
1Scientific Data |          (2025) 12:497  | https://doi.org/10.1038/s41597-025-04831-1

www.nature.com/scientificdata

100-m-resolution surface soil 
moisture data during the thawing 
season on the Qinghai‒Tibet 
Plateau
Zhibin Li1, Lin Zhao1,2 ✉, Lingxiao Wang1, Guangyue Liu2, Erji Du2, Defu Zou2, Guojie Hu2, 
Zanpin Xing3, Chong Wang1, Shibo Liu1, Minxuan Xiao1, Luhui Yin1 & Yiwei Wang1

The characteristics of the spatial distribution of surface soil moisture (SM) on the Qinghai‒Tibet Plateau 
(QTP) on a fine scale are unclear due to the lack of high-spatial-resolution SM datasets. To improve this 
situation, we first supplemented 659 SM datasets in areas on the QTP containing sparse monitoring 
stations from 2021–2022 and integrated published SM datasets. Based on Sentinel-1&2 and measured 
SM data, we developed an SM retrieval algorithm for the ascending and descending orbits. Then, 
100-m-resolution SM spatial data were generated for the thawing season of 2017–2023 in the SAR 
signal-applicable area on the QTP. As validated by the measured data, the correlation coefficients of the 
retrieval results for the ascending and descending orbits were 0.72 and 0.69, respectively, and the bias 
reached 0.07 m³/m³ and an RMSE of 0.07 m³/m³ for both. These SM datasets exhibit notable promise for 
improving our understanding and analysis of the ecology and hydrology of different environments on 
the QTP.

Background and Summary
The Qinghai‒Tibet Plateau (QTP) plays a critical role in regional and global climate systems due to its unique 
geographical location and topographic features1–3. Surface soil moisture (SM), a key parameter in the process of 
land‒atmosphere exchange of energy and water, fulfills an essential role in the study of climate and land surface 
processes on the QTP4–7. In addition, variations in SM directly affect ecosystem stability and the hydrological 
cycle on the QTP, influencing the development of livestock husbandry. Moreover, SM in this region exhibits high 
spatial heterogeneity influenced by the complex topography, thus rendering relevant studies difficult. Therefore, 
high-spatial-resolution SM data for the QTP are urgently needed. These data can significantly enhance our 
ability to study the spatial and temporal distribution of soil moisture (SM) and its complex interactions with 
climate systems. Furthermore, it plays a crucial role in refining the accuracy of models that simulate hydrological 
processes such as infiltration and evapotranspiration8–11.

Currently, there are SM products produced by using retrieval algorithms, model simulations, and data assim-
ilation techniques, such as the European Space Agency Climate Change Initiative (ESA CCI)12, Soil Moisture 
and Ocean Salinity (SMOS)13, and Soil Moisture Active Passive (SMAP)14, the fifth generation of the land com-
ponent of the European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis (ERA5-Land)15, 
and the Global Land Data Assimilation System (GLDAS)16. These products exhibit wide coverage and temporal 
continuity at global and continental scales, but their spatial resolutions are coarse. The SM distribution on the 
QTP is highly heterogeneous due to the complex topography, variable precipitation, and significant differences 
in altitude17,18. Currently available SM products cannot describe spatial heterogeneity and are biased in this 
region. Therefore, applying these SM products to ecohydrological studies on the QTP introduces uncertainties 
and hinders fine-scale studies19,20.
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Synthetic aperture radar (SAR) technology, particularly with the advent of Sentinel-1, has provided a new 
data source for SM retrieval with higher spatial resolution21,22. However, acquiring high-spatial-resolution 
SM data across the QTP using SAR data currently faces various challenges and difficulties. First, there are few 
ground-based SM measurements available due to the limitations of the unique geographical conditions and 
accessibility. However, the training and validation of SM retrieval algorithms at the plateau scale require meas-
ured data. Second, in the frozen soil region of the QTP, the effect of soil freeze‒thaw cycles on SAR signals 
is significant, leading to high uncertainty in the SM retrieval results. Third, models and algorithms for SM 
retrieval using SAR data have been developed and widely applied on local and fine scales but are difficult to apply 
to the entire QTP23–27. Therefore, acquiring SM data with high spatial resolution and high accuracy remains 
challenging.

To address the above issues, our first step was to integrate measured SM datasets. In recent decades, research-
ers have deployed hydrological, meteorological, and permafrost monitoring stations across the QTP, partially 
alleviating data scarcity issues and substantially contributing to spatial SM studies28–35. However, the spatial 
distribution of such monitoring stations is uneven, with the majority located in the Ali region, Nagqu, Maqu, 
Qilian Mountains (QLM), and along the Qinghai-Tibet Highway (QTH) region (Fig. 1). SM retrieval studies on 
the QTP have primarily focused on areas proximal to these stations, resulting in significant regional limitations 
in the developed algorithms36,37. Therefore, we first integrated these published datasets to obtain measured SM 
data for different environments on the QTP. Moreover, during the thawing season of 2021–2022, our team col-
lected 659 SM samples across the QTP to supplement the measured dataset, and the sampling areas included 
the QTH region, Ali region, Qiangtang Plateau, and West Kunlun, where there are fewer monitoring stations 
(Fig. 1). This dataset partly resolved the scarcity of measured SM data for the QTP and could contribute to SM 
retrieval studies.

