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A unified ensemble soil moisture 
dataset across the continental 
United States
Lingcheng Li1, Xinming Lin1, Yilin Fang1, Z. Jason Hou   1, L. Ruby Leung   1, Yaoping Wang2, 
Jiafu Mao   2, Yaping Xu3, Elias Massoud4 & Mingjie Shi1 ✉

A unified ensemble soil moisture (SM) package has been developed over the Continental United States 
(CONUS). The data package includes 19 products from land surface models, remote sensing, reanalysis, 
and machine learning models. All datasets are unified to a 0.25-degree and monthly spatiotemporal 
resolution, providing a comprehensive view of surface SM dynamics. The statistical analysis of the 
datasets leverages the Koppen-Geiger Climate Classification to explore surface SM’s spatiotemporal 
variabilities. The extracted SM characteristics highlight distinct patterns, with the western CONUS 
showing larger coefficient of variation values and the eastern CONUS exhibiting higher SM values. 
Remote sensing datasets tend to be drier, while reanalysis products present wetter conditions. In-situ 
SM observations serve as the basis for wavelet power spectrum analyses to explain discrepancies in 
temporal scales across datasets facilitating daily SM records. This study provides a comprehensive soil 
moisture data package and an analysis framework that can be used for Earth system model evaluations 
and uncertainty quantification, quantifying drought impacts and land–atmosphere interactions and 
making recommendations for drought response planning.

Background & Summary
Soil moisture impacts plant transpiration and photosynthesis, affects the water, energy, and the biogeochemical 
cycles, and contributes to precipitation and radiation anomalies1; it is essential to the carbon cycle and land–
atmosphere interactions at various scales and substantially modulates regional climate change1–3. Although soil 
moisture is crucial within the entire Earth system, there is a lack of data coverage and consistent resolution 
across both time and space, as well as deficiency in monitoring standards pertaining to soil moisture4. This 
deficiency hinders our ability to make informed decisions regarding agriculture, water resource management, 
climate change mitigation, and ecosystem preservation. Therefore, studying soil moisture and establishing a 
comprehensive soil moisture database at various spatial and temporal scales, such as the sub-seasonal to sea-
sonal time scales and the regional and continental spatial scales, are essential to environmental science, climate 
research, and the management of land and water resources 5–7.

Soil moisture products derived from various sources offer distinct strengths and limitations, reflecting their 
diverse applications and methodologies8. In-situ soil moisture sensors offer real-time data but are at limited 
spatial scales. Remote sensing products of soil moisture provide global coverages, but some products have rel-
atively coarse spatiotemporal resolutions as a result of instruments’ design and revisit periods (e.g., the Soil 
Moisture and Ocean Salinity [SMOS]). In addition, passive microwave radiometers (e.g., Soil Moisture Active 
Passive [SMAP] and SMOS) are not able to obtain sufficient information of soil moisture under dense for-
est canopies9,10. For example, the SMAP and other satellite data products are designed to penetrate only a few 
centimeters (e.g., 0–5 cm) into the soil surface, measuring moisture at shallow depths. Numerical models and 
reanalysis datasets offer long-term soil moisture data products, yet they could have considerable uncertainties 
resulting from the meteorological forcing, model input data characterizing the surface features (e.g., soil texture, 
topography), and model’s physical representations11,12. Recent CMIP soil moisture inter-comparison studies12,13 
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revealed discrepancies and limitations in soil moisture data across various ecosystems, highlighting the need for 
improved modeling strategies. In general, using machine learning (ML) models can reasonably capture the spa-
tiotemporal variations of soil moisture, whereas the data accuracy can be limited due to soil moisture sampling 
density across regions14. That is the accuracy of the ML data is closely related to the site density of in-situ soil 
moisture measurements that are the target variable of ML models. Consequently, these diverse data sources often 
generate disparate results due to the accuracy and uncertainty from both measurements and models. Exploring 
the strengths and limitations of various soil moisture products becomes increasingly imperative, necessitating 
continued interdisciplinary efforts to enhance the accuracy and comprehensiveness of soil moisture representa-
tions and predictions across different scales and environmental settings.

Previous studies reveal limitations in terms of measurement and modeling capacities, as highlighted above, 
resulting in an incomplete understanding of soil moisture dynamics. In addition, the integration of diverse soil 
moisture datasets poses challenges due to the differences in measurement techniques, scales, and resolutions. 
To harness the full potential of available soil moisture information, mitigate their limitations, and unlock the 
synergistic potential of multi-source datasets, it is essential to compare and integrate data from multiple sources 
through the development of standardized protocols and establishment of inclusive soil moisture data pack-
ages. These data packages can be ensured to have reasonable spatial and temporal coverages based on the com-
munity’s needs, quantification of data uncertainty, and comprehensive data validation, and therefore promote 
better understanding and effective monitoring of soil moisture dynamics. In addition, these data packages can 
largely benefit data assimilation, machine learning model training, and serve as the foundation for informed 
decision-making and sustainable environmental stewardship15. Currently, there is a lack of comprehensive data-
sets and data intercomparison framework that adequately address these challenges for soil moisture.

