
1Scientific Data |          (2025) 12:375  | https://doi.org/10.1038/s41597-025-04576-x

www.nature.com/scientificdata

Laser powder bed fusion dataset 
for relative density prediction of 
commercial metallic alloys
Germán Omar Barrionuevo   1,2, Iván La Fé-Perdomo   3 ✉ & Jorge A. Ramos-Grez4

Laser-based powder bed fusion (L-PBF) technology stands out for its ability to create complex, high-
performance parts, optimizing design freedom and material efficiency. Despite technical and financial 
challenges, it is attractive to industries where performance, weight reduction, and customization are 
critical. In L-PBF, relative density (RD) is a key factor that directly impacts the mechanical properties 
and overall quality of printed parts. However, predicting RD is a complex and costly task due to the 
numerous factors involved. This study addresses this need by creating a large-scale dataset for RD 
prediction in L-PBF, consisting of 1579 samples of commercial alloys from the literature. It includes 
printing conditions and other crucial inputs like protective atmosphere, powder size distribution, and 
part geometry. This dataset offers a valuable resource for researchers to benchmark their results, 
better understand key factors influencing RD, and validate models or explore new machine-learning 
approaches tailored to L-PBF.

Background & Summary
Metal additive manufacturing (AM), often called 3D printing, is a broad and transformative technology capable 
of redefining manufacturing processes, supply chains, and product development1. One of the AM technologies 
that have stood out for its ability to process various alloys, freedom of design, high precision, in-situ monitoring, 
process control, no tooling requirement, and, above all, improved mechanical properties is laser-based powder 
bed fusion2,3.

Although this technology offers all the above advantages, its applicability is linked to obtaining a high rel-
ative density. The RD influences the mechanical properties, performance, and functionality of the 3D-printed 
components4–11. Numerous studies have been carried out to obtain suitable processing parameters to produce 
defect-free parts where energy density (ED) stands out as a parameter to be considered during laser processing 
of metal powders (equation 1)12–18.
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P represents laser power, v is scanning speed, h is hatch spacing, and l is layer thickness. This equation 
reflects the amount of energy delivered per unit volume during the printing process, making (ED) a key factor in 
determining the relative density of the printed parts. However, due to the variety of materials, different brands 
and models of 3D printing equipment, and the wide spectrum of processing parameters, the standardization 
and quality of parts manufactured by L-PBF are challenging. The importance of carefully selecting process-
ing parameters to achieve optimal RD directly influences the mechanical response of additively manufactured 
samples3,9,19–24. The analysis of RD is essential because random flaws can occur even within the optimal process 
window, further emphasizing the need for continuous monitoring and control of relative density in L-PBF.

From the modeling point of view, the development of advanced computational techniques, particularly 
ensemble methods like Bagging, Boosting, and Stacking25, offers a promising avenue to overcome the limita-
tions of traditional approaches by combining multiple models to improve the predictive performance, reduce 
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overfitting, and handle complex datasets for L-PBF assessment. These methods have been successfully applied 
to various materials and processes in recent years, demonstrating their ability to capture complex relationships 
and yield excellent predictive performance to overcome the classical modeling limitations associated with lin-
ear assumptions and simplified physical models. Machine learning (ML) algorithms, such as XGBoost26 and 
Random Forest27, are crucial in the context of data-driven due to their ability to handle large datasets, discover 
non-linear relationships, and improve the accuracy of predictions.

The development of powerful libraries like Scikit-learn, TensorFlow, and PyTorch has further facilitated the 
implementation and optimization of these algorithms, making advanced techniques more accessible to research-
ers and engineers. The growing complexity and volume of data in materials science highlight the need for robust 
ML-based approaches that can effectively generalize across different material properties and manufacturing 
processes. However, the lack of publicly available, high-quality datasets for L-PBF, particularly regarding the 
relative density of printed parts, remains a significant challenge, as ML models rely heavily on data to achieve 
accurate predictions, hindering further advancements in this area.

