format 
is embedded HTML 
within web pages.

https://www.gov.cn/gongbao

The State Council 
Policy Document 
Library (SCPDL)

SCPDL contains various 
policy documents issued 
by the State Council with 
China’s policies, regulations, 
and guidelines across 
diverse areas.

28,720
All selected 
from 1954–
2022, 25,624.

Embedded HTML within 
web pages.

https://sousuo.www.gov.cn/zcwjk/
policyDocumentLibrary?q = &t = zhengcelibrary&orpro = 

Chinese 
Government 
Bulletins and 
Journal Literature 
Database 
(CGBJLD)

CDCGBJL includes 223 
types of government 
bulletins, serving as 
an authoritative and 
standardized one-stop 
search platform for official 
government files.

587,140

Only central 
and national 
level policies 
are included 
in our pool, 
23,456.

The dataset consists of 
two types of PDF files. 
The first type is primarily 
text-based PDFs, while 
the second type is image-
based PDFs, including 
scanned images of 
Traditional Chinese text 
for some early-year data.

https://zhengbao.cnki.net/index?sysid=23

PKULAW

The Peking University 
Legal Information 
Retrieval Platform, 
known as PKULAW, is 
a comprehensive legal 
information search platform 
in China.

Over 1.47 million 
regulatory 
documents from 
central and local 
governments

Only central 
and national 
level records 
are included in 
our pool.

Text-based PDFs. https://www.pkulaw.com/advanced/law/chl

Global Climate 
Change Mitigation 
Policy Database 
(GCCMPD)

The GCCMPD is a global 
climate change mitigation 
policy dataset covering a 
large range of policies from 
216 entities.

73,625

Only policies 
belonging 
to China are 
included, 
1,640.

Multi-format including 
MySQL, MongoDB, and 
EXCEL.

https://doi.org/10.6084/m9.figshare.22590028.v2

China’s Low-
Carbon Policy 
Intensity Dataset 
(CLCPID)

The CLCPID is derived from 
a specialized low-carbon 
policy inventory, covering 
China’s manufacturing 
industries from the national 
to the prefectural levels 
between 2007 and 2022.

7,282

Only central 
and national 
level records 
are included in 
our pool, 91.

Multi-format including 
STATA and EXCEL. https://doi.org/10.6084/m9.figshare.c.6761106.v1

China’s 
Environmental 
Policy Intensity 
Dataset (CEPID)

The CEPID is derived 
from China’s national 
environmental policy 
dataset between 1978 and 
2019.

1,912 All selected, 
1,912. EXCEL. https://doi.org/10.6084/m9.figshare.16740376.v1

Memorabilia of 
the Communist 
Party of China 
(MCPC)

MCPC is an applied style 
for party and government 
organs, enterprises, 
institutions, and social 
organizations to record their 
important work activities 
or major events in their 
jurisdictions.

Annually since 
CPC established

Records from 
1964 to 1979 
selected as 
supplement, 
16.

Embedded HTML within 
web pages. http://cpc.people.com.cn/GB/64162/64164/4416064.html

Table 1.  Data sources and basic information.
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containing primarily text, we use PDF parsing libraries to extract the text content. When dealing with PDFs that 
include images or scanned pages, we employ Optical Character Recognition (OCR) technology to help extract text 
from the images within the PDFs. For PDFs that contain traditional Chinese text, we utilize machine translation 
services to convert traditional Chinese into simplified Chinese. Once translated, we use the same PDF parsing 
tools mentioned above. For DOC files, we use document processing libraries to extract the text content. Any 
embedded images or tables are ignored or handled separately if necessary. Images containing text, such as JPG files, 
require OCR processing similar to PDFs consisting of pictures. By following these steps, we transform the files into 
uniform TXT files with a standardized naming convention. After extraction, we use regular expressions (Regex) 
in R to clean the text, removing residual noise and standardizing the output. This process ensures that the text is 
free of extra spaces, symbols, English numbers, and other noisy elements, and is rearranged into a tidy, standard-
ized format where sentences are presented sequentially without unnecessary spacing or symbols. Examples of 
multi-format data standardization can be found in Table S1 (see Supplementary Information document).

LLM-based filtering and classifying system.  Recent advancements in artificial intelligence have seen the rise of 
large language models (LLMs), which are emerging as a powerful tool for natural language processing (NLP). 
These models are capable of transforming the landscape of text and language data analysis by leveraging deep 
learning techniques, vast computational resources, and extensive training datasets to produce coherent and con-
textually relevant text26. In this way, many researchers have utilized LLMs in a variety of NLP tasks like question 
answering, natural language inference, named entity recognition, relation extraction, information extraction, 
and text classification27. One notable area of success is text classification, where LLMs have achieved remarkably 
high accuracy. In particular, their application in policy classification has demonstrated the models’ superior 
ability to predict outcomes through prompt-based learning28. Unlike traditional supervised learning methods, 
which often require large, labeled datasets that can be expensive and time-consuming to create, LLMs utilize 
prompt learning as a more efficient approach. Traditional models typically aim to optimize the conditional prob-
ability P(y|x;θ), where y is the predicted output, x is the input text, and θ are the model’s parameters28–30. LLMs 
use prompt learning as more efficient approach by modeling the probability P(x;θ) of input text, allowing the 
model to predict labels with minimal supervised data30. This shift in approach is encapsulated by the equation:

θ=
∈

y P y xargmax ( ; )
(1)y Y

ˆ

Where ŷ  is the predicted label, P(y|x;θ) is the conditional probability of output y, and Y is the set of possible 
labels.