This study aims to bridge the knowledge gaps in understanding soil moisture discrepancies among different 
products and enhance the assessment of soil moisture accuracy and reliability. We select the Continental United 
States (CONUS) as our research area, which is a region facing an increase in extreme weather events and their 
impacts16. We are motivated to recompile soil moisture from a variety of sources and explore soil moisture 
features in various sub-domains of CONUS by comprehensively integrating and assessing soil moisture from a 
variety of sources. We examine the variability of soil moisture across different spatiotemporal resolutions and 
quantify the associated uncertainties, through which we address the intricate balance between the strengths 
and limitations of different soil moisture products, ensuring that the data accurately represent the dynamics of 
soil moisture in various contexts. By doing so, we seek to provide insights into the factors contributing to soil 
moisture discrepancies and identify opportunities for improvement of data products. Through the utilization 
of this database, the community can have a substantial understanding of the soil moisture features, the impacts 
of the water cycle on the carbon and nutrient cycles, and the land–atmosphere feedback over CONUS. The 
data products, together with our rigorous analysis, provided by this research will ultimately guide data users in 
scientific inquiries and facilitate more robust model–data comparisons across scales. Last but not the least, this 
database can find broad applications in aiding precision agriculture, hydrology, climate modeling, and disaster 
management.

Methods
Gridded soil moisture data sources.  We gathered both in-situ soil moisture measurements and a com-
prehensive collection of gridded soil moisture data products to evaluate the data variability and quantify the 
data uncertainty over CONUS. The in-situ soil moisture data is from the international soil moisture network 
(ISMN)17,18, while the gridded soil moisture data include four categories: land surface model (LSM), remote sens-
ing (RS), reanalysis (RE), and machine learning (ML) products (Table 1). By using data characterizing the mete-
orological and surface conditions and solving water and energy balance equations, LSMs simulate soil moisture in 
different soil layers, and can be used to develop spatially- and temporally- continued records with vertical profiles. 
RS uses microwave or thermal sensor measurements to estimate soil moisture from space and provides invaluable 
global coverages. RS has limitations in characterizing soil moisture diurnal cycles, because satellites usually have 
the revisit time of a certain location in days. For example, SMAP19,20 and SMOS21 provide a global soil moisture 
estimate every 2–3 days. RE products are developed through assimilating satellite and ground observations with 
certain assimilation schemes, and they are gap filled soil moisture products with vertical profiles6. ML algorithms 
enable the extraction of high-resolution soil moisture information from point observations and a variety of data 
sources (e.g., remote sensing, surface features), while enhancing data accuracy22 (e.g., Han et al.22). Thus, the 
gridded data collection encompasses a multifaceted approach that leverages diverse techniques, and the synergy 
between these methods empowers researchers to construct comprehensive soil moisture datasets that facilitate 
critical scientific insights and applications across scales.

In this study, 19 gridded soil moisture datasets from the above-mentioned four data categories were collected, and 
they include four LSM products, where NLDAS provides soil moisture products from three different LSMs, four RS 
products, four RE products, and seven ML products23 (Table 1). Each dataset has a dedicated repository, and we follow 
the data use policy and data download procedures of each data set to retrieve and archive the data. Here, each data cat-
egory includes more than four products, providing a sufficient representation of the general features of each data type.

For the data selection, we comprehensively consider different factors, including time spans and the spatial 
and temporal resolutions. Specifically, for the LSM data selection, we use the data from the Global Land Data 
Assimilation System (GLDAS)24 and the North America Global Land Data Assimilation System (NLDAS)25. 
Compared to the land model outputs from the Coupled Model Intercomparison Project (CMIP)26, which are 
at the 1–2 degree spatial resolutions, both GLDAS and NLDAS have a relatively higher spatial resolution, 1/8 
degree. In addition, the CMIP based intermodal comparison of soil moisture is out of the scope of this study. 
We also try to integrate RE datasets with relatively higher spatial resolution in our data package. For example, 
the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA) and the Japanese 
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55-year Reanalysis (JRA-55) are at the 0.5° × 0.625° and 1.25° × 1.25° resolutions, respectively27; thus, we use 
the ERA-5 Land data, which are at the 9 km spatial resolution. When we were selecting the ML datasets, the 
temporal coverage is the primary factor, since there are many soil moisture datasets only have several years of 
data coverage (e.g., Huang et al.; Long et al.28,29). All the ML data in this study have the coverages longer than 15 
years, which can accommodate with the temporal coverage of other datasets.