This article expands on ongoing research by providing a detailed dataset of metal alloy specimens produced 
via L-PBF. The dataset reports RD measurements of commercial alloy samples produced under varying process-
ing conditions, including laser power, scanning speed, hatch distance, layer thickness, laser spot size, average 
particle size distribution, protective atmosphere, printer model, and scanning strategy. The additively manufac-
tured samples were subjected to non-destructive testing techniques (i.e., Archimedes method) for initial assess-
ment, followed by cross-sectional analysis to validate the internal porosity and overall density distribution. The 
relative density of the specimens is analyzed in the context of processing parameters, revealing how changes in 
these parameters affect the overall RD.

This dataset offers researchers a comprehensive resource for benchmarking their results against samples with 
different densities, enabling them to better understand the influence of key factors such as laser-related parame-
ters, powder characteristics, and process conditions on the final RD of 3D-printed alloys.

Furthermore, we invite the research community to actively participate in expanding and enriching this data-
set by contributing additional data points and experimental findings. Such collaborative efforts will enhance 
both the scope and quality of the dataset, transforming it into a more robust tool for decision-making in advance 
and posterior analysis. This collective contribution will not only highlight the significant role of data-driven 
solutions in advancing RD prediction but also establish a standard for future datasets in the field. The dataset’s 
comprehensive nature makes it an indispensable resource for validating existing models and exploring new 
machine-learning approaches specifically designed for the study of L-PBF.

Methods
Data collection.  The foundation for this study began with collecting data from key literature published in 
the past 15 years in relevant and prestigious journals that are the primary source of consults for the research, tech-
nicians, academicians, and the target public. The dataset provides a valuable reference point for those studying 
the impact of density variations on part performance in metal additive manufacturing. In addition, the dataset 
provides a robust basis for developing predictive models, facilitating the training of machine learning algorithms 
capable of accurately predicting the RD. Specifically, studies focused on the as-built RD of additively manufac-
tured samples in relation to the input parameters were of particular interest. Data on RD, printing-related param-
eters, and measurement methods were sourced from published studies in materials and manufacturing journals, 
particularly those reporting experimental data on this property.

The selection of articles from which the data were extracted was carried out through a comprehensive review 
of the literature in both open-access and subscription-based scientific databases, such as Scopus, Web of Science, 
and Google Scholar. Inclusion criteria were established to limit the search to peer-reviewed articles published 
in the last 15 years, focusing on the research of the L-PBF. The term ’Selective Laser Melting’ (SLM) was also 
included as a search keyword, as it is frequently used interchangeably with L-PBF in the referenced papers. 
Studies that did not include quantitative relative density measurements or clearly describe the process conditions 
were excluded. Also, approaches utilizing only simulation data were not considered. After applying these filters, 
a total of 85 relevant articles were selected for analysis. This review strategy ensures that the conducted analysis 
is both thorough and well-supported, providing a robust foundation for our dataset.

Most of the data were extracted from figures and tables in these papers. The Plot Digitizer (https://plot-
digitizer.sourceforge.net/) program was employed to accurately retrieve information from plots and figures28. 
Additionally, each experiment’s processing parameters and material properties were collected to serve as input 
for machine learning models, which are the core of the ongoing investigation that originated the need for this 
data to be gathered.

The dataset consists of 1579 entries and captures key variables related to metal additive manufacturing, spe-
cifically using the L-PBF process. The dataset includes categorical variables such as material type, the method 
used for density measurement, atmospheric conditions during printing, and the geometry of the printed parts.

Materials.  Several metallic powders are available for L-PBF, and different materials continue to appear as 
research and development advances in this field. Metal powders for L-PBF processing are mainly obtained by 
atomization methods. Gas atomization is the most widely used due to the high quality of the spherical powders it 
produces29. Plasma atomization is also very important for materials such as titanium. Other methods, such as ball 
milling, electrolysis, or water atomization, have specific applications but do not always meet the requirements of 
fluidity and purity needed for L-PBF processes30. To ensure adequate dispersion in the powder bed, the materials 
should offer particle size ranges with controlled size distribution, spherical morphology, low oxygen content, and 
good flow properties.
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Commercial metal powders include Fe, Al, Ti, Ni, Cu, Co-Cr alloys, and even precious metals. The materi-
als analyzed in this work include 316L stainless steel, AlSi10Mg, 18Ni300, Inconel 718, Ti6Al4V, and CuCrZr, 
whose chemical composition is detailed in Table 1. Figure 1 shows the percentage of materials collected in the 
dataset, the average particle size distribution, and the morphology of the metallic powders.