Therefore, we utilized the advantage of LLMs to establish our LLMs-based filter and policy classification 
system. There are three major groups of LLM models: (1) small, encoder-only models like BERT that special-
ize in encoding semantic information29; (2) medium to large, decoder-only and encoder-decoder models like 
Text-to-Text Transfer Transformer (T5)31, Grouped-Query Attention (GQA)32, Llama models33, etc., which are 
capable of autoregressive text generation; (3) and large proprietary, decoder-only models like GPT-4o34 and 
Qwen-72B35, which can only be run using third-party APIs. Recent comparisons demonstrate that decoder-only 
models achieve superior performance across numerous benchmarks. These models are increasingly favored for 
their streamlined pre-training process and more efficient model size36. Therefore, we chose to use GPT-4o as the 
primary model and Qwen-72B as a prompt augmentation model. Both models can be accessed via third-party 
APIs to help us filter and classify policies. Our workflow is presented in the Fig. 2.

The first task involves filtering policies based on their potential to mitigate or adapt to climate change. 
Large language models (LLMs) demonstrate exceptional ability to identify such policies, even in the absence of 

Field Description

UID
A Unique Identifier (UID) is employed to distinguish individual policies and establish a mapping between the 
metadata database and specific policies. The UID is composed of two segments: the first part indicates the year of 
archiving, and the second part denotes a sequential number. For example, the UID “201317437” signifies that the 
policy was archived in the year 2013 and is the 17,437th entry in the overall sequence.

URL A URL is the web address that points to the exact location of a policy document online. It is used to direct users to 
the specific web page where they can access the full text of the policy document.

Year This refers to the calendar year during which a policy is officially enacted or promulgated by the governing body.

Policy Title
This denotes the formal name given to a policy document that succinctly describes its main focus or subject matter. 
The title serves as an identifier and provides insight into the scope and intent of the policy without having to read the 
entire document.

Policy Title in Chinese Given the target audience is English-speaking but the subject matter is in Chinese, this term would refer to the exact 
translation of the policy’s title from Chinese to English.

Category-I
From a policy science perspective, categorizing policies can be done based on the regulatory approach they adopt. 
Here we propose three categories: Command-and-Control Instrument (CCI), Market-based and mixed Instrument 
(MXI), and Voluntary Instrument (VOI).

Category-II
This classification is based on a lexicon system designed to match the most potentially relevant sub-dimensions 
with policy content. It serves as an introductory guide for further quantitative analysis in a specific field. Such as 
policy Implementation Plan of China Green Lighting Project could be categorized as Mitigation_Buildings_Efficient 
Lighting, Appliances And Equipment with unique code 132.

Table 2.  Metadata Database Information.
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keywords like ‘climate change’ or ‘carbon emissions. This is achieved through systematic prompt design and the 
integration of cutting-edge LLM technologies such as Chain-of-Thought37. This capability is crucial for captur-
ing a comprehensive and nuanced understanding of policy impacts. By leveraging advanced natural language 
processing, LLMs can detect subtle references and contextual cues that traditional keyword-based methods 
might miss, ensuring a more thorough and accurate assessment of policy relevance.

The second task involves classifying policies based on their policy instruments: command-and-control 
instruments (CCI), market-based mixed instruments (MXI), and voluntary instruments (VOI). CCI corre-
sponds to laws and regulations, MXI to instruments like funding, taxes, and international cooperation, and 
VOI to indirect measures such as public awareness campaigns and educational initiatives38–44. The key objective 
of this task is to accurately classify policies into these categories and make reliable inferences about unlabeled 
objects. Traditional keyword searches often fall short in capturing the nuanced characteristics of each policy 
instrument, making large language models (LLMs) particularly well-suited for this task. LLMs can identify 
and understand the latent features of each policy instrument, ensuring a more comprehensive and accurate 
classification.

For both the filtering and classification tasks, we employed a comprehensive approach leveraging prompt 
learning, in-context learning, instruction learning, and chain-of-thought reasoning37,45,46. We conducted rig-
orous prompt engineering, starting from zero-shot learning, progressing through instruction learning, COT 
reasoning, and few-shot learning with augmentation29. For the filtering task, we focused on identifying policies 
with the potential to mitigate or adapt to climate change. We trained two models on 800 policies manually 
labeled by multiple experts.Among the 800 policies, 400 labeled as 1 were selected based on policy instruments 
and policy dimensions. Similarly, 400 policies labeled as 0 were chosen based on two perspectives to ensure 
the repetitiveness: (1) policies unlikely to have a significant environmental impact, and (2) policies frequently 
misclassified by LLMs. Additionally, we introduced Qwen as a prompt augmentation model to help select rep-
resentative samples and refine the prompts. After iterating on the prompt engineering process, we selected the 

Fig. 2  LLM-based Filtering and Classifying System. This diagram outlines the LLM-based filtering and 
classification system used to process and categorize policies. The system is built around GPT-4o for primary 
processing, with augmentation support from Qwen-72B. The flow begins with Policy Filtering and Policy 
Instrument Classification tasks. The core of the system is the Prompt Engineering stage, which iteratively refines 
prompts using zero-shot, one-shot, and few-shot learning techniques. Within prompt engineering, different 
levels of prompt complexity, including Instruction, Chain-of-Thought (COT), and Augmentation strategies, are 
tested. Manually labeled data serves as the foundation for Prompt Testing and evaluation through Evaluation 
Metrics like accuracy and F1-score, allowing for the selection of the optimal prompt. The finalized models 
for Policy Filtering and Policy Instrument Classification are then applied to unlabeled data for classification 
predictions. The prompt engineering and testing loop iterates until achieving the best-performing prompt 
configuration, ensuring reliable filtering and classification results.
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best-performing prompt and applied it to filter the remaining unlabeled policies (Table S4 in Supplementary 
Information document details the best prompt). For the classification task, we applied the same strategy to 
categorize policies by their instrument types: command-and-control instruments (CCI), market-based mixed 
instruments (MXI), and voluntary instruments (VOI). We applied our system to policies filtered in the first task 
(Table S5 in Supplementary Information document shows the usage of the best prompt).