The thawing season (July and August) exhibits the most intense land–atmosphere energy exchange in the 
frozen soil region of the QTP. During this period, soil water remains in a liquid state, while during the other 
seasons, it exists as a combination of ice and unfrozen water38. Thus, complete SM, i.e., SM that entirely com-
prises liquid, can be represented by radar signals only during the thawing season39. In this study, the complete 
thawing season was chosen as the period for SM retrieval, which could minimize the interference of radar 
signals due to frozen soil and other factors and improve the sensitivity of SM to SAR signals. The acquisition of 
SM data during this period is important for understanding the impact of regional climate change, developing 

Fig. 1  Overview of the study area and the monitoring and sampling sites. Notes: The background image shows 
the USGS topographic dataset provided by the ESRI. ①, ②, and ③ show the sampling environments in the 
different areas of the QTP.
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ecological conservation measures, and improving the accuracy of weather forecasting and climate modeling. In 
2022, our team developed an empirical algorithm for SM retrieval using in situ SM data and Sentinel-1&2 data 
for a permafrost area along the QTH40. Our findings indicated that the algorithm exhibits potential applicability 
to frozen soil regions across the QTP.

In summary, the first objective of this study was to integrate published SM sampling data and in situ SM data 
for the thawing season on the QTP, aiming to facilitate the subsequent retrieval and validation of SM in this 
region, as well as the assessment of SM products. The second objective was to develop SM retrieval algorithms 
applicable to the frozen soil region of the QTP using the integrated measured SM dataset and Sentinel 1&2 data 
and to obtain high-spatial-resolution SM data. We hope that these high-resolution data and field sampling data 
can serve as a foundation for enhanced SM research on the QTP, facilitating studies on regional ecohydrology, 
climate change, and planning of engineering and production activities.

Methods
Experimental design.  In 2022, an empirical algorithm for SM retrieval was developed by Li et al. for the 
permafrost areas of the QTP hinterland40. This algorithm references long-term change detection methods and 
utilizes seasonal backscatter differences to delineate variations in SM while reducing the impact of surface rough-
ness. Additionally, it incorporates the normalized difference vegetation index (NDVI) and the normalized differ-
ence moisture index (NDMI) to account for vegetation contributions. Notably, this SM retrieval algorithm has 
been successfully applied in the QTP hinterland, with satisfactory retrieval accuracy.

In this study, more measured SM data from diverse surface environments, along with ascending and 
descending Sentinel-1 data, were utilized to enhance the existing SM retrieval algorithm for obtaining spatial 
SM data across the entire QTP. High-spatial-resolution SM datasets were produced through three main steps, as 
shown in Fig. 2 dataset preparation, construction of the SM retrieval algorithm, and retrieval and postprocessing 
of SM data. In the subsequent sections, the data and algorithms employed in this study are detailed.

In situ data.  The in situ data employed in this study were sourced from the National Tibetan Plateau Scientific 
Data Centre of China and were generated by Zhao et al.28, Liu et al.29,30, Yang et al.19,31, Che et al.30, Li et al.32, Zhao 
et al.33 and Zhang et al.34. The corresponding in situ sites span the eastern, central, western, and northeastern parts 
of the QTP and are characterized by different surface environments (refer to Fig. 1). The geographical coverage 
includes the Ali region in the western expanse of the QTP, characterized by its alpine desert landscape; the eastern 
Maqu region, dominated by lush alpine meadows; the QTH region and the central Nagqu region, situated within 
the transitional dry‒wet partition zone of the QTP; and finally, the QLM in the northeastern quadrant, notable for 
its complex topography and hydrothermal conditions. The elevation gradient of these stations ranges from 3033 
to 5100 m above sea level, spanning approximately 2000 km from west to east. At these sites, a range of quintes-
sential vegetation types native to the QTP can be observed, including alpine swamp meadows, alpine meadows, 
alpine steppes, and alpine deserts41. Details of the observation network are provided in Table 1. In this study, we 
performed time screening and quality control of these datasets.

From 2021 to 2022, our team collected 659 SM data points at a depth of 10 cm via the ring-knife sampling 
method and the time-domain reflectance method in the Ali region, along the QTH, on the Qiangtang Plateau, 

Fig. 2  Overview of the methodology and data used to generate high-spatial-resolution SM data.