Experiments.  The experimental setup usually involves describing the L-PBF system (Fig. 2); we focus on 
extracting main processing parameters such as laser power, scanning speed, hatch distance, layer thickness, laser 
spot size, and scanning strategy. These parameters are essential for understanding the printing process and sub-
sequent impact on RD. In addition, data were obtained on the machine model, the printing atmosphere, which 
can vary between nitrogen or argon, as well as the geometry of the printed samples, which are classified into five 
distinct categories (i.e., prismatic, cylindrical, tensile specimens, etc.) and of course, the relative density. Density 
measurement techniques commonly include the Archimedes method, image analysis, and others (e.g., pycnom-
etry, ultrasonic, and X-ray CT scanning).

It is worth mentioning that we included a generated variable in the dataset labeled as the geometric factor 
(GF). This predictor accounts for the volume of the building envelope of each machine (VM), the volume of the 
part to be printed (Vpart), and the number of samples to be produced (n), see eq. (2).
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Data processing.  Since performing extensive experimental planning is either expensive or time-consuming, 
it is understandable that the range of process parameters of laser power (P), scanning speed (v), hatch distance 
(h), layer thickness (l), and laser spot size (s) in an individual study is rather narrow. However, the combination 
of those existing research efforts leads to a wider range of process parameters, and thus, the models built based 
on the compiled data can be applicable to process conditions that are not accessible for individual efforts. Table 2 
summarizes the printing conditions ranges obtained from the literature review.

An exhaustive exploratory data analysis (EDA) was performed to obtain insights into the influence of pro-
cessing parameters on the RD. This process involves thoroughly examining the data to understand its structure, 
identify patterns, detect anomalies, and evaluate the relationships between variables. Through EDA, it is possible 
to uncover missing values, outliers, and other data inconsistencies that could negatively impact the applicability 
of the dataset. Additionally, understanding the distribution of key variables, such as relative density and pro-
cess parameters, provides insights into the dataset’s suitability for modeling and allows for informed decisions 
regarding printability optimization.

Material (wt%)

316L Fe: Bal. Cr: 16.5-18 Ni: 10-13 Mo: 2-2.5 Mn: 2 Si: 0-1

AlSi10Mg Al: Bal. Si: 9-11 Mg: 0.2-0.45 Fe:  <0.55 Mn:  <0.45

18Ni-300 Fe: Bal. Ni: 17-19 Co: 8.5-9.5 Mo: 4.5-5.2 Ti: 0.5-0.8 Si:  <0.1

IN718 Fe: Bal. Ni: 50-55 Cr: 17-21 Nb: 4.75-5.5 Mo: 2.8-3.3 Ti: 0.65–1.15

Ti6Al4V Ti: Bal. Al: 5.5-6.8 V: 3.5-4.5 Fe:  <0.3

CuCrZr Cu: Bal. Cr: 0.6-1 Zr: 0.2-0.5 Pb:  <0.25

Table 1.  Main chemical elements of the commercial powder alloys employed in L-PBF.

Fig. 1  (a) Percentages of the materials collected in the dataset, (b) Particle size distribution on commercial 
metallic powders.
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Figure 3 presents the statistical distributions of all the numerical input variables and the output variable, rel-
ative density. Most samples were printed with laser power values typically below 400 W, with the most frequent 
values around 200 W, and scan speeds ranging between 20 and 2000 mm/s. Hatch spacing values are predom-
inantly below 200 μm, while layer thicknesses are primarily clustered below 100 μm. Spot size frequently falls 
below 0.1 mm, and the average particle size distribution (D50) has a median value of approximately 30 μm. The 
geometric factor exhibits a broader range, extending up to ~95, reflecting the wide variety of printer models, the 
number of samples produced, and the volume of each sample

