Table 1 Existing typical large-scale building datasets.

From: CMAB: A Multi-Attribute Building Dataset of China

Dataset

Source/Time Span

Coverage

Methods

Resolution

Type

Microsoft BRA20

Bing map; No time span

Not including China

DNN

Vector

Rooftop

Google BRA23

Google map; No time span

Africa / South Asia and Southeast Asia / Latin America

U-net

Vector

Rooftop

CBRA21

Sentinel 2; 2016–2021

China

STSR-Seg

2.5 m

Rooftop

90_cities_BRA24

Google Earth satellite; 2020

90 cities in China

Deeplab-V3

Vector

Rooftop

East Asian buildings22

Google Earth satellite, GUB2018; 2022

China, Japan, South Korea, North Korea and Mongolia

CLSM

Vector

Rooftop

EUC41

Landsat and Sentinel-1 SAR; 2015

Europe, USA, China

Machine learning

1 km2

Height

Wu et al., 202329

Sentinel 1-2, PALSAR, LUOJIA1-01; 2020

China

Machine learning

10 m

Height

Northern Hemisphere25

Sentinel-1/2 images; Google Earth satellite; 2020

China, the conterminous United States (CONUS), Europe

SRHS

2.5 m

Height

GABLE28

Beijing-3 satellite imagery, WSF2019; 2023

China

RPN

Vector

Rooftop and height

3D-GloBFP26

Microsoft BRA; 2020

Global

Machine learning

Vector

Height

Zheng et al., 202424

East Asian buildings, Baidu, OSM, Gaode; No time span

Three major urban agglomerations in China

Machine learning

Vector

Function

CMAB(Ours)

Google Earth satellite, Spatial Cites; 2021–2024

China

OCRNet, XGBoost, Yolov8, LMMs

Vector

Rooftop, height, structure, function, style, age and quality