Networks Ali Nagqu QTH QLM Maqu

Location of the QTP West Central Central North East

Depth (cm) 0–5 0–5 0–10 0–4, 0–5 0–5

Numbers 23 62 16 11 22

Period 2017-2018 2017-2021 2017-2019 2017-2021 2017-2019

Average elevation (m) 4358 4636 4678 3452 3472

Frozen type Seasonally Seasonally Permafrost Seasonally Seasonally

Table 1.  List of the five in situ networks used in this study.
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and in the West Kunlun region, as shown in Fig. 1. The sampling environments extended from the central to the 
western parts of the QTP, from alpine meadows to alpine steppes and to alpine deserts. These sampling points 
were located away from roads at a minimum distance of 300 m to mitigate potential anthropogenic impacts. 
Moreover, the selection of sampling locations prioritized relatively homogeneous ground terrain to minimize 
the impact of spatial heterogeneity in SM. 140 of these samples were collected on the same days as the Sentinel-1 
transects, which suggests that they can be used for retrieval studies. In this study, all measured SM data were 
randomly divided into two parts, one for training and the other for validation. It is worth noting that the pen-
etration depth of the Sentinel-1 C-band signal is lower than that of the in situ observations, which may lead to 
uncertainties in the construction and validation of the algorithm.

Sentinel-1 and Sentinel-2 data.  In 2014, a significant milestone was achieved with the successful launch 
of the Sentinel-1 satellite, which includes Sentinel-1A (S1A) and Sentinel-1B (S1B), as part of the Copernicus 
program of the ESA. S1A has an orbital period of 98.6 minutes and a revisit period of 12 days and operates in con-
junction with S1B on a combined orbital cycle of 6 days. The interferometric wide (IW) imaging mode, boasting 
a spatial resolution of 5 m by 20 m, offers enhanced precision and better aligns with the demands of this research. 
In this study, the ground range detection (GRD) products of Sentinel-1 data in IW acquisition mode were utilized 
from the Google Earth Engine (GEE)42. Backscattered images of VV polarization over the completely thawing 
season (July and August) and the completely freezing season (January and February) from 2017 to 2023 were 
captured for SM retrieval algorithm development and validation.

Sentinel-2, launched by the European Space Agency (ESA) on June 23, 2015, carries the Multi-Spectral 
Instrument (MSI). The MSI sensor provides 13 spectral bands covering the visible spectrum (VIS), near-infrared 
(NIR), and shortwave infrared (SWIR) regions43. Sentinel-2A (S2A) offers three distinct spatial resolutions—10, 
20, and 60 m—with a revisit interval of 10 days. The Sentinel-2 mission, overseen by Global Environment and 
Security Monitoring (GMES), employs a dual-satellite setup to frequently capture high-resolution multispectral 
optical observations, with global coverage of approximately 5 days44.

Auxiliary data.  In this study, other SM datasets, such as ERA5-Land, GLDAS, and ESA CCI, were selected 
for comparison with the retrieval results. ERA5-Land, developed and maintained by the European Centre for 
Medium-Range Weather Forecasts (ECMWF), offers a global surface dataset specifically designed to provide 
high-resolution surface element and meteorological variable data15. The GLDAS dataset, widely employed in 
the study of land surface hydrological processes, provides assimilation data from 1978 to the present16. The ESA 
CCI dataset represents the inaugural generation of ESA SM datasets, amalgamating active and passive micro-
wave remote-sensing data products from across the globe12. The SMAP-1km product is a global daily surface 
SM dataset with 1-kilometer resolution, derived from SMAP L-band radiometer observations and downscaled 
using MODIS land surface temperature data through an algorithm. It has been validated against in situ SM meas-
urements from a dense global network representing various land cover types. In 2021, Yao et al. transferred the 
benefits of SMAP to AMSR-E/2, and developed a global daily SSM dataset45. In 2023, Zheng et al. acquired a 1-km 
spatial resolution SM dataset by fusing ESA CCI products and ERA5 reanalysis dataset46. Detailed information 
on these datasets, along with the first layer of the depth range, is provided in Table 2. Additionally, land use type 
data with a spatial resolution of 10 m (ESA World Cover) were utilized for postprocessing of the retrieval results47.

Preprocessing of Sentinel-1 data.  Data preprocessing and retrieval procedures were seamlessly con-
ducted on the GEE platform, which is renowned as the world’s leading cloud-based geographic information 
processing system48. The GEE also provides certain preliminary data preprocessing tasks of Sentinel-1 data, facil-
itated through the utilization of the ESA S1 Toolbox (S1TBX)49. These tasks encompass multifaceted processes, 
including the integration of orbit files, mitigation of thermal noise, elimination of GRD border noise, radiometric 
calibration, and range-Doppler terrain correction. Furthermore, incident angle normalization, spatial filtering, 
and radiometric slope correction of Sentinel-1 data are needed to ensure that the data are as correct as possible.