The bottom row highlights the relative density, which serves as the target variable. The plot of the RD dis-
tribution reveals a strong skew towards higher values, with a notable concentration near 100%, indicating that 
most samples achieve a high relative density. An estimated kernel density overlays the histogram, further illus-
trating this trend. The final box plot and scatter plot show the statistical summary and distribution of relative 
density in more detail, highlighting that the median relative density is approximately 98.21%, with an interquar-
tile range between 95.87% and 99.22%. From a statistical standpoint, data points falling below 90.8% are classi-
fied as outliers and are represented as jittering blue points on the box plot. However, these data points contain 
valuable information about the L-PBF process itself. The connection between the input parameters and these 
outputs should be carefully examined.

Data Records
The dataset comprises 1,579 observations, organized such that the first ten columns represent the input variables 
(e.g., printing conditions, material, shielding gas, printed geometry, etc.), while the eleventh column contains 
the relative density, expressed as a percentage. The dataset is provided in Excel format in the Harvard Dataverse 
repository, see31. Based on the data for various metal alloys studied in the literature, this file includes comprehen-
sive details on each alloy and relevant metadata, complementing with Table 2 where are listed all the references 
consulted. By offering this level of detail, we aim to enhance the transparency and reproducibility of our dataset, 
enabling researchers to trace the data’s origins and better understand the experimental context. It is important 
to note that this Excel file is intended for informational purposes as well as for use in predictive modeling tasks. 
Researchers, students, engineers, and technicians can utilize this dataset31 to develop and validate predictive 
models, conduct material characterization-based analysis, or explore new hypotheses in the study of the RD of 
commercially available metallic alloy. Its well-organized structure ensures both thoroughness and ease of use, 
encouraging broad adoption and fostering collaborative research efforts.

Technical Validation
Mutual Information (MI) was calculated for each feature relative to the RD to deepen this analysis and assess 
the potential of the dataset for training predictive models. MI serves as a robust metric for understanding the 
non-linear dependencies between variables, providing a complementary view to the initial findings from the 
distribution plots32. The distribution plots allowed us to see how the data was structured, MI quantifies the 

Fig. 2  Schematic representation of the laser powder bed fusion technology.

Material P (W) v (mm/s) h (mm) l (mm) s (mm) References

316L 70-350 18.76–3400 0.018–0.16 0.02–0.46 0.035–0.2 14,17,34–51

IN718 90–400 100–2000 0.05–0.25 0.02–0.062 0.07–0.4 4,6,13,15,16,22,52–57

Ti6Al4V 35–400 40–3200 0.035–0.8 0.02–0.2 0.05–0.2 5,10,23,24,58–67

CuCrZr 160–600 100–1000 0.05–0.22 0.03–0.08 0.055–0.3 7,68–77

AlSi10Mg 100–950 100–10000 0.03–0.4 0.02–0.09 0.07–0.15 9,11,20,78–89

18Ni–300 50–450 200–3000 0.025–0.2 0.03–0.075 0.025–0.3 18,21,90–100

Table 2.  Ranges of input printing conditions collected from the literature.
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strength of the relationship between individual features and the target (RD). Unlike correlation, which assumes 
linear relationships, MI can capture non-linear associations, making it a powerful tool for understanding com-
plex datasets. The primary benefit of MI in EDA is its ability to reveal which features carry the most information 
regarding the RD, allowing for better feature selection and prioritization during the model-building process. 
This process, often called “featurization,” helps refine the dataset by removing irrelevant or redundant features, 
ultimately improving model performance and interpretability.

The results of the MI analysis, as shown in Fig. 4, reveal the most influential features in predicting relative 
density. D50, the average powder size, emerges as the most important feature, aligning with previous observa-
tions of the distribution plots indicating significant particle size variability across the data set. The geometric 
factor and Laser power, both of which also demonstrated diverse distributions, show high MI scores, further 
validating their critical role in the process. Other features, such as spot size, hatch distance, and scan speed, 

Fig. 3  Processing parameters and output variable histograms and their distribution.