Different from other soil moisture data sources that are generated with process-based or statistical ML mod-
els, RS soil moisture data are based on single- or multi-sensor passive microwave measurements applied to dif-
ferent data retrieval algorithms10,30. In this study, we choose to use RS soil moisture from four different sources, 
and they are SMAP, SMOS (from the Centre Aval de Traitement des Données SMOS (CATDS)), the Climate 
Change Initiative of the European Space Agency (ESA CCI), and the multi-channel collaborative algorithm 
(MCCA) based on the inter-calibrated AMSR-E/2 multi-frequency passive microwave measurements (Table 1). 
To improve the data accuracy and quality, different research groups could update the RS soil moisture data by 
improving the representations of spatial heterogeneity and using multi-temporal and multi-angular retrieval 
approaches31. Here, we use the SMAP and SMOS L3 soil moisture products developed from the original retrieval 
algorithms of these two missions, which rely on the single-channel and multi-angular observations, respec-
tively30. These choices reveal the data features based on the original instrument and algorithm development, and 
comparing different data versions based on measurements from the same instrument is beyond the scope of this 
study. The ESA CCI soil moisture datasets are the merged soil moisture retrievals from a series of microwave 
sensor systems, and contain active, passive, and combined sets. It shows that the combined product performs 
best among the three sets, so we use the ESA CCI combined set in our study32,33. This study performs statistical 
analysis of soil moisture of different types, so we use the AMSR2 MCCA (the operation of AMSR-E stopped in 
2011) soil moisture as another RS soil moisture product. Since AMSR2 retrievals may not always reliably repre-
sent soil moisture content deeper than approximately 1 cm from the surface, they tend to show dry biases when 
compared to in situ measurements taken at a depth of 3 cm in semi-arid areas34. Therefore, we choose to use 
AMSR2 MCCA, which demonstrates good performance when validated against soil moisture networks (with 
the shallowest layers being <5 cm)35.

Soil moisture data processing and integration.  The soil moisture products show varying 
spatial-temporal resolutions, with the spatial resolution ranging from 1 km (e.g., ML_GSSM22) to 36 km (i.e., 
ML_NNsm36), and the temporal resolutions ranging from hourly to monthly (Table 1). Among all the 19 datasets, 
8 datasets are at the 0.25 degree/25 km spatial resolution. To minimize errors induced by data interpolation, we 
perform data comparison at the 0.25 degree spatial resolution. All datasets that are not at the 0.25 degree spatial 
resolution are remapped by using the nearest neighbor method for downsampling and the averaging method for 
upsampling, respectively. In other words, data products with finer spatial resolutions (e.g., 0.125°) are upscaled to 
0.25° using the averaging method, while the dataset with coarser spatial resolutions (i.e., 36 km) are downscaled 
to 0.25° using the nearest neighbor resampling method. For all the RS datasets with ascending and descending 

Index# Data Type Name
Spatial 
resolution

Temporal 
resolution

Vertical 
distribution Time span Data sources

1

LSM

LSM_GLDAS_NOAH 0.25 deg 3-hourly Surface to 200 cm 2000–present Rodell et al.24

2 LSM_NLDAS_MOS 0.125 deg hourly Surface to 200 cm 1979–present Schaake et al.25

3 LSM_NLDAS_NOAH 0.125 deg hourly Surface to 200 cm 1979–present Schaake et al.25

4 LSM_NLDAS_VIC 0.125 deg hourly Surface to 200 cm 1979–present Schaake et al.25

5

RS

RS_ESA_CCI 0.25 deg Daily Surface 1978–2021 Dorigo et al.32

6 RS_MCCA 0.25 deg Daily Surface 2002–2021 Hu et al.35

7 RS_SMAP_L3 9 km Daily Surface 2015–present O’Neill et al.21

8 RS_SMOS_L3 25 km Daily Surface 2010–present Kerr et al.19

9

RE

RE_ERA5_Land 9 km Hourly Surface to 289 cm 1950–present Balsamo et al.56

10 RE_GLEAM 0.25 deg Daily Surface & root 
zone** 2003–2021 Martens et al.57

11 RE_SMAP_L4 9 km Daily Surface & root 
zone** 2015–present Reichle et al.58

12 RE_GDSMFD 25 km Daily Surface to 100 cm 2011–2018 Xie et al.59

13

ML

ML_CASM 25 km 3-day Surface 2002–2020 Skulovich & Gentine60

14 ML_GSSM 1 km Daily Surface 2000–2020 Han et al.22

15 ML_SoMo 0.25 deg Daily Surface to 50 cm 2000–2019 Sungmin & Rene31

16 ML_GLASS 1 km Daily Surface 2000–2020 Zhang et al.14

17 ML_ZHENG23* 1 km Monthly Surface 2000–2020 Zheng et al.61

18 ML_NNsm 36 km Daily Surface 2002–2021 Yao et al.36

19 ML_RSSSM 0.1 deg 10-day Surface 2003–2018 Chen et al.62

Table 1.  The summary of the gridded soil moisture data products collected in this study. *For any of the dataset 
without a name in the description paper, we name the data with the first author’s name and the data publishing 
year. For example, ML data product by Zheng et al.61 is named as “ML_ZHENG23” **root zone represents the 
0–100 cm depth56,57.
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tracks, we calculate the ascending and descending average to represent the mean soil moisture status. RS and 
ML products do not have vertical profiles of soil moisture, so we perform data analyses for the surface layer (i.e., 
0–5 cm depth; Table 1).

All the data products are averaged to the monthly temporal resolution, and we also process the data to the 
daily time scale (except for three products with coarse temporal resolutions; Table 1) for wavelet analysis, which 
provides an enhanced understanding of temporal variations of the datasets. Since the daily map of RS datasets 
cannot have a full coverage of the globe, averaging the ascending and descending tracks will further reduce the 
data coverage (e.g., setting the unobserved areas with missing values). Given that remote-sensing descending 
retrievals are found to have better agreement with in-situ measurements37, we use the soil moisture retrievals 
based on descending observations to represent soil moisture status at the daily time scale. For datasets with finer 
temporal resolutions (e.g., hourly, 3-houly), we calculate the arithmetic means to obtain the daily records.