	(1)	 Threshold masking
The very high and very low backscatter coefficients (σ°) are unlikely to carry a valid SM signal and are 
discarded. The threshold of σ° for the Sentinel-1 SAR image was set at -5 – -20 dB22.

	(2)	 Refined Lee filtering
Previous studies have shown that the refined Lee filter is more effective at processing SAR data than many 
other filtering methods50,51. Hence, the refined Lee filter with a window size of 7 × 7 was chosen to reduce 
the effect of anomalous signal values.

Dataset Period Spatial resolution Temporal resolution Depth

ERA5-Land 2000-present 0.1° × 0.1° 3-Hourly 0–7 cm

GLDAS 1948-present 0.25° × 0.25° Daily 0–10 cm

ESA CCI 1978-2021 0.25° × 0.25° 3-Hourly ~0–5 cm

SMAP-1km 2015-present 1 km Daily ~0–5 cm

Yao et al. 2002- present 36 km Daily ~0–5 cm

Zheng et al. 2000-2020 1 km Daily ~0–5 cm

Table 2.  Information on the other SM products.
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	(3)	 Sentinel-1incident angle normalization
Notably, σ° is affected by the incidence angle (θ) of Sentinel-1, resulting in a slight deviation from the actu-
al situation. There is a certain correlation between θ and σo, which can be expressed as a slope (β). Figure 3 
shows 10000 randomly selected experimental points in three strips in the eastern, central, and western 
parts of the study area, which are used to represent the relationship between σo and θ for the ascending and 
descending orbits. There is a weak negative correlation between σo and θ, with correlation coefficients of -0.16 
and -0.1, respectively.
The negative correlation between σo and θ for the ascending and descending data can be corrected for 
β52,53. In this study, the central θ value of the strip (38°) was chosen as the reference angle to reduce the 
overall error caused by extrapolation22. Therefore, as expressed in Eq. 1 and Eq. 2, we uniformly corrected 
σo to a value corresponding to an incident angle of 38° (σ(38°)).

σ σ θ θ= + . ∗ − ° .( ) 0 16 ( 38 )[dB] (1)o o
asc

σ σ θ θ= + . ∗ − ° .( ) 0 1 ( 38 )[dB] (2)o o
desc

where σo
asc and σo

desc denote the corrected σo values for the ascending and descending data, respectively. 
Equations (1) and (2) can be calculated using the GEE.

	(4)	 Radiometric slope correction

Andreas et al. provided an angular-based radial slope correction procedure on the basis of Sentinel-1 SAR 
images based on two physical reference models54. By extending the framework of this volume scattering model 
and the surface scattering model, a mask of invalid data can be generated in the active stopover region and the 
shadow-affected region. This method overcomes the influence of the surface environment on backscatter and 
improves a wide range of potential use scenarios for the GEE platform in mapping various ground parameters 
with Sentinel-1 on a large scale and in a rapid mode55.

Calculation and processing of optical indices.  In this study, the normalized difference vegetation index 
(NDVI) and normalized difference moisture index (NDMI) were used to reflect vegetation characteristics and the 
vegetation water content42,56–58. In addition, we utilized the normalized difference water index (NDWI) to identify 
the water bodies for removal in postprocessing59. These indices were calculated as follows:

NDVI ( )/( ) (3)nir red nir redρ ρ ρ ρ= − +

ρ ρ ρ ρ= − +NDMI ( )/( ) (4)nir swir nir swir

ρ ρ ρ ρ= − +NDWI ( )/( ) (5)green nir green nir

Where ρgreen, ρred, ρnir, and ρswir are the reflection signals in the red spectrum, the green spectrum, the 
near-infrared spectrum, and the shortwave infrared spectrum, corresponding to the B3, B4, B8, and B11 band 
of Sentinel-2, respectively. The Sentinel-2 data were processed by the cloud removal function in GEE. The data 
from one week before and after the Sentinel-1 acquisition is selected to calculate these indices.

SM retrieval method.  The SM retrieval algorithm developed based on the CD algorithm has been validated 
and applied in SM retrieval studies in semiarid and mountainous regions40. We characterized the changes in SM 
by the difference in σo (Δσo) between the thawing and freezing seasons. It can be expressed as:

∆σ σ σ= − (6)
o

t
o

f
o

Fig. 3  Correlation between the incidence angle θ and backscatter coefficient σo along the ascending (a) and 
descending orbits (b).
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Where σo
t is the σo value of the thawing season and σo

f is the σo value of the freezing season.
In this study, 1287 sets for the descending orbits and 2105 sets for the ascending orbits were collected during 

the thawing season from 2017 to 2023. In situ SM, Δσo, NDVI, and NDMI data were included in each set. Then, 
a multiple linear regression model was constructed based on the linear relationships between SM and Δσo, 
NDVI, and NDMI, and the SM retrieval algorithm can be expressed as follows:

∆σ= ∗ + ∗ + ∗ +SM a b NDVI c NDMI d (7)o

where a, b, and c are the coefficients of the three variables (Δσo, NDVI, and NDMI, respectively) and d is a con-
stant. To ensure the universality of the retrieval algorithm, we arranged the in situ data of different years together 
and then performed 10000 random divisions, with a ratio of nearly 8 to 2, to determine the optimal coefficient. 
One part was used to obtain model coefficients (a, b, c, and d). The other was used to verify the accuracy of the 
retrieved SM. Thus, we could obtain 10000 sets of coefficients and training and validation R2 values. Finally, we 
calculated the sum of R2 for the training and validation processes using their sample sizes as the weights. The 
optimal coefficient set was determined based on the maximum sum of the R2 values obtained from the training 
and validation processes.

Postprocessing of the retrieval results.  Theoretically, there is a positive correlation between σo and SM, 
and σo during the thawing season should be greater than that in winter. Several studies have indicated significant 
anomalies in SM retrieval in global arid and hyperarid environments60–62. This phenomenon is associated with 
a notable bias in SM modeling and remote sensing-based estimation. Hence, in this study, the area where ∆σo is 
less than zero was considered abnormal and was masked during postprocessing. In addition, areas where SAR 
monitoring is not effective, such as water bodies and forests, were masked. The water body masks were processed 
by setting thresholds using the normalized difference water index (NDWI)59. ESA land use type data were used to 
extract forestland, inhabited land, and agricultural land to create a mask.

Data Records
The measured SM dataset has been uploaded to Figshare63. These datasets published in this study were divided 
into two parts, one comprising in situ monitoring data from the thawing season through quality control. The 
other part comprises field sampling data for 2021–2022. These data were saved in Excel, and the station data 
were named after the observation network with a serial number. For example, QLS-1 indicates the Qilian 
Mountain Observation Network No. 1 station. The sampling point data were directly named by a serial number. 
Some sampling sites were supplemented with environmental photographs, which are named according to the 
serial number of the sampling site.

These 100-m-resulotion SM datasets have been uploaded to Figshare63. According to the SM retrieval algo-
rithms developed for both the ascending and descending orbits, users can access SM data for the frozen soil 
region of the QTP with a spatial resolution of up to 10 m. However, due to data storage capacity constraints, we 
provide 100-m-resolution SM spatial data from 2017 to 2023 for the ascending and descending orbits. For ease 
of use, the SM data for the thawing season are stored in GeoTIFF format, with one file for each month covering 
the entire QTP. Users can utilize various geographic information system (GIS) and remote sensing software 
packages to read and manipulate the data. The file names follow the structure of “SM_YYYY_A/D.tif ”, where 
“SM” denotes the 100-m SM product, “YYYY” is the year, and “A/D” denotes the ascending or descending orbit.

Additionally, the algorithms and codes developed in this study are openly available for users or scholars who 
require SM data at the Sentinel-1 transit time or higher spatial resolution. Alternatively, users can obtain the 
data by contacting the authors via email (zhibinli@nuist.edu.cn) and providing details regarding the desired 
time frame, extent, and spatial resolution. We encourage interested parties to leverage these resources for their 
research and analysis purposes.

Technical Validation
Validation of the SM Retrieval Algorithm.  Table 3 provides an overview of the means, standard devi-
ations, and optimal coefficients (a, b, c, and d) derived from 10000 regressions for both the ascending and 
descending datasets. These regressions were conducted to validate the SM retrieval algorithm. The optimal coef-
ficients were determined based on the regression coefficients corresponding to the maximum weighted R2 values 
obtained from the training and validation processes. According to Table 3, the SM retrieval algorithms for the 
ascending and descending orbits can be expressed as follows:

Orbit Coefficient a b c d R²

Ascending

Mean 0.0148 0.186 0.158 0.054 0.586

OPT 0.0143 0.186 0.164 0.052 0.587

STD 0.0002 0.006 0.008 0.002 0.0006

Descending

Mean 0.0155 0.206 0.1 0.04 0.507

OPT 0.0154 0.2 0.11 0.04 0.511

STD 0.0004 0.0007 0.009 0.003 0.001

Table 3.  Optimal coefficients determined via regression analysis. Mean, STD, and OPT denote the average, 
standard deviation, and the optimal coefficient of each solution, respectively.
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SM 0 0143 0 186 NDVI 0 164 NDMI 0 052 (8)o
asc ∆σ= . ∗ + . ∗ + . ∗ + .