Fig. 4  Featurization of input variables.
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follow closely, reinforcing their significance in influencing the final density outcomes. These results suggest that 
the process parameters with the most variability are also those that contribute the most to the predictive power 
of machine learning models.

To account for material-specific differences, the material type was included as a predictor in the dataset by 
transforming it from a categorical variable into a numerical one. This approach enables the model to incorporate 
material-related variability without the need to include explicit thermal properties, such as melting point, which 
remain constant for each material. By using material type as a predictor, the dataset allows for predictions tai-
lored to the specific material being processed while maintaining a streamlined structure for modeling purposes.

Conversely, features like atmosphere and printed geometry show lower MI scores, indicating that their 
impact on relative density is less substantial within this dataset. However, these features cannot be discarded 
outright without further analysis. Parameters with lower MI scores might have a more complex or indirect 
relationship with the RD, which could only become apparent through advanced modeling techniques, such as 
interaction effects or non-linear models. Furthermore, some features may have critical importance in specific 
process conditions or may contribute to improving model generalization by providing context or stability to 
the predictive models. Therefore, while their immediate influence appears limited based on MI, their potential 
contribution to overall model performance warrants further exploration in the modeling phase.

In summary, the insights gained from the distribution plots and Mutual Information (MI) analysis provide 
a detailed understanding of the dataset’s structure and the importance of each feature. While predictors such 
as D50, geometric factor, and laser power are among the most influential, features with lower MI scores, such as 
atmosphere and printed geometry, also contribute to the modeling process by providing context and stability. 
All ten predictors identified in this analysis will be utilized in training the machine learning models, ensuring 
a comprehensive approach to capturing the complex relationships inherent in the dataset. This foundational 
analysis enables the development of more accurate and efficient machine-learning models for optimizing the 
laser-based powder bed fusion process.

On the other hand, before modeling, we applied a preliminary clustering strategy using the K-Means algo-
rithm, given the heterogeneous nature of the dataset and the inherent experimental bias. Clustering helps to 
identify natural groupings within the data, allowing us to capture hidden structures that may not be apparent 
at first glance. By grouping similar data points, we aim to reduce noise and improve the predictive performance 
of subsequent machine learning models. K-Means was chosen specifically for its simplicity and efficiency in 
dealing with large datasets, as well as its ability to partition the data into well-separated clusters, which enhances 
model accuracy by allowing for tailored-modeling approaches within each cluster. The t-Distributed Stochastic 
Neighbor Embedding (t-SNE)33 technique is utilized to display the clustering outcomes in a 2D space. This 
algorithm is a non-linear approach for reducing dimensionality, which projects high-dimensional datasets onto 
a two-dimensional surface while maintaining the local relationships. This allows for clearer visualization and 
improved interpretation of the data. Table 3 shows a statistical summary of the numeric variables by cluster, 
including the mean and standard deviation for each variable across the identified clusters and the whole dataset. 
The data for each cluster is split into training (80%) and test sets (20%) to build optimal models.

In order to evaluate the technical integrity and usefulness of our dataset, we applied XGBoost and Random 
Forest regressors. XGBoost is known for its efficiency and accuracy in managing structured data, while Random 
Forest helps minimize overfitting by leveraging ensemble learning. Both algorithms were selected due to their 
capability to handle complex, high-dimensional data. Comparing these models allowed us to better understand 
their strengths and how well they suited the task of building predictive models. We trained and assessed the 
models using conventional error-based metrics, including Mean Absolute Error (MAE), Mean Squared Error 
(MSE), and R-squared (R2), to measure their effectiveness in predicting RD. The purpose of this validation was 
to confirm that our dataset was robust enough to be used in developing machine-learning models by providing 
enough information to build accurate predictive models. On top of that, we also aimed to assess, by a prelim-
inary training process, the consistency and accuracy of predictions when the input parameters are extended 
beyond printing conditions.