The gridded soil moisture products also have various temporal coverages, and the common coverage period 
is 2016–2018. For example, the Soil Moisture Active Passive (SMAP) mission was launched in April 2015, with 
data available from April 2015 to 2023, and the RS_GDSMFD has the coverage period of 2011–2018 (Table 1). 
Thus, to make use of all the datasets, we perform the data variability evaluation and uncertainty quantification 
during 2016–2018. Extending the data time frame to 2016–2020 reduces the total number of datasets to 16. We 
apply the same data analysis methods for evaluating variability and quantifying uncertainty across both time 
periods, and the results do not affect our overall conclusions (Technical Validation). Since RS datasets are largely 
affected by snow covers in the cold season38, i.e., November–March, we use all the data records from April to 
October to calculate the arithmetic mean and perform the data analysis. The all-season soil moisture features are 
discussed in Text S1 and shown in Fig. S2.

We explore the soil moisture spatial variations in six Köppen-Geiger climate classifications (KGCCs) over 
CONUS39 (Auxiliary Datasets; Fig. 1a). To have a comprehensive understanding of the features of the data, we 
compute the April–October mean soil moisture of all the datasets across 2016–2018 (Fig. 1b). We also perform data 
analysis in different KGCCs of different data types to investigate the data variability between data types (Fig. 1c).

Auxiliary datasets for soil moisture characterization.  With the compiled data sets, we conduct an 
extensive variability analysis to extract the spatiotemporal features of soil moisture across various seasons and 
regions over CONUS. Here, we use the KGCC map39, which is upscaled from 0.0083° to 0.25° spatial resolu-
tion through a majority sampling method, to study the soil moisture features across CONUS. CONUS includes 
six major KGCCs, and they are: Arid Desert (BWh, BWk), Arid Steppe (BSh, BSk), Cold DrySum (Dsa, Dsd), 
Temperate DrySum (Csa, Csc), Cold NoDry (Dfa, Dfd), and Temperate NoDry (Cfa, Cfc) (Fig. 1a).

To illustrate the spatial patterns of soil moisture characteristics, we use datasets characterizing the environ-
mental conditions such as annual mean precipitation and temperature based on the 2016–2018 Multi-Source 
Weather (MSWX) dataset40, and the aridity index41. Soil moisture dynamics are also regulated by the interac-
tions between climate conditions and the characteristics of soil and vegetation. For example, soil properties 
influence soil water retention, infiltration rates and surface runoff. Topographical features influence the run-
off pathways, hence the spatial distribution of soil moisture. Vegetation characteristics, such as leaf area index 
(LAI), can influence interception, transpiration, and the partitioning of rainfall. Thus, we also use data variables 
from the global 1 km land surface datasets42, which include soil properties (i.e., sand percentage), topographical 
features (i.e., elevation, standard deviation of elevation, and slope), and LAI. In addition, the contributions of 
distance to the nearest coast (Dist; generated by NASA’s Ocean Biology Processing Group, https://oceancolor.
gsfc.nasa.gov/resources/docs/distfromcoast/) to soil moisture spatial features are also assessed. Here, the values 
of Dist range from negative to zero, moving from inland towards the coast, where regions further inland exhibit 
more negative values. All these datasets are remapped to the 0.25 degree spatial resolution.

Fig. 1  The “data” and “script” folders and their connections in the Ensemble Unified Soil Moisture (EnUSM) 
data package. “nc” represents Netcdf, “py” represents Python, “ncl” represents NCAR Command Language, and 
“csv” represents Comma Separated Values.
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Extracting influential factors on soil moisture.  To investigate the factors determining the spatial fea-
tures of soil moisture, including mean values, standard deviation, coefficient of variation, and discrepancies 
across different datasets, we adopt the eXplainable Machine Learning (XML) framework. The machine learn-
ing algorithm is eXtreme Gradient Boosting (XGBoost43). XGBoost is a decision-tree-based ensemble learning 
model adept at handling complex variable interactions and collinearity, making it invaluable for addressing Earth 
science research. Its versatility is demonstrated in diverse applications such as aerosol property estimation44 and 
parameter sensitivity analysis45.

The explainable variables for XGBoost model training include climate conditions, soil properties, topo-
graphical features, and LAI (Auxiliary Datasets). Thus, the XGBoost model is equipped with a comprehen-
sive package that mirrors the complex nature of soil moisture patterns. The training of the XGBoost model 
is a rigorous process, emphasizing hyperparameter optimization through Bayesian methods46 and employing 
five-fold cross-validation to effectively reduce the risk of overfitting. The optimization focuses on minimizing 
mean squared error, with the model’s performance being assessed using the R-squared metric.