∆σ= . ∗ + . ∗ + . ∗ + .SM 0 0154 0 2 NDVI 0 11 NDMI 0 04 (9)o
desc

Where SMasc is the SM value retrieved by the ascending algorithm and SMdesc is the SM value retrieved by the 
descending algorithm. As indicated in Table 3, the mean values of the 10000 sets of regression coefficients for 
the ascending and descending orbit algorithms are very close to the optimal values, and the standard deviations 
are relatively small. This suggests that the coefficients of the two algorithms remain relatively stable and are not 
greatly affected by the different divisions of the training and validation samples, which indicates the robustness 
of the model.

In this study, 421 sets of ascending orbit data and 258 sets of descending orbit data were used to validate 
the retrieval algorithms. As indicated in Table 3 and Fig. 4, the retrieved results demonstrated satisfactory 
performance, with correlation coefficients (r) of 0.77 for the ascending algorithm and 0.71 for the descending 
algorithm. Additionally, the bias reached 0.07 m³/m³ and an RMSE of 0.07 m³/m³ for both algorithms, further 
confirming the accuracy and reliability of the retrieval process.

Generation and validation of 100-resolution SM spatial data.  We mapped SM across the QTP at a 
100-m resolution from 2017 to 2023 during the thawing season using Eqs. (6) and (7). The QTP spans multiple 
Sentinel-1 strips of both ascending and descending orbits, each characterized by different transit times. This 
diversity poses challenges in simultaneously acquiring SM data across the entire QTP for our study. To compre-
hensively assess the SM conditions across the QTP, we generated mean SM spatial data at a 100-m resolution 
for both the ascending and descending orbits during the thawing season from 2017 to 2023. As shown in Fig. 5, 
these data were validated using the mean SM across 86 monitoring stations. The r values for the ascending and 
descending data were 0.72 and 0.69, respectively, with a bias of 0.07 m3/m3 and an RMSE of 0.08 m3/m3 for both. 
Overall, the validation accuracy was satisfactory. In contrast, these spatial SM data were significantly biased low in 
wet regions, especially when SM exceeded 0.35 m3/m3. This indicates that our algorithm is deficient in modeling 
SM in wet regions, which may be related to the insufficient SM training samples in these regions.

Figure 6 shows the mean SM over the thawing season in the selected years for the ascending and descend-
ing orbits. The white areas in the retrieval results are caused by postprocessing, where water bodies, mountain 

Fig. 4  Validation of the SM retrievals against the in situ measurements. (a) Ascending; (b) Descending.

Fig. 5  Validation of the mean 100-m-resolution SM during the thawing season for the ascending orbit and 
descending orbit. (a) Ascending; (b) Descending.
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shadows, and anomalous areas are masked. Among them, the Karakorum region in the northwestern part of the 
study area encompasses more white areas because the mountain surfaces in this region comprise mostly exposed 
rocks. Comparing the retrieval results for these years, there was a notable decrease in SM in 2022, especially in 
the eastern part of the QTP. Referring to the precipitation data from the meteorological monitoring stations and 
ERA5-Land products, there was also a significant decrease in precipitation in the same year, thus validating the 
reliability of the retrieval results.

In this study, the SM retrieval results for all thawing seasons from 2017–2023 were integrated, and the mul-
tiyear thawing season mean SM was used to represent the general patterns of the SM spatial distribution on the 
QTP. As shown in Fig. 6, the retrieval results for the ascending and descending orbits exhibited similar SM spatial 
distribution patterns. The mean SM over seven years for the ascending and descending orbits were 0.141 m³/m³  
and 0.135 m³/m³, respectively. The values for the descending orbits were greater than those for the ascending 
orbits in arid regions, such as the Ali region, Qiangtang Plateau, and Qaidam Basin.

Figure 7(a) shows the multiyear mean SM from 2017 to 2023 for the ascending and descending orbits. The 
average SM was 0.14 m³/m³ across the QTP during the thawing season. Overall, the spatial distribution of SM 
exhibited a clear pattern of decreasing from southeast to northwest. The West Kunlun region and the Qaidam 
Basin are the most arid, which is the result of low precipitation and a surface dominated by bare rock and Gobi. 
It is encouraging to note that the retrieval results could capture oasis-like areas in these regions, such as small 
wetlands in the valleys and small river-affected areas in the Gobi region. The Maqu region in the eastern part of 
the QTP is influenced by the southeast monsoon and topography, resulting in higher precipitation levels, and 
this region was identified as the wettest region in the retrieval results. Through an overlay of the topographic 
shadow map, the retrieval results demonstrated the advantages of high-spatial-resolution SM data in describing 
the spatial distribution of SM. For example, SM was generally higher in mountainous areas than in plains, such 
as foothill regions, which is consistent with field survey records. At the local scale, the retrieval results effectively 
captured the heterogeneity in the SM distribution on the QTP, providing detailed insights into the substantial 
variability due to regional climatic and topographic differences.