The results presented in Table 4 and Fig. 5 demonstrate the overall model’s performance, confirming that the 
dataset is reliable and well-suited for predictive modeling. A more detailed analysis revealed that the XGBoost 
regressor provides a better fitting, explaining over 90% of the output variability for the training data and more 
than 70% for the testing data. A slight overfitting issue was observed, with training errors being lower than 
validation errors. However, both XGBoost and Random Forest delivered robust results, indicating that these 

Parameters

Dataset Cluster 1 Cluster 2 Cluster 3 Cluster 4

Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev

Laser power (W) 236.93 121.53 297.29 99.37 177.05 90.88 313.73 155.42 160.76 46.30

Scan speed (mm/s) 928.19 580.13 994.36 560.74 768.00 518.11 1098.09 815.68 868.54 369.02

Hatch space (mm) 0.10 0.06 0.10 0.03 0.10 0.03 0.16 0.11 0.08 0.02

Layer thickness (mm) 0.04 0.03 0.04 0.01 0.04 0.06 0.05 0.04 0.03 0.01

Spot size (mm) 0.10 0.08 0.15 0.12 0.10 0.04 0.08 0.03 0.07 0.02

Geometric factor 31.78 22.13 34.34 26.72 22.03 11.81 32.65 18.67 36.84 22.70

D50 (μm) 32.45 7.17 32.26 5.67 33.74 5.04 37.09 10.11 36.84 5.18

Relative density (%) 96.30 5.48 97.37 3.83 96.19 4.75 96.60 7.54 94.86 5.77

Table 3.  Statistical summary of the numeric variables after clustering.
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machine-learning approaches can reliably predict the relative density of 3D-printed samples. These findings 
confirm that the dataset meets high technical standards and is suitable for further research on relative density 
prediction. We encourage continued exploration of this dataset to support advances in L-BPF through machine 
learning. As part of this thorough study, we will focus on refining the training stage of the machine learning 
regressor, considering hyperparameter optimization, k-fold cross-validation strategies, and incorporating other 
modeling techniques in an ensemble approach.

Usage Notes
To facilitate easy access to our dataset and to support the replication of our results, we have made available code 
examples for the preliminary data exploration and the model fitting process used in our analysis on GitHub. 
These examples provide detailed implementation steps, allowing researchers to adapt the models to their specific 
studies. For preprocessing, we recommend normalizing (i.e., z-score) the input parameters, such as printing 
conditions, to ensure effective model training and reduce the influence of different scales in the variables. If the 
goal is to study the relationship between printing conditions and relative density, researchers may focus on the 
relevant columns listed in the summary file. However, if the study aims to explore additional factors like shield-
ing gas or geometry, they can incorporate these columns as feature inputs, adopting an integrated modeling 
approach. Additionally, researchers can extend the dataset by adding more columns to the dataset following 
the existing format, allowing for the inclusion of other potential factors that could influence the outcomes (i.e., 
scanning strategy, pre-heating the building substrate, etc.). We hope that the dataset and accompanying code 
serve as a valuable resource for further research and model development.

Code availability
The EDA was performed using the Google Colaboratory platform, which allows for executing Python code in 
a Jupyter Notebook environment. The code is available on the following GitHub repository: https://github.com/
GermanOmar/data_LPBF. Usage instructions can be found in the code documentation.
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Model

Cluster 1 Cluster 2 Cluster 3 Cluster 4

MAE MSE R2 MAE MSE R2 MAE MSE R2 MAE MSE R2

Training

XGBoost 0.605 0.976 0.913 0.806 1.765 0.922 1.275 5.699 0.915 1.0168 2.4741 0.920

Random Forest 0.818 0.524 0.954 0.969 3.057 0.865 1.238 10.465 0.844 1.006 3.086 0.900

Testing

XGBoost 1.056 5.439 0.806 1.632 6.712 0.696 1.367 3.816 0.736 1.768 7.544 0.818

Random Forest 1.162 4.908 0.825 1.600 6.411 0.709 1.277 4.816 0.666 1.733 6.499 0.843

Table 4.  Modeling performance of XGBoost and Random Forest across different clusters.

Fig. 5  Preliminary predicted results, (a) 2D visualization of the clusters, (b) XGBoost performance, (c) Random 
Forest performance.
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