Based on the trained XGBoost models, we use SHapley Additive exPlanations (SHAP)47,48 for an in-depth 
interpretation of the model’s outputs. SHAP employs a game-theoretic approach to offer a detailed and quanti-
fiable assessment of the significance of each feature, thereby shedding light on how different variables contrib-
ute to the observed spatial patterns of soil moisture. By integrating modeling with XGBoost and subsequent 
explanation through SHAP, this XML strategy facilitates a nuanced understanding of the determinants of soil 
moisture distribution, justifying the effective merger of machine learning and explanatory analysis in the realm 
of environmental science.

Frequency domain characteristics of soil moisture.  Wavelet analysis49 is a common tool for analyzing 
time series with many different timescales or changes in variance. The fundamental idea behind wavelets is to 
analyze according to scale. By decomposing a time series into time-frequency space, it can help determine both 
the dominant timescales of variability and how those timescales vary in time. The decomposition leads to a good 
trade-off for the time-scale resolution, which is related to frequency resolution50. This can be regarded as a par-
tition of the variance of the series into its different oscillating components with different frequencies (periods). 
This wavelet transform decomposes time series over wavelet prototype functions called “mother” Morlet wavelet 
ϕ(t)51, which is defined as
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where * denotes the complex conjugate form (i.e., the imaginary part), the wavelet coefficients, W a( , )x τ  repre-
sent the contribution of the scales a to the time series at different time positions τ. The wavelet power spectrum, 
which has an interpretation of time-period (time-frequency) wavelet energy density, can be calculated using53
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As mentioned before, the wavelet decomposition can be regarded as a partition of the variance of the series 
into its different oscillating components with different periods (frequencies). Peaks in the power spectrum indi-
cate which timescales/frequencies are contributing the most to the variance of the series.

In this study, we use the continuous wavelet transform to decompose the daily soil moisture time series, 
which includes soil moisture data from in situ soil measurements, as well as the LSM, RS, RE, ML data products, 
to determine the dominant timescales of variability for these time series and how those timescales vary in time at 
a specific location of the six primary KGCCs (i.e., Arid Desert, Arid Steppe, Cold DrySum, Temperate DrySum, 
Cold NoDry, and Temperate NoDry). For each KGCC zone, we first choose a station that is not only close to 
the geographic center of that zone but has relatively complete in situ soil measurements (i.e., less than 50% of 
missing value for each season; Table 2) from 2016 to 2018. Note that the period from 2016 to 2018 is the period 
with relatively complete daily soil moisture data for most data products. Then continuous wavelet transform is 
performed for the daily soil moisture time series of the chosen station, as well as the data products with available 
daily soil moisture data near that chosen station.

Data Records
The recompiled ensemble soil moisture data, unified at 0.25 degree and monthly spatiotemporal resolution, is 
named Ensemble Unified Soil Moisture (EnUSM). The data across 2016–2020 can be obtained from Zenodo 
https://zenodo.org/records/1454223936. The directory structure is shown in Fig. 1. All gridded data are in the 
NetCDF format. The in-situ soil moisture at the selected six sites (Fig. 1a) and the co-located gridded data are 
included in Comma-separated value (CSV) files for the wavelet analyses. The script folder includes Python and 
NCAR Command Language (NCL) based scripts for data processing and analysis. We also recompile the 16 soil 
moisture datasets to a 0.25 degree and daily spatiotemporal resolution. The size of this entire data package is 39 
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gigabytes. Therefore, instead of publishing the daily soil moisture records on Zenodo, users can request the daily 
data by contacting our research team.

Technical Validation
Statistical validation across koppen-geiger climate classification (KGCCs) of CONUS.  The depth 
of soil moisture varies between different datasets and datatypes, and we perform all the data comparison and 
evaluation for surface soil moisture (i.e., 0–5 cm) at the 0.25 degree and monthly spatiotemporal resolution. The 
common time period of the 19 datasets is 2016–2018 (Table 1), and extending the time period to 2016–2020 
reduces the dataset number to 16. To be comprehensive, we include the results of 2016–2018 in this Section, and 
the figures based on 2016–2020 are included in SI.

The arithmetic mean of all the surface soil moisture records from the 19 data sources shows that the 
dry-to-wet shift of soil moisture from the west to the east (Fig. 2b) displays a similar spatial pattern to that of the 
KGCC dry-to-wet transition (Fig. 2a). Different data sources suggest various soil moisture features in different 
KGCCs (Fig. 2). The RS products suggest drier conditions compared to other data types (Fig. 2c). RE datasets are 
in general wetter than other data types, especially in the “Cold DrySum”, “Cold NoDry”, and “Temperate NoDry” 
KGCCs. The soil moisture magnitudes of LSM and ML based products are intermediate over CONUS, whereas 
those from LSM suggest the wettest conditions in the “Arid Desert” and “Arid Steppe” KGCCs (Fig. 2c). All the 
data types show a relatively small variability in all the “Arid” KGCCs compared to that in other KGCCs. The data 
variability of LSM products are relatively smaller than that of other products in all the “Cold” and “Temperate” 
KGCCs, while ML products show relatively smaller variability in all the “Arid” KGCCs, indicating more consist-
ent performance of these data products in certain KGCCs. In all the “NoDry” and “DrySum” KGCCs, the RS, 
RE, and ML products exhibit more variability within their respective datasets, suggesting higher uncertainties 
of soil moisture in these KGCCs. The coefficient of variation (CV) of the 19 datasets shows that the soil moisture 
relative variability has large values in all the “Arid” regions and in Florida, which belongs to the “Temperate 
NoDry” KGCC but has a relatively dry soil moisture condition (Figs. S1a and 2b). The analysis across 2016–2020 
shows quite similar results (Fig. S5).