LLM performance assessment.  The evaluation of large language models (LLMs) typically follows two common 
approaches: automatic evaluation and human evaluation, which are often combined in research for compre-
hensive model assessments47. Automatic evaluation, the more frequently used method, relies on computational 
metrics and tools to assess the model’s performance without human intervention. This approach is favored for 
its efficiency, consistency, and ability to reduce human bias. Common metrics used include accuracy-based 
metrics, such as Exact Match (EM), Quasi-exact match, F1-score, and ROUGE score48, which are extensively 
applied across various NLP tasks. F1-score and its components, precision, and recall, are particularly useful for 
both binary and multi-class classification tasks28,29,49. In contrast, EM and ROUGE are more suited for tasks like 
text generation, summarization, and machine translation.

Notably, Dong et al.50 introduced LLMs to assess China’s low-carbon policy intensity, using accuracy as a 
primary evaluation metric. However, relying solely on accuracy can be misleading, particularly in imbalanced 
datasets, where dominant majority classes may overshadow the model’s performance on minority classes51. To 
address this, we incorporated a combination of accuracy, precision, recall, and F1-score to achieve a more pre-
cise evaluation. This suite of metrics provides a comprehensive assessment of prompt-specific model perfor-
mance and the model’s ability to accurately filter policies based on climate impact and classify specific policy 
instruments.

The metrics were calculated using both binary-average for binary classification tasks and weighted-average 
for multi-class classification tasks, where class imbalance needed to be considered51. In our system, for policy 
filtering, binary-average metrics were used to distinguish between policies with and without climate change 
effects. For the classification of policy instruments (command-and-control, market-based, and voluntary instru-
ments), weighted-average metrics were employed. This combination of metrics ensures that the model’s perfor-
mance is well-rounded and robust against class imbalances. Details on the metric formulas are provided in Note 
S1 (see Supplementary Information document).

Tidying a document-term matrix.  In previous steps, we obtained a metadata database mapping the policy pool 
and a policy pool after Large Language Model (LLM) filtering and classification, which will serve as our research 
object for conducting NLP algorithms with text analysis. With the policies prepared in the secondary policy 
pool, we are going to convert them into a document-term matrix (DTM) format to facilitate a series of down-
stream tasks. The document-term matrix (DTM) is a common structure used in text mining packages, where 
each row represents one document (such as a policy document), each column represents one term, and each 
value typically contains the number of appearances of that term in that document. Converting our policies into 
this format allows us to rely on both existing text mining packages and the suite of tidy tools to perform our 
analysis. Such as the tidy() function transforms a document-term matrix into a tidy data frame, while cast() con-
verts a tidy one-term-per-row data frame back into a matrix, thus enabling a series of text analysis, mining, and 
visualization tasks. These packages are very useful in text mining applications, and many existing text datasets 
are structured according to these formats.

PSCC evaluation and modeling.  To address limitations inherent in simple word frequency analysis, we 
developed an integrated framework comprising three core components: manual rating, policy-by-policy text 
analysis, and machine learning modeling to evaluate Policy Stringency on Climate Change (PSCC). This approach 
builds on the methodology of Zhang et al.52,53, with an expanded formula for calculating PSCC as follows:

PSCC M O I SD( ) (2)i in in in in∑= ∗ ∗ ∗

In this formula, i represents the specific policy, and n denotes the number of sub-dimensions within miti-
gation and adaptation. The term Min indicates the aggregated stringency rating of policy measures within each 
sub-dimension of mitigation and adaptation. Similarly, Oin represents the aggregated stringency rating of pol-
icy objectives within these same sub-dimensions. Meanwhile, The aggregated implementation score Iin rep-
resents the degree of enforcement or rigor associated with implementing these measures across all relevant 
sub-dimensions. Additionally, SDin represents the spatial scale factor, which adjusts the overall stringency score 
based on the spatial difference and geographical specificity mentioned in the policy.

We define the spatial scale factor as an indicator that reflects geographical specificity in policies. Policies that 
focus on distinct areas such as the Yangtze River region, specific provinces like Sichuan, or individual cities like 
Beijing receive higher spatial scale factor values. It is derived through Principal Component Analysis (PCA) 
applied to TF-IDF values across four spatial categories: universal, regional, provincial, and prefecture. This factor 
serves to adjust the manual rating according to the policy’s geographic scope, where higher values indicate more 
localized, targeted, or geographically specific policies. The detailed calculation of spatial scale factor using PCA 
is putting Note S2 (see Supplementary Information document).

To clarify the calculation, we illustrate by graph on the Fig. 3. We also provide a manual-based benchmark 
example: a policy has (1) a stringency rating of 3 in policy measures of mitigation and a rating of 5 in policy 
objective of mitigation, (2) a stringency rating of 5 in policy measures of adaption and policy objective of miti-
gation, (3) a stringent implementation score of 5, (4) if the spatial scale factor is 1.24. The overall manual rating 
is thus calculated: ((3 × 5) + (5 × 5)) × 5 × 1.24 = 99.2.
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Multi-layered, cross-sectoral lexicon build-up.  Based on the IPCC’s AR6 reports9 and comprehensive literature 
reviews that details in Table S3 (see Supplementary Information document), we developed a multi-layered, 
cross-sectoral lexicon structured around four Tier-I dimensions: Mitigation, Adaptation, Implementation, and 
Spatial Difference. Each of these dimensions is further subdivided into the following Tier-II sub-dimensions: 
(1) Mitigation (Energy, AFOLU, Buildings, Transport, Industry, Urban systems, and Others); (2) Adaption 
(Land and ocean ecosystems, Urban and infrastructure systems, Energy systems, and Cross-sectoral); (3) 
Implementation (Consistent, Permissive, and Stringent); (4) Spatial Difference (Universal, Regional, Provincial, 
prefecture). Furthermore, each Tier-II sub-dimension is broken down into 50 and 23 Tier-III sub-dimensions 
for Mitigation and Adaptation, respectively. Moreover, each Tier-III sub-dimension is then further divided into 
“Policy objectives” and “Policy measures”. Finally, we obtained 4 Tier-I, 18 Tier-II, 73 Tier-III, and 146 Tier-IV 
sub-dimensions in total. The framework for the lexicon is detailed in Fig. 3. Following the lexicon preparation 
framework, we invite researchers from both environmental science and social science to build up the lexicon 
separately and obtain a final version after merging and cross-checking.