As shown in Fig. 7, we planned two transects, i.e., a west‒east transect and a north‒south transect, and we 
collected SM data from the sample plots associated with the retrieval results. The longitudinal transect clearly 
demonstrated the gradual increase in SM from east to west, which is generally lower in the Qiangtang Plateau 
region in the western part of the QTP and higher in the Maqu region in the eastern part of the QTP. The latitu-
dinal transect more clearly demonstrated the spatial variation in SM across different topographies. SM consist-
ently remained low in the Qaidam Basin, while it showed obvious fluctuating changes in the Kunlun Mountains 
and gradually increased toward the south. These changes in SM profiles are consistent with field observations, 
which again confirms the accuracy of these spatial SM data and their advantages in describing the spatial 
heterogeneity in SM.

Fig. 6  Mean SM during the thawing season in the selected years.
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Comparison of the SM retrievals with other SM products.  Research on the applicability of SM derived 
from remote sensing products and reanalysis data in the QTP region has been conducted based on long-term in situ 
observations or sampling data in the temporal or spatial dimension at local scales, e.g., Xing, Qin, Yang, and Li20,64–66. 
The high-spatial-resolution SM data generated in this study provide new insight into the spatial distribution charac-
teristics of SM on the QTP. This study provides a coarse comparison of the ability and accuracy of the retrieval results 
and six SM products (GLDAS, ERA5-Land, ESA CCI, data published by Yao et al., SMAP_1km, and data published by 
Zheng et al.) in describing the spatial distribution of SM in the QTP. As shown in Fig. 8, the six SM products exhibited 
similar SM distribution patterns on the QTP. Regarding the distribution of the regional SM value, the Qaidam Basin 
was the driest, followed by the Qiangtang Plateau, while the southeastern part and the southern edge of the QTP were 
the wettest. Referring to Fig. 7, we also extracted SM along the profile line for these SM products. The results of extrac-
tion along the latitudinal and longitudinal profiles for the six products showed that the SMAP_1km and SM product 
published by Zheng et al. attained the best performance in describing variations in SM but still notably lacked detailed 
information. The GLDAS and ESA CCI products provided accurate SM trends in the longitudinal profiles but anom-
alies in the latitudinal profiles. The SM data published by Yao et al. show a similar pattern to SMAP_1km, but are still 
limited by the coarse spatial resolution45. Notably, all datasets exhibited high bias in arid regions, indicating potential 
limitations in accurately characterizing the SM distribution in such environments.

To clearly demonstrate the effect of SM data with 100-m spatial resolution at the local scale, we selected three 
areas (Golmud, the source area of the Yangtze River, and Zhari Namco) for finer comparisons, based on field 
investigations (Fig. 9). The results show that coarse spatial resolution SM data products are not ideal for char-
acterizing SM distribution at the local scale, making it difficult to integrate with field imagery for effective user 
interpretation. Among other SM products, the 1-km resolution product by Zheng et al. performs best, matching 
some wet and dry information shown in the field images. While the downscaled SM data from SMAP also have 
1-km resolution, the impact of the downscaling process persists at the local scale. This emphasizes the impor-
tance of spatial resolution in accurately capturing the SM distribution. The 100-m spatial resolution SM data 
from this study, however, provides more detailed information, as seen in Golmud, where it reveals a relatively 
wet area influenced by the water system flowing north into the Qaidam Basin—something that coarse-resolution 
products cannot detect. In the source area of the Yangtze River, field studies show the river floodplain is mostly 
sandy and gravelly, with a dry surface layer, while the foothills are wetter, a pattern also reflected in the 100-m 
resolution data. Similarly, this high-resolution data captures the wet areas near the inlet on the western shore of 
Zhari Namco, as well as wetlands around the two lakes to the north. Although the SM data published by Zheng 
et al. and the SMAP_1km data also capture wetland information, they are far less clear than the retrieval results. 
These comparisons highlight the advantages of higher spatial resolution in representing SM distribution, and 
users can further compute SM data at even finer resolutions (down to 10 m) using the algorithms and codes 

Fig. 7  (a) Mean SM retrieval results for the thawing season from 2017–2023. (b) SM values extracted from the 
longitudinal line. (c) SM values extracted from the latitudinal line.
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provided in this study. Although retrieval results excels in spatial resolution, its temporal resolution is still infe-
rior compared to other available products.