The seasonal variability of different data types across KGCCs indicates that the soil moisture seasonal varia-
tions are largest in the two “DrySum” KGCCs, with a drier condition in July, August and September than in the 
other months (Fig. 3c,d). The seasonalities are minimal in the “Arid Desert” and “Temperate NoDry” KGCCs 
(Figs. 3a,f, and S2). The seasonal variability further confirms that RS products are driest among all data types 
across KGCCs with the smallest discrepancy between RS, RE, and ML in the “Arid Desert” KGCC (Figs. 2c, 3a), 
while LSM is the wettest data type in all the “Arid” KGCCs (Fig. 3a,b, S2a, and S2b). The April–October soil 
moisture seasonalities are similar among datasets, and all the data types show similar seasonality in each KGCC, 
with RS showing a relatively larger seasonality than other data types in “Cold NoDry”. We also include the sea-
sonal patterns derived from data across 2016–2020 in Fig. S6, with patterns similar to those in Fig. 3. The similar 
seasonalities among soil moisture data types can also be identified from the normalized soil moisture seasonality 
(Fig. S3).

We apply the kernel density estimation (KDE) to soil moisture spatial patterns that are obtained from the 
growing season mean to interpret soil moisture spatial distribution through estimating the probability den-
sity function (PDF) across different data types. Of all the KDE groups, the aggregated KDE of the combined 
LSM data exhibits a more uniform distribution, indicating that the soil moisture values of LSMs are statistically 
more consistent compared to other datasets (Fig. 4a). The KDEs of RS indicate that the KDEs of SMAP and 
SMOS have flatter distributions compared to the other two RS products, implying that the SMAP and SMOS soil 
moisture exhibits greater statistical uniformity. Among all the KDE curves of the RS dataset, the KDE shape of 
MCCA is steeper than that of other data products, indicating that the soil moisture values are concentrated in a 
relatively narrower band. This KDE pattern is consistent with the spatial distribution of Fig. S4f. For the RE and 
ML data types, the KDEs of the soil moisture means across datasets suggest a high-density value, ~0.3 m3 m−3,  and 
they are consistent with the CONUS mean soil moisture features represented by these two data types (Fig. 5g,i). 
The interquartile range of multi-data mean of RE and ML are wider than that of LSM and RS, implying relatively 
larger spatial variabilities in soil moisture for RE and ML. The KDEs of the soil moisture means of RS, RE, and 
ML show multimodal distributions, implying distinct modes of soil moisture due to surface features, such as soil 
properties, topography, climate, and vegetation cover. Given the substantial variability observed in the KDEs, 
there is a need to characterize surface features and climate to investigate the contributions of different environ-
mental features in determining the soil moisture spatial distributions (Figs. 5, 6). Note that similar conclusions 
can be drawn from Fig. S7 for the 2016–2020 period.

The KGCC of sites latitude longitude Vegetation type
Mean soil moisture 
(±1 std; m3 m−3)

Yuma-27-ENE 32.8350° −114.1884° Arid Desert 0.088 ± 0.047

Williams-35-NNW 35.7552° −112.3374° Arid Steppe 0.107 ± 0.057

TonziRanch 38.4316° −120.9660° Temperate DrySum 0.205 ± 0.152

Newton-5-ENE 32.3378° −89.0703° Temperate NoDry 0.239 ± 0.086

WATERHOLE 47.9400° −123.4300° Cold DrySum 0.186 ± 0.087

Bedford-5-WNW 38.8882° −86.5707° Cold NoDry 0.33 ± 0.080

Table 2.  The selected sites for wavelet analysis (Sites are mapped in Fig. 2).
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The effects of environmental factors on soil moisture.  In this study, we use eXplainable Machine 
Learning (XML, see Methods) to assess the feature importance of various environmental factors in determining 
the spatial features of different soil moisture product types. Here, we still use the monthly soil moisture data 
records of all the 19 datasets. Consistent with the KGCC based analysis for all datasets (Fig. 2c), the spatial maps 
of different soil moisture data types show the driest condition of RS soil moisture among the four data types 
(Fig. 5). The dry-to-wet shifts represented by the four data types follow the KGCC indicated dry-to-wet transition. 
In all the “Arid” and “Dry” KGCCs, LSM products suggest relatively wetter conditions than other data types, while 
RE products are the wettest among all the “NoDry” KGCCs (Figs. 2a, 3, 5).

The feature importance analysis of SM indicates that precipitation, leaf area index (LAI), surface air temper-
ature, and percentage of sand are the primary factors determining the spatial distribution of the 19-data mean. 
For all the datasets and each dataset group, the total contributions of these four factors to soil moisture spatial 
variability are ~80%. The percentage of sand plays an essential (second most important) role in characterizing 
the LSM soil moisture, revealing the contribution of soil texture in the governing equations in land surface 
models (e.g., the Noah model), and it is also the fourth most important factor for other soil moisture types. 
The total contribution from slope, standard deviation of elevation (SD_elv), and distance to coast (Dist) ranges 
from 12.2% of RS to 19.1% of RE. All these three factors have a negative relationship with soil moisture, with the 
exception of SD_elv in LSMs.