Manual rating.  For the manual-based benchmark, each policy is evaluated across four core aspects: policy 
measures, policy objectives, implementation, and spatial differences. Policy measures and objectives are assessed 
within both mitigation and adaptation sub-dimensions, while implementation is evaluated across three levels: 
stringent, consistent, and permissive. The manual ratings for policy measures, policy objectives, and implemen-
tation utilize a stringency scale from 1 to 5. Spatial differences are incorporated through Principal Component 
Analysis (PCA) applied to the TF-IDF values, with further details provided in the following section. We opted 
for the 1-3-5 scale rather than a linear 1-2-3 scale because it offers clearer differentiation between levels of policy 
stringency, reducing ambiguity and encouraging more decisive judgments from evaluators. Research suggests 
that scales with wider numerical gaps help minimize the tendency for respondents to choose neutral or mid-
dle points, thus providing sharper distinctions in intensity or importance54,55. This approach helps evaluators 
avoid ‘central tendency bias,’ where ratings gravitate toward the middle, potentially masking meaningful differ-
ences in policy impact. The 1-3-5 scale also enhances the identification of policies with significant or minimal 
impact by making middle ratings less frequent. This method is particularly effective in decision-making contexts 
where clear prioritization is necessary56. As outlined by Zhang et al.53, Table S6 (see Supplementary Information 
document) provides scoring criteria for policy measures in mitigation and adaptation, while Table S7 (see 
Supplementary Information document) describes criteria for policy objectives n mitigation and adaptation.

Corresponding to the rating of implementation particularly, we rate it separately as a key component. This 
approach aligns with the view that successful climate policies require integrated governance, which includes 
planning, monitoring, and evaluation stages57–60. Table S8 (see Supplementary Information document) outlines 
criteria for evaluating policy implementation effectiveness, categorizing implementation as stringent, consistent, 

Fig. 3  Policy Stringency on Climate Change (PSCC) Quantification Framework. This figure illustrates the 
expanded structure used for quantifying the Policy Stringency on Climate Change (PSCC) score based on four 
main pillars: Policy Measures, Policy Objectives, Implementation, and Spatial Scale Factor. Following the IPCC 
AR6 framework, mitigation (green) and adaptation (orange) dimensions are each broken down into specific 
sub-dimensions (e.g., Energy Systems, Land and Ocean Ecosystems). Each sub-dimension within mitigation 
and adaptation is evaluated based on the rigor of policy measures and policy objectives. Implementation (blue) 
is assessed separately across three levels: Stringent, Consistent, and Permissive. Spatial Scale Factor (yellow) 
incorporates geographic categories (Regional, Universal, Provincial, Prefecture) and is derived using Principal 
Component Analysis (PCA) to adjust PSCC based on policy impact breadth.
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or permissive based on specific guiding language. The research underscores the significant impact that policy 
language and implementation levels have on policy effectiveness61,62.

Corresponding to the spatial difference behind those policies’ intentions, we introduce a spatial scale factor 
that accounts for geographic specificity. This factor is divided into four levels: universal, regional, provincial, and 
prefecture. Due to the complexity of manually evaluating spatial distinctions across these levels — for instance, 
when a document contains language that spans multiple levels     — it is challenging to assign a single, accurate 
rating. To incorporate this spatial scale factor into our manual scoring process, we apply Principal Component 
Analysis (PCA) on the TF-IDF values derived from spatial keywords in our lexicon for each level. PCA reduces 
the dimensionality from four to three. And we aggregate these values into a spatial scale factor. The final policy 
stringency score is then calculated by multiplying this spatial scale factor with the manual ratings, ensuring that 
the score reflects the policy’s spatial specificity.

To ensure rigorous evaluation, we assembled and trained a team to independently rate each policy across 
these criteria. Multiple raters assessed each policy to maintain high interrater reliability. These ratings serve a 
dual purpose: they capture the emphasis a policy places on specific measures and objectives while addressing 
challenges associated with weighting decisions in indicator construction.

Text analysis.  Word frequency, a widely used technique in text analysis, has demonstrated the word frequency 
effect, indicating that high-frequency words are processed more efficiently63. The utilization of text-analysis 
approaches for constructing indicators has garnered increasing attention in recent literature64–66. The presence 
of long-tailed distributions in natural language corpora has led to the exploration of the relationship between 
word usage frequency and rank where invisible topics are revealed, known as Zipf ’s law67. However, the depend-
ency of frequency counts on corpus size and the potential noise introduced by stop-words necessitate caution 
in word frequency analysis. To provide high-quality machine learning input, TF-IDF has been proven effec-
tive in characterizing the themes, topics, and attention within the text68,69. There are several key preprocessing 
steps to enhance TF-IDF analysis. (1) Stemming or lemmatization unifies word variants, focusing on essential 
vocabulary. (2) Removing punctuation and special characters, coupled with text normalization, ensures analysis 
precision by standardizing formats and excluding non-relevant elements. (3) Addressing missing data enriches 
insights into policy stringency against climate change. This streamlined approach underpins the TF-IDF algo-
rithm’s effectiveness in identifying critical terms for informed decision-making. The formula of the TF-IDF 
algorithm is detailed as follows:
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where TFi,j denotes the number of occurrences of i in j, IDFi denotes the number of documents containing i, D 
denotes total number of documents.

Machine learning model.  After having the TF-IDF value derived from the lexicon, we adopt from the past 
intensive experience of text analysis approach with machine learning tools to facilitate the construction and val-
idation of our PSCC52,70. Given the presence of complex nature of our lexicon, both traditional algorithms and 
machine learning algorithms can be deployed. In this study, we choose both traditional algorithms and machine 
learning algorithms: linear regression (LM), Elasticnet (Elastic), Lasso (Lasso), support vector machine (SVM), 
eXtreme gradient boosting tree (XgbTree), cubist regression model (Cubist), a bagging wrapper for multivariate 
adaptive regression splines via the earth function (BagEarth), and random forest (RF).