The mean SM during the thawing season at the monitoring network sites was overlaid on the other SM 
products for further comparison with the validation results shown in Fig. 5. Figure 10 shows a scatterplot of 
the other SM products versus the in-situ SM data for the thawing season from 2017–2021 at all sites. Among 
these data products, the 1-km spatial resolution SM published by Zheng et al. had the highest accuracy, with 
validated r, bias, and RMSE of 0.71, 0.06 m3/m3, and 0.08 m3/m3, respectively. The SMAP downscaled 1 km data 

Fig. 8  Longitudinal and latitudinal profile line plots for six types of data and the extracted SM. (a) GLDAS;  
(b) ERA5-Land; (c) ESA CCI; (d) Yao et al.(SMAP + AMSR-E/ AMSR2); (e) SMAP_1km; (f) Zheng et al.  
(ESA CCI + ERA5).
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also had good accuracy with r of 0.67, bias of 0.06 m3/m3, and RMSE of 0.08 m3/m3. However, the results of 
comparison indicate that it is also biased low. For ERA5-Land, ESA CCI, and GLDAS, the results of validation 
show that these data are more clustered, e.g., the SM values extracted from the ESA CCI and GLDAS data are 
mainly concentrated in the range of 0.2-0.3 m3/m3, and the ERA5-Land is mainly concentrated around 0.4 
m3/m3. It may be related to the coarser spatial resolution of these data. The accuracy of the GLDAS product in 
the spatial dimension was better than that of the other two products, which is consistent with the findings for 
the source area of the Yangtze River64. The SM data product published by Yao et al. was developed based on 
SMAP and AMSR-E/245. Therefore, the validation results of the SM data product from Yao et al. were similar 
to SMAP, but with a slightly higher overall accuracy. In general, several SM products can describe the overall 

Fig. 9  Comparison of spatial distribution of SM for different SM products in local areas of the QTP.
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spatial distribution of SM in large-scale regions, but there are limitations and biases in the QTP. Comparing the 
validation results in Fig. 5 and Fig. 10 and the profile line extraction results in Fig. 7 and Fig. 8, the SM data gen-
erated in this study not only provide a high overall accuracy but also provide detailed information on the spatial 
distribution of SM on the QTP.

In this study, while five SM observation networks cover various regions of the QTP, the SM distribution 
remains uneven across the plateau. For instance, the Nagqu region encompasses numerous stations, whereas the 
Ali region and QLM areas exhibit limited coverage. This nonuniform distribution results in varying station den-
sities and significant differences in the number of observed data samples. Consequently, regions with a higher 
station density benefit from more accurate retrieval results, whereas lower-density areas may suffer from insuffi-
cient observation data, potentially introducing biases into the findings. Therefore, expanding the observational 
station network and collecting field sampling data, particularly in regions with a low station density, is necessary 
to mitigate any biases stemming from spatial nonuniformity.

In follow-up research, several measures could enhance the accuracy of SM retrieval algorithms on the QTP. 
First, refinement of the long-term change detection algorithm is crucial for better capturing seasonal surface var-
iations while considering factors such as surface roughness, snow cover, and actual surface conditions. Second, 
improvements in the quality of remote sensing data, including the development of algorithms to address satellite 
transit time differences and cloud cover issues, are essential for minimizing NDVI and NDMI estimation errors. 
By comprehensively implementing these measures, the accuracy of SM retrieval algorithms on the QTP could 
be significantly enhanced, resulting in better alignment with the unique geographical and climatic conditions of 
the region and providing more reliable support for both research and practical applications.

Usage Notes
In this study, we compiled 659 sets of sampling data and in situ monitoring data from 86 stations during the 
thawing season through temporal screening and quality control. The compiled data cover a wide range of areas, 
even uninhabited areas, and the data could provide references and insights for large-scale ecological and hydro-
logical studies. In the subsequent development of SM retrieval algorithms and models, these data could be used 
directly as input data for training and validation. In addition, these data could be used for SM product assess-
ment on the QTP to improve the accuracy of assessments.

We generated 100-m-resolution SM data for 2017–2023 on the QTP by using an SM retrieval algorithm, 
which provides higher accuracy than other SM products. Based on these data, we can more precisely charac-
terize the spatial variability in SM on the QTP and can preliminarily and quantitatively analyze the spatial dis-
tribution of SM in different surface environments. When incorporated into models, these data can provide the 
necessary inputs for hydrological processes such as infiltration, runoff, and evapotranspiration, thereby greatly 
improving the simulation accuracy.

Fig. 10  Validation of the thawing season accuracy of the six data products using in situ monitoring 
data. (a) GLDAS; (b) ERA5-Land; (c) ESA CCI; (d) Yao et al.(SMAP + AMSR-E/ AMSR2); (e) SMAP_1km; 
(f) Zheng et al. (ESA CCI + ERA5).
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In addition, we developed an empirical algorithm for SM retrieval applicable to the frozen soil region of the 
QTP, which is very concise, understandable, and easy to implement. We integrated the algorithm and the data 
processing procedure into the code of the GEE and expect to publish it. The user must only select the period 
and study area of interest, as well as the processing procedures and retrieval algorithms for the ascending or 
descending orbits in the code, and high-spatial-resolution SM data (up to 10 m) can be acquired after running 
the program.

Code availability
The code for SM retrieval and data processing will be available at: https://gist.github.com/DrLibuyan/
c8cb3a9f20d7012028af9d0a99b963f6.
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