The standard deviation values among data products of the same type, in general, are smaller in the western 
CONUS than those in the eastern CONUS, where their spatial distributions are similar for RS, RE, and ML 
(Fig. 6). LSM products have much smaller standard deviation values compared to other data products. The 
largest standard deviation values among the LSM products are in the central regions of the CONUS, which is 
in stark contrast compared to other data types where larger standard deviation values are usually found in the 
coastal regions in the western and eastern CONUS. ML products have the largest standard deviation values 
over the eastern coastal regions, primarily due to the relatively large soil moisture values from the ML_RSSM, 
ML_CASM and ML_NNsm products (Figs. S4m, S4r, and S4s). A similar pattern is also captured by the RS 
products, where the SMAP product is the primary reason for the large standard deviation values (Fig. S4g). The 
five-year (2016–2020) mean of each dataset is shown in Fig. S8, with the soil moisture spatial patterns remaining 
unaffected by the change in time period.

We also use the same XML framework to investigate the importance of the same environmental factors to the 
standard deviation of soil moisture across data products of the same type. The importance of features in explain-
ing the spatial variation of the standard deviation of soil moisture differs significantly among different data 
groups. Compared to the importance of the factor variations in explaining the soil moisture means, the impor-
tance of various factors with the same data group differs more in explaining the spatial variation of standard 

Fig. 2  (a) KGCC map, sites used in wavelet analysis are marked with “x”; (b) mean soil moisture (SM) of all 
19 soil moisture (SM) products over the growing season (April–October) during 2016–2018; (c) averaged soil 
moisture for all the 19 datasets (ALL) and for each data type (i.e., LSM, RS, RE, ML) across CONUS (gray bars) 
and in different KGCCs (colored bars), where error bars show the spatial averages of SM standard deviations 
across data types. The histograms in (a,b) show the frequency distribution of the climate zones and the SM 
mean of the 19 datasets, respectively.
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deviations. For the standard deviation of all the 19 data products, the most important factors are precipitation, 
LAI, distance to coast, surface air temperature, and PCT_sand with a total contribution of 88.3% in explaining 
the spatial variations (Fig. 6b). This feature importance is broadly consistent with that represented by RS and 
ML (Fig. 6b,f, and j). In general, precipitation, LAI, and distance to coast are positive factors to spatial varia-
bility of soil moisture standard deviation of different types. For LSMs (Fig. 6c and d), the impact of these three 
factors appears to be opposite in direction, with only surface air temperature exhibiting a positive influence in 
predicting soil moisture standard deviations among data products. This notable discrepancy in LSM-derived soil 
moisture, especially in arid regions, may stem from the intricate modeling of soil moisture dynamics in LSMs. 
LSMs include a range of processes such as vegetation transpiration, soil hydraulics, groundwater dynamics, and 
runoff, all of which contribute to the complexity and variability observed in the LSM outputs. The spatial varia-
bility of RE soil moisture standard deviation exhibits higher values in the southeastern CONUS (Fig. 6g). These 
standard deviation values positively correlate with precipitation, PCT_Sand, and LAI, while showing a negative 
correlation with temperature and distance to the coast (Fig. 6h). The same analysis method is also applied to the 
coefficient of variation (CV; Fig. S1), and the detailed discussion is in SI.

Temporal wavelet analysis - comparing to in-situ observations.  Figure 7 displays a collection of 
wavelet power spectra comparing observed soil moisture from various sources across different climatic regions 
during the period 2016–2018. Each panel in the figure represents a specific KGCC. The wavelet power spectrum 
illustrates how the power (variance) of a time series varies with time in days (inverse of frequency). Each panel 
shows the period in days on the x-axis, ranging from 0 to 400 days, and the wavelet power on the y-axis, with 
varying scales for each climate type. The wavelet power indicates the strength of patterns or cycles within the time 
series data at different periods. As an illustration, there exists a peak at approximately the duration of 365 days on 
each plot corresponding to the annual cycle. In the plots, multiple lines represent different sources of soil mois-
ture data: where “station” represents in-situ measurements from ground stations. The vertical gray lines indicate 
significant periodicities within the datasets, such as seasonal cycles or other important temporal features that are 
common across the different data sources.

The results in Fig. 7 show a variation in the wavelet power among different sources and climates, suggesting 
differences in how each product captures soil moisture variability. Some products show high consistency with 
the station data (the black line), while others diverge, especially at certain periods. This kind of analysis is useful 

Fig. 3  The seasonal cycles for the four types of soil moisture (SM) products during the growing season (April 
to October) across KGCCs. Each curve represents the aggregated SM mean of a specific data type (i.e., LSM, 
RS, RE, or ML). The calculation is performed across all the data grids in each KGCCs: (a) Arid Desert, (b) Arid 
Steppe, (c) Cold DrySum, (d) Temperature DrySum, (e) Cold NoDry, and (f) Temperate NoDry.
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for evaluating the performance of soil moisture estimates from different models and sources, especially in terms 
of their ability to capture variability over time in different climate regions.