Linear regression (LM) serves as the baseline for comparing algorithmic performance. Elasticnet (Elastic) 
and Lasso (Lasso), with their feature selection capabilities, automatically focus on the most predictive features, 
combining Lasso’s and Ridge’s traits71. To adeptly manage high-dimensional data, we employ support vector 
machine (SVM) and models including eXtreme gradient boosting with tree booster (XgbTree), random forest 
(RF), and cubist regression model (Cubist). Additionally, the ensemble model BagEarth, a bagging approach for 
multivariate adaptive regression splines, addresses non-linear relationships in complex data72. Traditional and 
machine learning algorithms were both trained on the training dataset, comprising 70% of the data, and evalu-
ated on the test dataset, which constituted the remaining 30%. To estimate the error more accurately, we imple-
mented 10-fold cross-validation, repeated three times. Hyper-parameter optimization was conducted during the 
model training phase for the SVM, XgbTree, Cubist, Random Forest, and Bagearth models.

We opt for Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as metrics to assess model 
performance using the test dataset in alignment with continuous predictive outcomes. The formulations for 
MAE and RMSE are provided below:
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Here, yi denotes the observed value for the i-th instance, yi
 represents the mean of the observed values, and ŷi

 
is the predicted value for the i-th instance. We employ both RMSE and MAE because, while MAE is indifferent 
to the error direction, RMSE is more sensitive to outliers. The combination of these metrics provides a compre-
hensive standard for robust performance evaluation.

To give a more interpretative explanation of our predictive model. We considered the SHapley additive exPla-
nations (SHAP), which is introduced by Lundberg and Lee73. The SHAP is rooted in cooperative game theory 
and was originally formulated by Shapley74. It provides an equitable framework for distributing payoffs among 
players, thereby serving as an excellent tool for discerning the influence of individual features on the final pre-
diction of a model. Compared to Permutation Feature Importance used in other literature52,75–77, the SHAP 
values are mainly based on the magnitude of feature attributions instead of the decrease in model performance. 
Therefore, it is the only solution that satisfies Efficiency, Symmetry, Dummy, and Additivity73. The SHAP expla-
nation model (g) is articulated as follows:

∑= Φ + Φ
=

g z z( )
(8)i

M

i i0
1

Here, ∈z {0,1}M with M denoting the total number of features. The term Φ0 is the base prediction when no 
features are present. zi is a binary indicator for the presence (1) or absence (0) of the i-th feature in a given 
instance. The expected prediction f S E f x x( ) [ ( ) ]x s=  over a subset of features S, allows the calculation of the 
SHAP value Φi as follows:
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In this expression, S represents a subset of the full feature set F, excluding the i-th feature, while f S i( { })x ∪  
and fx(S) reflect the model predictions with and without the i-th feature, respectively.

Calculating exact SHAP values is computationally intensive. To approximate these values, Lundberg and 
Lee73 and Lundberg et al.78 introduced three primary methods: KernelSHAP, TreeSHAP, and DeepSHAP. 
KernelSHAP is a model-agnostic approach, utilizing a weighted linear regression to estimate Shapley values 
across models. TreeSHAP offers computational advantages specifically for tree-based models, while DeepSHAP, 
integrating DeepLIFT with the SHAP framework, is tailored for deep neural networks73. Therefore, in this 
study, given the diversity of models employed, from SVM to tree-based models, we implement the KernelSHAP 
method to maintain model compatibility. The SHAP values were computed using the KernelSHAP package in 
R 4.3.279.

Data Records
The dataset is available at Science Data Bank80. Our dataset offers a comprehensive overview spanning 70 years 
of China’s policy stringency on climate change, from 1954 to 2022. The dataset comprises all policies with poten-
tial climate change implications promulgated by the central government, along with their corresponding policy 
stringency. The unique policy number in the dataset (for example, 201317437) signifies the yearly count of 
archived policies. The repository includes the following datasets:

•	 Measurement and Decomposition of China’s PSCC (1954–2022): The PSCC data is measured and broken 
down into detailed sub-dimensions, facilitating a causal analysis of policy impacts and trends over the spec-
ified period and fields.

•	 Policy Pool with 2,216 Records: This dataset includes cleaned and organized 2,216 records, providing 
high-quality text data for other derivative analyses.

•	 Multi-layered, Cross-sectoral Lexicon utilized in PSCC measurement with overall version and splitted 
version.

•	 README file for data records usage and further analysis instructions.
•	 Optimized Chain-of-Thought (CoT) Prompts for Filtering and Categorizing System: These prompts are 

designed to enhance the accuracy and efficiency of the filtering and categorization processes, ensuring that 
the system can effectively handle complex policy data and those detailed technic files can be found in Supple-
mentary Information document.

Our dataset is organized in a year-series format (e.g., China’s Policy Stringency on Climate Change 1954), 
making it readily accessible for analysis. Additional notes provide context and guidance for understanding the 
data: the ‘Category I’ column delineates different policy types, with ‘1’ representing CCI, ‘2’ denoting MXI, 
and ‘3’ signifying another category. The ‘Category II’ column maps these policies to current mainstream fields 
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in climate change, while ‘Category II Mapping’ serves as a unique identifier for these mappings. The ‘Manual 
Rating’ and ‘Machine Learning’ columns present the overall stringency scores derived through separate evalu-
ation methodologies.

Specifically, regarding the sub-dimension stringency column content, the ‘10_climate_mitigation_energy_
energysystems_m’ column quantifies the stringency of policies within the energy systems aspect of climate mit-
igation. The number ‘10’ indicates the identification number of the sub-lexicon. The dataset’s structure adheres 
to the categorization outlined in the chapter ‘Multi-layered, cross-sectoral lexicon build-up,’ dividing mitiga-
tion, adaptation, implementation, and spatial difference measurement into distinct sub-dimensions. Within this 
framework, the stringency of policies has been evaluated across 80 sub-dimensions, including 50 for mitigation, 
23 for adaptation, 3 for implementation, and 4 for spatial differences. Each of the mitigation and adaptation 
dimensions can be further subdivided into policy objectives and policy measures, providing a nuanced and 
detailed assessment of policy stringency.