A notable result is the systematic underestimation of wavelet power at higher frequencies (corresponding 
to smaller time periods or shorter time intervals) in the RS products. While the LSM products often exhibit an 
overestimation of power at lower frequencies (larger time periods or longer time intervals),the ML products 
typically offer wavelet power spectra that closely align with the spectra observed at the chosen stations. Among 
these ML products, ML-GSSM exhibits the highest similarity to station data in terms of spectra. This alignment 
could be attributed to its training or calibration using data from over ~2000 stations worldwide, potentially 
including some of the station data used by this study. There are specific regional disparities though, for instance, 
the ML products tend to overestimate seasonal variability and underestimate interannual variability in arid 
desert regions, while performing optimally in temperate and “Cold NoDry” zones. Regardless of the reasons for 
the under or overestimations, together with the deviation analyses and metrics, the results underscore the poten-
tial risks of relying on these respective products for either long-term planning or short-term decision-making, as 
well as early system awareness practices, associated with Earth, energy, or environmental systems, therefore, the 
analysis offers further insights into when to deploy each product or combine them efficiently, especially when 
variations across specific time scales are of interest (e.g., within daily, inter-daily, weekly, monthly, seasonal, 
and yearly).

Usage Notes
This study recompiled 19 soil moisture datasets from four different sources, LSM, RE, RS, and ML, to standardized 
spatial and temporal resolution and coverage, adaptable to different resolutions if needed. Overall, this study provides:

	(1)	 the first comprehensive evaluation of 19 soil moisture products and substantial insights into soil moisture 
characteristics in terms of consistency and the distinct behaviors over CONUS.

	(2)	 a soil moisture data package that will significantly contribute to the measurement and modelling commu-
nities that intersect with soil moisture sciences.

	(3)	 a soil moisture data analysis framework that can be used as a valuable resource for similar studies in other 
geographic regions and over the globe, contributing to a broader understanding of soil moisture’s role in 
environmental processes.

	(4)	 the foundation for conducting in-depth investigations into deep-layer soil moisture dynamics, which char-
acterize the carbon and water interactions and is essential to hydrological and agricultural applications54,55.

We have used some station data from the International Soil Moisture Network (ISMN)16,17 for additional 
comparison, and would point out that the ‘best-performing’ product in one region may not necessarily be the 

Fig. 4  Kernel density estimation (KDE) for the spatial patterns of growing season mean soil moisture (SM) 
across various products: (a) LSM, (b) RS, (c) RE, and (d) ML for the 2016–2018 period. The solid lines represent 
individual products, while the dashed lines show the aggregate SM mean for each data type.

https://doi.org/10.1038/s41597-025-04657-x


1 0Scientific Data |          (2025) 12:546  | https://doi.org/10.1038/s41597-025-04657-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

top performer in another region, where ground truthing is absent, and unfortunately extensive ground truthing 
covering most grids is not feasible. This study highlights:

Fig. 5  The spatial patterns of mean soil moisture (the left column) and their spatial drivers (the right column), 
for (a,b) all datasets, (c,d) LSM, (e,f) RS, (g,h) RE, and (i,j) ML. The histogram plots included in the spatial maps 
illustrate the probability distribution of the mean soil moisture across CONUS. The feature importance of each 
variable in determining the spatial variability is calculated as the ratio of the mean |SHAP value| of the variable to 
the sum of the mean |SHAP value| of all variables. Therefore, the sum of the relative importance of all variables is 
equal to 100%. SD_elv denotes the standard deviation of elevation, PCT_sand represents soil sand percentage, and 
Dist represents the distance to the nearest coast. Details of the data sources are provided in the Methods section.
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	(1)	 the importance of understanding the behavior and limitations of soil moisture products rather than solely 
relying on error metrics for assessment.

	(2)	 the essential role of guidance on selecting soil moisture products based on their ability to capture relevant 
temporal dynamics for specific applications.

	(3)	 the needs of standardized protocols and enhancement of the spatiotemporal coverage and data quality of 
soil moisture.

Fig. 6  Same as Fig. 5 but for the standard deviation (SD) of soil moisture among data products of the same 
types. Dist is the distance to the nearest coast. PCT_sand denotes the percentage of sand in the soil. Slope refers 
to the topographic gradient, derived from elevation data. SD_elv is the standard deviation of elevation. Details 
of the data sources are provided in the Methods section.
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	(4)	 the importance of understanding the strengths and limitations of each product for short-term deci-
sion-making, long-term planning, and early system awareness practices related to earth, energy, and envi-
ronmental systems.

All above-mentioned efforts will enable stakeholders to make more informed decisions regarding suitability 
of data for specific applications and operational needs, and provides insights on when to use each product or 
combine them effectively, especially when focusing on variations across specific time scales.

Code availability
We have both Python and NCAR Command Language (NCL) code packages for data processing and 
validation. All codes used in Methods and Technical Validation are available at Zenodo, https://zenodo.org/
records/14542239.
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