The provided data records can be utilized both separately and integratively, offering versatile applications 
for researchers. The PSCC Measurement Results are now equipped to support deeper causal analyses, enabling 
exploration of governmental behavior and attention toward climate change. By decomposing these results into 
sub-dimensions, scientists can investigate specific fields to analyze fluctuations and variations within the PSCC 
framework. This method not only facilitates detailed investigations but also serves as a template for organizing 
large volumes of unstructured data for robust quantitative analysis. The meticulously cleaned and organized 
policy text data is primed for diverse studies, including case studies, qualitative analyses, and sentiment analy-
ses. The overall lexicon clearly demonstrates how the PSCC framework aligns with the mainstream consistency 
of the IPCC guidelines. Meanwhile, the split lexicon can be paired with sub-dimension measurement results 
to conduct advanced analyses such as causal, trend, and field studies. For example, researchers can explore the 
impact of climate change on human migration or analyze government behaviors characterized by dimensions 
2113 (Adaptation_Cross-sectoral_Planned Relocation And Resettlement). Furthremore, the dataset outlined 
in this record offers diverse opportunities for research and application across multiple dimensions. One poten-
tial direction lies in advancing methodologies. Employing ensemble machine learning models and advanced 
techniques such as BERT embeddings could significantly improve PSCC prediction accuracy. Collaborating 
with experts in climate science, environmental studies, and economics could further refine the lexicon develop-
ment process, enabling it to better address rapid technological advancements and policy shifts. Exploring spatial 
variations in policy stringency is another promising avenue. Incorporating provincial or city-level data could 
provide a deeper understanding of the spatial heterogeneity of policies, enabling more localized and actionable 
climate strategies. Such granular insights would allow researchers to examine the diverse impacts of policies 
across different regions. Future research could also focus on investigating the impacts and correlations of PSCC. 
Empirical studies that explore the relationships between PSCC and variables such as green innovation, eco-
nomic productivity, and temperature changes could yield valuable findings. Additionally, further categorization 
of the PSCC database to assess firm-level impacts, along with analyses of the complex interplay between policy 
implementation and other dimensions in the lexicon, could provide deeper insights into the dynamics of policy 
design and enforcement.

Technical Validation
In this section, we begin by validating the performance of our LLM-based filtering and classification sys-
tem, followed by an external benchmark validation of our PSCC measurements. First, we evaluate various 
prompt configurations to identify the optimal setup — an instruction-based prompt combined with few-shot, 
chain-of-thought (COT), and augmentation techniques — that yields the highest performance for policy filter-
ing and policy instrument classification. This selected prompt configuration is then applied to filter and classify 
the remaining policies and policy instruments. Next, we assess several machine learning algorithms, ultimately 
selecting Random Forest as the model for PSCC measurement. Additionally, we perform SHAP (SHapley 
Additive exPlanations) analysis to identify variables with the most significant contributions to the model’s pre-
dictions. Finally, to ensure the robustness of our PSCC predictions, we validate our results by comparing them 
to established datasets from Zhang et al.52, OECD (2016)81, and Dong et al.50.

LLM filtering and classifying system performance.  In validating the performance of our Large 
Language Model (LLM) classification system, we initially trained and evaluated the model on a subset of 800 
labeled policies from our extensive policy inventory of over 24,000 entries. The dataset was divided, with 80% 

Dataset Name Dataset Scope Year Coverage Source

Environmental Policy Stringency Index Country level, all sectors with six dimensions, 
addressing three types of environmental policies. 1990–2020 OECD (2016)81

China’s Environmental Policy Intensity for 
1978–2019

Country level, all sectors with fifteen dimensions, 
addressing three types of environmental policies. 1978–2019 Zhang et al.52

China’s Low-Carbon Policy Intensity Dataset from 
National- to Prefecture-Level over 2007–2022

Country, provincial, and city levels, 
manufacturing sector with six dimensions, 
addressing three types of low-carbon policies.

2007–2022 Dong et al.50

Harmonizing existing climate change mitigation 
policy datasets with a hybrid machine learning 
approach

Cross-Country levels, climate change mitigation 
policy dataset. 1974–2022 Wu et al.82

Table 3.  The Existing Dataset Overview.
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allocated for training and the remaining 20% reserved for validation. To explore the model’s capabilities, we tested 
seven different prompt scenarios, ranging from zero-shot learning to more sophisticated configurations such as 
instruction + few-shot + Chain-of-Thought (COT) + data augmentation. The evaluation metrics for filtering and 
classification performance were based on binary-average and weighted-average metrics, respectively, to account 
for any class imbalance within the dataset.

The results, summarized in Tables 4, 5, and Fig. 7, indicate that the instruction + few-shot + COT + aug-
mentation prompt scenario consistently outperformed the others across all evaluation metrics for both policy 
classification and policy instrument classification tasks. To further substantiate these findings, we conducted 
an independent manual evaluation. We randomly selected 500 policies from the 24,000 + policies classified by 
the system, employing stratified random sampling to ensure a balanced representation. This sample comprised 
250 policies predicted to have climate change mitigation or adaptation effects and 250 policies without such 
effects. For policy instrument classification, we selected an additional 500 policies from the 2,100 + policy 
pool, which included 441 command-and-control policies, 31 market-based policies, and 28 voluntary policies. 
These samples were manually labeled, and the manually labeled results were compared against the model’s 
predictions.

Table 6 provides an accurate comparison between the LLM predictions and the manual labeling, highlighting 
the strong alignment between the two. This further confirms the robustness and reliability of our LLM-based 
classification system. In summary, the LLM classification system was rigorously validated through a com-
bination of internal performance metrics and external manual checks, resulting in the successful classifica-
tion of over 2,100 policies with potential climate change mitigation or adaptation effects. This includes 2,007 
command-control policies (CCI), 152 market-based policies (MXI), and 57 voluntary policies (VOI).

Machine learning model performance.  The model we trained contains a range of algorithms, from simple 
linear regression to regularized approaches such as Lasso and Elastic Net, and extends to advanced machine learn-
ing algorithms like Support Vector Machines (SVM) and Random Forest (RF). The performance of these machine 
learning models is summarized in Fig. 4 and Table S9 (see Supplementary Information document). Notably, 
Random Forest demonstrated the lowest Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and 
residual compared to other models. Consequently, we opted to employ Random Forest for evaluating our PSCC.

SHAP analysis.  After showing that learning-based models can estimate the PSCC, we applied the kernal-
SHAP to extract the important features in estimating PSCC using Random Forest. We summarised our SHAP 
value of the Random Forest model in Fig. 5.

From Plot (a) of Fig. 5, the value associated with the mitigation dimension shows a comparatively higher 
contribution to estimating the PSCC than the adaption and implementation dimension. Specifically, the word 

Policy Filtering

Prompt_Type Accuracy Precision Recall F1_Score

Zero-Shot 0.781 0.981 0.605 0.748

One-Shot 0.831 0.968 0.709 0.819

Few-Shot 0.806 0.982 0.651 0.783

Instruction + One-Shot 0.850 0.984 0.733 0.840

Instruction + Few-Shot 0.881 0.959 0.814 0.881

Instruction + One-Shot + CoT 0.888 0.972 0.814 0.886

Instruction + Few-Shot + CoT 0.888 0.947 0.837 0.889

Instruction + Few-Shot + CoT + Augmentation 0.931 1.000 0.872 0.932

Table 4.  The LLM Policy Filtering Performance. Note: For policy filtering, binary precision, recall, and F1-score 
were used.

Policy Instrument Classification

Prompt_Type Accuracy Precision Recall F1_Score

Zero-Shot 0.938 0.937 0.938 0.938

One-Shot 0.925 0.924 0.925 0.912

Few-Shot 0.925 0.917 0.925 0.917

Instruction + One-Shot 0.944 0.941 0.944 0.940

Instruction + Few-Shot 0.938 0.938 0.938 0.938

Instruction + One-Shot + CoT 0.944 0.941 0.944 0.940

Instruction + Few-Shot + CoT 0.944 0.943 0.944 0.943

Instruction + Few-Shot + CoT + Augmentation 0.956 0.951 0.956 0.950

Table 5.  The LLM Policy Instrument Classification Performance. Note: For policy instrument classification, 
weighted-averaged metrics were applied.
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related to energy (coal, energy systems, bio-electricity, and geothermal energy), AFOLU(reforestation), indus-
try(recycling, industry system, and energy efficiency), spatial difference, and implementation (consistent and 
permissive) has a higher contribution to estimating the PSCC. Notably, from the policy measure and objective 
perspective, the contribution of the policy measure is higher than the policy objective.

We have illustrated the top 8 features in the SHAP dependence plot, as shown in Plot (b) of Fig. 5. In this plot, 
each dot represents the SHAP value of a variable, with the color indicating varying PSCC values. This visualiza-
tion effectively demonstrates how the importance of each variable shifts with changes in both its own value and 
the PSCC value. For features such as industry system, energy system, energy coal, industry energy efficiency, 
industry recycling, afolu reforestation, and cross-sectoral climate services, higher values in these mitigation cate-
gories are associated with an increase in PSCC. Notably, the fluorinated feature exhibits a more scattered pattern 
in SHAP values, particularly at lower feature values, indicating inconsistent influence. Additionally, climate ser-
vices show a mild positive relationship between feature values and SHAP values, with relatively low variability.

Comparison with existing datasets.  Due to the lack of a publicly accessible dataset that covers policy 
stringency on climate change (PSCC), direct comparisons with existing datasets are not feasible. However, there 
are some related datasets. Table 3 summarizes those datasets, detailing their scope and coverage years. Both 
OECD (2016) and Zhang et al.52 explore the environmental policy intensity on the country level with different 
dimensions and policy categories. Dong et al.50 developed a dataset on low-carbon policy intensity from 2007 to 
2022 across the country, provincial, and city-level on manufacturing sector with different dimensions and policy 
categories. Wu et al.82 developed the comprehensive climate policy dataset across different countries but without 
any intensity or stringency evaluation. Due to methodological and policy similarities with Zhang et al.52, dimen-
sional similarities with OECD (2016)81, and topic similarities with Dong et al.50, we selected those three datasets 
for comparison.

Following the approach of Dong et al.50, we utilize Dynamic Time Warping (DTW) to measure the similarity 
between three series that exhibit varying trends. After normalizing three indices, we calculate three pairs of 

Manual Checking for Classification

Policy Filtering
Policy Instrument 
Classification

(1) (2)

Accuracy 0.874 0.962

Precision 0.748 0.961

Recall 1.0 0.962

F1_Score 0.866 0.961

Table 6.  Manual Checking for Filtering and Classification. Note: For policy filtering, binary precision, recall, 
and F1-score were used. For policy instrument classification, weighted-averaged metrics were applied.

Fig. 4  The Model Performance. This diagram compares the residual distribution of various models: Random 
Forest (RF), eXtreme gradient boosting with tree booster (GBM), cubist regression model (Cubist), a bagging 
wrapper for multivariate adaptive regression splines via the earth function (BagEarth), Support Vector Machine 
(SVM), Lasso Regression (lasso), Elastic Net (Elastic), and Linear Model (LM). The x-axis shows residuals, and 
the y-axis displays the percentage of data with residuals at least as large. Steeper curves indicate fewer large 
residuals, signifying better model performance.
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DTW distances using the Euclidean distance. The paths that minimize the DTW distances between these indices 
are illustrated in Fig. 6. The distance ranges from 3.22 to 4.10 and features DTW minimum paths represented by 
a blue line that is small and nearly parallel to the main diagonal. This indicates a high degree of trend similarity 
between the national-level indices in this paper and the other three. This suggests that the PSCC developed in 
this paper effectively reflects the evolving trend of policy stringency.

We also show the overall trend of our datasets and three national indices. As depicted in Figure S3 (see 
Supplementary Information document), our PSCC and the other three datasets both show a general linear 
increase, and there are similarities and differences shared between our PSCC and the other two datasets.

Firstly, the EPS from Zhang et al.52 fitted well with our PSCC. Significant climate events such as the estab-
lishment of the IPCC, the release of IPCC’s first assessment report (AR1) and the formation of China’s National 
Climate Change Coordination Group (NCCG), the inaugural Conference of the Parties (COP1), and the release 
of the fourth assessment report alongside the Bali Road Map at COP13, all correspond to similar peaks or 
troughs in both datasets. However, two notable divergences are observed. One is the United Nations Framework 
Convention on Climate Change entered into force (1993), another is the Marrakesh Accords, and the third 

Fig. 5  SHAP Analysis of Feature Importance and Dependence. This composite figure combines a distribution 
plot and multiple dependence plots of SHAP values to illustrate the influence of PSCC features within an RF 
model. Plot (a) showcases the distribution of SHAP values for critical features, with the x-axis measuring the 
impact of these features on model output and the y-axis ranking the features by their importance. The color 
gradient from purple to yellow illustrates the range of feature values, aiding in the identification of features with 
the strongest predictive power. Plot (b) includes dependence plots for select high-importance features, depicting 
the relationship between SHAP values and feature values. The color scale indicates the feature’s PSCC, thereby 
demonstrating how variations in feature values correspond to the model’s output.

Fig. 6  Dynamic Time Wrapping Plot. The contour plots illustrate the comparison between the dataset used 
in our paper (horizontal axis) and datasets from three other sources (vertical axis). (a) Comparison Between 
Zhang et al.52: The contour plot shows the differences between our dataset and the one used by Zhang et al.52. 
The minimum distance observed is 3.22. (b) Comparison Between OECD (2016): The comparison between 
our dataset and the OECD (2016) dataset shows a minimum distance of 3.82. (c) Comparison Between Dong 
et al.50: The comparison between our dataset and Dong et al.50 reveals the minimum distance of 4.10. The blue 
lines represent the path of minimal distance across different stringency levels, with contour levels highlighting 
areas of divergence and convergence.
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assessment report (2001), where EPS exhibits a trend contrary to PSCC. Both disparities stem from China’s 
exclusive focus on environmental policies before 2001 and the prevailing ambiguity between environmental and 
climate policies until then.

Secondly, the EPS from OECD (2016)81 did not align well with either our PSCC or the EPS from Zhang et 
al.52. This divergence primarily stems from the differing methodologies employed in evaluating policy strin-
gency. The EPS by OECD (2016)81 primarily utilizes statistical measures such as taxes, certificates, performance 
standards, R&D expenditure, etc. In contrast, both our study and that of Zhang et al.52 adopt machine learning 
and text-analysis approaches for evaluating PSCC and EPS.

Thirdly, while Dong et al.50 show larger fluctuations compared to our datasets, several key event-driven 
trends align our dataset with their dataset, such as the establishment of the Climate Change Department within 
China’s NDRC in 2008, the release of the National Climate Change Response Plan (2014–2020) in 2014, and the 
announcement of China’s carbon peak and neutrality goals for 2030 and 2060 in 2020. There is a discrepancy 
during the period from 2013 to 2020. The primary reason for the discrepancies is that, during the period from 
2013 to 2017, China adopted a highly environmental focus, with policies heavily oriented toward combating 
air, water, and solid waste pollution. This orientation emphasized reforms within the manufacturing sector like 
strengthening industrial emission standards and upgrades on industrial boilers83.

As a result, the intense environmental focus in China during this period significantly influenced Dong et al.‘s 
findings, leading to discrepancies between their trends and those observed in our broader dataset. Consequently, 
a comparison between our PSCC and the EPS from OECD (2016)81 underscores the advantages of policy strin-
gency evaluation through text analysis. This method demonstrates a superior capability in capturing subtle shifts 
in policy topics and directions, which numerical measures may overlook. For instance, the spillover effects of the 
COVID-19 pandemic are evident in the trend of our PSCC dataset. Additionally, following China’s announcement 
of its carbon peak and neutrality goals for 2030 and 2060, there is a noticeable and continuous uptrend in PSCC.

Acknowledging the similar methodologies employed in the dataset Zhang et al.52, we utilized the ‘fuzzyjoin’ 
package developed by Robinson84 in R 4.3.2 to identify the same policies in both datasets for a deeper examina-
tion of the discrepancies between PSCC and EPS in the same policy. The findings are depicted in Figure S4 (see 
Supplementary Information document) in the supplementary material. From this figure, a distinct divergence 
around the year 2000 becomes apparent. Before 2000, the discrepancy between PSCC and EPS was small in the 
same policy, but post-2000, we observed a clear bifurcation, indicating the formal separation of climate and 
environmental policies in China. And this discovery further explained the divergence we found in Figure S3 (see 
Supplementary Information document).

Code availability
Supplementary material to this article can be found on uploaded documents and https://doi.org/10.57760/
sciencedb.14709.
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Fig. 7  LLM Accuracy for Policy Filtering and Policy Instrument Classification. The graph illustrates the 
accuracy in two tasks: policy filtering based on climate change mitigation/adaptation effects and policy 
instrument classification (CCI, MXI, VOI). The left-hand side of the graph represents the accuracy metrics 
using binary-average method for policy filtering, while the right-hand side displays the accuracy metrics 
using weighted-average method for policy instrument classification. The different metrics represented by the 
different types of line. For policy filtering, binary-averaged precision, recall, and F1-score were used. For policy 
instrument classification, weighted-averaged precision, recall, and F1-score were applied.
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